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PREFACE 

In order to understand and model how one or more inputs to a given system affect various 
outputs, engineers and scientists take measurements over rime. For a given input or output vari- 
able that is being moNtor#l, the set of observations appearing in chronological order is called a 
time series. In time series modelling and analysis, time series models am fitted to one or more 
time series describing the system for purposes which include forecasting. simulation, trend 
assessment, and a better understanding of the dynamics of the system. The kinds of systems 
which can be studied from a time series modelling viewpoint range from a purely socioeconomic 
system where econometricians may wish to determine how leading indicators can be used to 
fortcast the future performance of the economy of a country, to a completely physical system for 
which engineers may wish to ascertain how land use changes have affected the environment. 

This is a book about time series modelling of water ~ s o u f c e s  and environmental systems. 
From the area of stochastic hydrology, consider for example, how time series analysis may be 
employed for designing and operating a system of hydroelectric facilities. After fitting stochas- 
tic or time series models to pertinent hydrological time series such as sequences of rivefflows, 
precipitation and temperature measurements, the fitted models can be employed for simulating 
possible hydrological inputs to the hydroelectric system. These inputs can be used for testing the 
economical and physical performance of various alternative designs of the system in order to 
select the optimal design. Subsequent to the construction of the system of reservoirs, stochastic 
models can be employed for forecasting the input flows to the system and the demand for elecm- 
cal consumption, in order to ascertain an optimal operating policy which maximizes the 
hydroelectrical output subject to physical, environmental, economical and political constraints. 

As another example of the use of time series modelling in the environmental sciences, con- 
sider the use of time series models for the trend assessment of water quality time series. Land 
use changes such as increased industrialization and the cutting down of forests may cause water 
quality variables in a river to deteriorate over time. To model the trends and estimate their mag- 
nitudes, appropriate time series models can be employed. In Part Vm of the book, the interven- 
tion model is suggested as a flexible model for use in an environmental impact Pssesfment 
study. From a qualitative viewpoint. the intervention model for a water quality study can be 
written as: 

Water = Intervention + Riverflows + Other + Missing + Noise 
Quality Eneds Water Vdues 
VUiabk Quality 

Variables 

In the above relationship, the output water quality variable on the left may represent a 
phenomenon such as phosphorous levels in a river. The intervention effects are modelled as the 
changes in the mean level of the phosphorous time series due to the external interventions. The 
input series may conskt of riverflows and other water quality variables such as temperature and 
turbidity. If there arc not too many missing values, the intervention model can be used to 
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estimate them Finally, the noise term in the intervention model captures what is left over after 
the other model components arc accounted for. Because the noise is often modelled as an 
ARMA (autorcgressive-moving average) model, it can properly handle any autocornlation 
which may be present Hence, one does not have to assume that this noise is white. 

The arcas of stochastic hydrology and statistical water quality modelling constitute two 
domains that a~ of dircct interest to scientists and engineers who wish to study water rtsourccs 
as well as other related environmental systems. As illustrated above, within each domain, timc 
series modelling possesses widespread applicability. Rather than treating these areas separately. 
this book amalgamates these two subfields under the o v d  field called environmetrics. As 
explained in Section 1.1 of the fmt chapter, environmetria is the development and application 
of statistics in the environmental sciences. Bccause various kinds of timc series models consti- 
tute the main type of statistical tools described in this book. the title of the book is appropriately 
given as ‘‘Time Series Modelling of Water Resources and Environmental Systems.” A 
variety of other statistical methods such as graphical techniques, nonparametric trend tests 
and regression analysis are also presented in the book. 

To demonstrate how the time series models and other statistical techniques art applied in 
practice, practical applications to riverflow, water quality and other types of environmental 
time series arc given throughout the book. However, the reader should keep in mind that the 
techniques can be applied to time series arising in fields falling outside the environmental areas 
of this book. Accordingly, the types of Professionals who may wish to use this book include: 

Water Resources Engineers 
Environmental Scientists 

Hydrologists 
Geophysicists 
Geographers 

Earth Scientists 
Planners 

Economists 
Mechanical Engineers 

Chemical Engineers 
Management Scientists 

Teachers 
Students 

Researchers 
Practitioners and Consultants 

When employed for teaching purposes, the book can be used as a coursc text at the upper 
undergraduate or graduate level. Depending upon the number of topics covered, it CM be util- 
ized in a one or two semester course. 

systems Scientists 

Within each professional group, the book is designed for use by: 



As can be seen from the Table of Contents, and also Table 1.6.1, the book is divided into 
ten major Parts having a total of twenty-four Chapters. For convenience, the titles of the ten 
Parts are listed in Table P.1. The book contains descriptions of specific statistical modela and 
metbods as well as general methodologies for applying the statistical techniques in practice. 
The only background required for understanding virtually a l l  the material presented in the book 
is M introductory one semester c o w  in probability and statistics. 

Part 
Numbers 
1 
n 
m 
Iv 
V 
VI 
VII 
MI 

X 
Ix 

Part Titles 

Scope and Background Material 
Linear Nonseasonal Models 

Model Consmction 
Forecasting and Simulation 
Long Memory Modelling 

Seasonal Models 
Multiple Input-Single Output Models 

Intervention Analysis 

Handling Messy Environmental Data 
Multiple Input-Multiple Output Models 

Depending upon the background and interests of the reader. Section 1.6.2 describes the 
various rwta that can be followed for exploring the countryside of ideas presented in the book. 
Consequently, in the Preface only the main topics covered in the book are highlighted. In gen- 
eral, the book progresses from describing simpler to more complicated models in order to model 
more complex types of environmental data sets. 

A summary of the main contents of each Part in the book is presented at the start of each 
Part. Consequently, the reader may wish to read each of the ten summaries before referring to 
detailed descriptions of techniques and methodologies presented in each chapter. Within Part I, 
the scope of the book and some basic statistical definitions that are useful in time series model- 
ling arc given in Chapters 1 and 2. respectively. As explained in Chapter 1, statistical methods 
can be used to enhance the sdentific approach to studying environmental problems which 
should eventually result in better overall environmental decisions being made at the political 
level of decision making. In order to give the reader some tools to work with, various classes of 
linear nonscasonal models am presented in Part II. More specifically, in Chapter 3 the AR 
(autoregressive), MA (moving average) and ARMA models am defined and some of their 
important theoretical properties, such as their theoretical autocornlation strucms, are derived. 
As is the case with all of the models defined in the book, special emphasis is placed upon 
highlighting theoretical properties which are useful in practical applications. The models of 
Chapter 3 am designed for application to stationary nonseasonal time series for which the sta- 
tistical properties do not change over time. In Chapter 4, the A R M  (autoregressive integrated 
moving average) model is defined for application to a nonstationary nonseasonal time series 
where, for instance, the level of the series may increase or decrease with time. Other kinds of 



time series models are presented in Parts V to IX of the book. A list of all the time k e s  models 
described in the book is given in Table 1.63. However, befort presenting other kinds of time 

ticular. Part III explains how the nonseasonal models of Part II can be fitted to yearly time 
series by following the identification, estimation and diagnostic check stages of model construc- 
tion. Applications to yearly hydrological and other kinds of time series explain how this is exe- 
cuted in practice. The basic model building methods of Part JII are simply extended for use with 
more complicated time series models given later in the book. Using practical applications, Part 
TV explains how the nonseasonal models of part II can be used for forecasting and simulation. 
Forecasting and simulating with u t h a  models in this book simply involve making appropriate 
changes and extensions to the procedures given in Part IV. 

The Hurst Pbenomenon defined in Chaptcr 10 of Part V caused one of the most interest- 
ing and controversial debates ever to take place in hydrology. Both theoretical and empirical 
research related to the H u n t  phenomenon arc described in detail and a proper explanation for the 
Hunt phenomenon is put forward. One spinoff from research related to Hurst’s work was the 
development of long memory models for which the theoretical autocorrelation function dies off 
slowly and is not summable (set Section 2.5.3 for a definition of long memory). The two types 
of long memory models presented in Part V arc the FGN (Fractional Gaussian noise) model of 
Section 10.4 and the FARMA (fractional ARMA) model of Chapter 11. 

The three kinds of seasonal models presented in Part VI are the SARIMA (seasonal 
ARIMA). deseasonalized, and periodic models. The latter two seasonal models arc especially 
well designed for use with environmental time series in which certain kinds of stationarity arc 
present in each season. Fortcasting experiments demonsuate that PAR (periodic autoregressive) 
models provide better fortcasts than their competitors when forecasting certain kinds of scasonal 
hydrological time series. 

.tistical 
approaches in environmental impact assessment studies. Parts MI, WI and X provide signifi- 
cant contributions to this topic. The type of multiple input-single output model presented in 
Part W is the TFN (transfer function-noise) model which is designed for modelling situations 
qualitatively written as: 

series models pftcr Part II, SOIW practical aspects of time series modelling are d e & M  In PW- 

A major emphasis of this book is the use of time series models and other relata 

Single = Multiple + Noise 
output Inputs 

Variable 

In the above expression. for example, the single output variable may be riverflows which arc 
caused by the input variables consisting of precipitation and temperature, plus an ARMA noise 
term. The type of basic structure contained in the TFN model reflects the physical realities 
present in many natural systems. Indeed, forecasting experiments described in Chapter 18 
demonstrate that a TFN model provides more accurate forecasts than those obtained from a 
costly and complicated conceptual model. 



The inkrvention model of Parl Vm constitutes a worthwhile extension of the TFN 
model of Part W. In addition to handling multiple inputs and autocorrelated noise, the inter- 
vention modcl has components for modelling the effects of external interventions upon the 
mean level of the output series and also for estimating missing values. The qualitative expres- 
sion for thc intervention model shown earlier in the Preface demonstrates the flexible design of 
the model. Indeed, extensive applications to both water quality and quantity data in Chapters 19 
and 22 clearly show the p a t  import of this model in environmental impad assessment. 

Within Part M. the class of multiple input-multiple output models that is described is 
the multivariate ARMA family of models. In order to reduce the number of model parameters. 
a special case of the multivariate ARMA models, which is called the CARMA (contemporane- 
ous ARMA) set of models, is suggested for use in practical applications. Qualitatively, a mul- 
tivariate ARMA model is written as: 

Multiple = Multiple + Noise 
outputs Inputs 

This type of model is needed when there is feedback in the system. For instance, there can be 
feedback between water levels in a large lake and precipitation. Evaporation from the lake 
causes clouds to form and precipitation to take place. The precipitation in turn causes the lake 
level to rise from precipitation falling directly on the lake as well as incrcased rivefflows into the 
lake from rivers affected by the precipitation. 

In Parl X. general methodologies and specific techniques arc presented for assessing 
trends and other statistical characteristics that may be present in messy environmental data. 
Water quality timc series, for instance, are often quite messy because there arc a large number of 
missing observations and many outliers. To extract an optimal amount of information from 
messy environmental data, it is recommended to carry out both exploratory data analysis and 
confirmatory data analysis studies. Simple graphical methods can be used as exploratory data 
analysis tools for discovering the main statistical characteristics of the series under study. At the 
confirmatory data analysis stage, statistical models can be used to model formally the time 
series in order to c o n f i  presence of the key statistical properties. After estimating missing 
data points, the intervention model is employed in Chapter 22 for modelling trends in water 
quality scries measured in crceks that may have been influenced by cumng down a forest. 
Because there an a great number of missing observations for water quality variables measurcd in 
a large lake. nonparamelric trend tests arc employed in Chapter 23 for detecting any trends 
caused by industrialization near the lake. Finally, in Chapter 24, a general methodology is 
presented for detecting and analyzing trends in water quality series measured in rivers. A robust 
locally weighted regression smooth can be employed for visualizing the a n d  in a graph of the 
data. Furthmnore, a flexible n o n p m t r i c  a n d  test is used for confirming the presence of the 
and. Table 1.6.4 summarizes the trend analysis approaches used in the book within the 
overall framework of exploratory and confirmatory data analyses. 



Most chapters in the book contain the following main components: 

Descriptions of techniques 
Representative applications 

Problems 
References 

Appendices 

Additionally, time series models presented later in the book usually constitute appropriate 
expansions of the ARMA-type models presented earlier. Finally, flexible model mstruct ion 
metbods arc presented for all of the classes of time series models described in the book. Conse- 
quently, the time series modcls are completely operational and can be used now within a sys- 
tematic data analysis study. 

Except for the long memory FGN model of Chapter 10, all of the time series models dis- 
cussed in detail in this book arc directly related to the basic ARMA model. Hence, the nonsea- 
sonal ARMA and ARIMA, long memory FARMA, three types of seasonal, TFN, intervention, 
and multivariate models of Parts II, V, VI, W. WI. and IX. respectively, all can be considered 
as belonging to the extended family of ARMA models. All of these models possess sound 
theoretical designs and can be conveniently applied to actual data sets using the flexible model 
building procedures described in the book. Furthermore, numerous practical applications and 
comparisons to other kinds of models clearly demonstrate the usefulness of these models in 
environmemcs. 

Consider first the utility of the intervention model of Part WI. As shown by the many 
applications in Part WI and Chapter 22 of the intervention model to water quantity and quality 
time series, the intervention model works very well in practical applications. In fact it is p rob  
ably the most useful and comprehensive time series model available for use in environmental 
impact assessmnt studies at the present time. 

As s u m m a r i d  in Table 1.6.3, experimental results an provided at various locations in the 
book for a range of situations in which ARMA models atrc used for forecasting and simulation. 
When forecasting annual geophysical time series, forecasting experiments demonstrate that 
ARh4A models and a nonparametric regression model produce more accurate forecasts than their 
competitors (set Section 8.3). For the case of average monthly riverflows. PAR models identi- 
fied using proper identification plots provide accurate forecasts (Sections 15.3 and 15.4). As 
explained in Section 15.5. combining forecasts from different models can produce more accu- 
rate forecasts when the individual models are quite different in design and both models produce 
reasonably accurate forecasts. However, because SARIMA models do not forecast seasonal 
riverflow data nearly as well as PAR models, combining forecasts across these two models pm- 
duces forecasts that are less accurate than the PAR forecasts on their own. Forecasting expcri- 
men& in Chapter 18, demonstrate that a TFN model forecasts riverflows significantly better 
than a conceptual hydrological model. 

Another major finding in the book is that ARMA-type models w o k  rcmarkably well for 
simulating both nonseasonal and seasonal hydrological time series (see Table 1.6.3). As 
demonstrated by the simulation experiments outlined in Section 10.5, ARMA models 
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statistically preserve the Hurst statistics and thereby provide a clear answer to the riddle of the 
Hurst phenomenon. Furthermore, as pointed out in Section 14.8, PAR models statistically 
preserve the critical period statistics for monthly riverflow time series. 

When developing a time series model for describing a given time series, experience has 
shown that better models can be developed by following the identification. estimation and diag- 
nostic check stages of model construction. Only a properly designed and calibrated model has 
the potential to work well in simulation and fortcasting. 

The McLeod-Hipel Time Series (MHTS) Package constitutes a flexible decision sup- 
port system for carrying out comprehensive data analysis studies in order to obtain meaningful 
statistical results upon which wise decisions can be made. As explained in Section 1.7, the 
MHTS package can be used for fitting virtually all of the models prcscnted in this book to sets of 
time series by following the three stages of model construction. The MHTS package can then 
utilize calibrated models for performing applications such as forecasting and simulation exper- 
iments. Moreover, the MH package is especially useful for executing statistical environmental 
impact assessment studies where a practitioner may use tools such as graphical methods, non- 
parametric trend tests, intervention models, and regression analysis. Part X of the book explains 
how these kinds of methods can be employed for retrieving useful information from messy 
environmental data. 

As a closing to the Preface, the authors would like to comment upon the future of environ- 
metrics, in general, and time series modelling, in particular. As world populations continue 
to expand, the demand for potable water as well as other natural resources will no doubt greatly 
increase. Certainly, more and more of the natural environment will be altered due to increased 
industrialization, expansion of agricultural lands and other land use changes. These man- 
induced activities could in turn cause a dramatic deterioration of the environment. To better 
understand how man’s activities affect the environment, extensive measurements will have to 
be taken of a wide range of variables including water quality, water quantity and meteorological 
phenomena. Of course. proper experimental design procedws should be used for deciding 
upon where and when the data should be optimally collected. This vast array of observations 
will have to be efficiently stored in a complex computer system for subsequent use in data 
analysis and decision making. A wide range of time series modeh, including those described 
in this book, as well a s ~ t h e r  appropriate statistical methods, will be needed as key modelling 
techniques in the scientific data analysis studies of the huge amounts of environmental informa- 
tion. By properly collecting and analyzing the data. better decisions can be made for obtaining 
solutions to pressing environmental problems which minimize man’s detrimental impacts upon 
the natural environment Paradoxically, the future health of the environment is questionable 
while the futures of environmctrics and also time series modelling arc indeed very promising. 
Certainly. environmctrics provides one of the “medicines” that CM be used to help ‘‘cure” a 
sick patient who appears to be lapsing into a terminal illness. The authors sincerely hope that 
their timely book on time series modelling of water resources and environmental systems 
will help to influence people for developing and adopting sound environmental policies. 
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Scope and Background Material 
1 

PART 1 

AND 

BACKGROUND MATERIAL 

The objectives of Part I of the book are to explain the important roles that time series 
modelling has to play in environmental decision making and to provide definitions for some 
basic statistical concepts that are used in time series modelling. As can be seen in the Table of 
Contents given at the start of the book, Part I consists of the following two chapters which are 
entitled: 

CHAPTER 1 - ENVIRONMETRICS, SCIENCE AND DEClSlON MAKING 
CHAPTER 2 - BASIC STATISTICAL CONCEPTS 

The first chapter furnishes the basic motivations for writing a book on time series modelling of 
water resources and environmental systems as well as pointing out the import of time series 
modelling in science and decision making. Chapter 2 presents a variety of basic statistical 
definitions that are utilized in the subsequent chapters in the book. 

Consider now in more detail some of the main contributions of the first two chapters, start- 
ing with Chapter 1. As explained in Section 1.1, this book on time series modelling is actually a 
document about environmetrics - the development and application of statistical methods in the 
environmental sciences. Because environmental data sets usually consist of observations meas- 
ured over time, time series models constitute important statistical tools for use in environ- 
metrics. In fact, the time series and other statistical methods presented in the book draw upon 
research developments from two areas of environmetrics called stochastic hydrology and sta- 
tistical water quality modelling as well as research contributions from the field of statistics. 
As pointed out in Section 1.2, the use of statistical techniques can enhance the scientific method 
which in turn means that pressing environmental problems can be more efficiently and expedi- 
tiously solved. When carrying out a scientific data analysis study using environmental data such 
as hydrological and water quality time series, one can employ both exploratory data analysis and 
confirmatory data analysis tools. The purpose of exploratory data analysis is to use simple 
graphical methods to uncover the basic statistical characteristics of the data which can be 
modelled formally at the confirmatory data analysis stage utilizing time series models and 
other kinds of statistical methods. For example, in an environmental impact assessment study, 
exploratory graphs may clearly indicate the presence of trends in a water quality time series due 
to land use changes. The trends can then be modelled and their magnitudes estimated at the con- 
firmatory data analysis stage using the intervention model of Part VIII. Section 1.3 outlines 
how a time series model, such as an intervention model, can be systematically fitted to a data set 
by following the identification, estimation and diagnostic check steps of model construction. 
By keeping in mind the basic physical system within which a data analysis is being carried out, 
one can put the ovenll environmental problem into proper perspective. Section 1.4 explains 
why the hydrological cycle provides a good physical structure for the types of environmental 



2 Part I 

systems studied in the applications in this book. By executing a scientific data analysis study 
based upon a sound environmental system framework, one can improve environmental decision 
making. Section 1.5 provides a description of engineering decision making and explains how it 
can be enhanced using proper data analysis studies. Next, Section 1.6 describes the organiza- 
tion of the book and suggests various sequences of chapters that can be followed according to 
the needs and backgrounds of the readers. Finally, Section 1.7 describes a decision support sys- 
tem, called the McLeod-Hipel Time Series Package, that permits a user to take immediate 
advantage of the many statistical techniques presented in the book. The book should be useful 
for teachers, students, researchers and practitioners who are interested in confronting chal- 
lenging data analysis problems arising in water resources and environmental engineering. 

In Chapter 2, basic statistical definitions that are needed in time series modelling are 
presented. First, the different kinds of time series that can arise in practice are discussed. After 
briefly explaining what is meant by a stochastic process, the concepts of stationarity and non- 
stationarity are described. This is followed by a variety of specific statistical definitions includ- 
ing the autocorrelation function for describing linear dependence among observations in a time 
series. Although the time series modelling and analysis carried out in this book are mainly done 
in the time domain, some contributions from spectral analysis are discussed in Section 2.6. 
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CHAPTER 1 

ENVIRONMETRICS, 

SCIENCE 

AND 

DECISION MAKING 

1.1 THE NEW FIELD OF ENVIRONMETRICS 

The overall objectives of this book arc to present flexible statistical methodologies for 
scientifically carrying out data analysis studies of environmental timc series and to describe a 
broad variety of useful statistical tools for implementing these methodologies. The methodole 
gies include general procedures for systematically executing a data analysis study as well as the 
main steps required for fitting a specific statistical model to a data set. Because environmental 
data arc almost always available as observations measured over time, most of the particular tools 
presented in the book consist of different kinds of time series models. However, other statistical 
methods such as informative graphical techniques, regression analysis and nonpmmetric tests 
arc also discussed. Finally, the main types of environmental time series that are used for demon- 
strating how to apply the procedures and techniques consist of hydrological observations such as 
riverflows, precipitation and temperature series, as well as many different kinds of water quality 
series measurcd in rivers and lakes. 

In fact, the contents of this book fall within a relatively new and dynamic academic discip- 
line called Environmetrics. The term Environmetrics was first coined by J.S. Hunter on Janu- 
ary 27,1976, at a meeting of the Committee on National Statistics held at the National Academy 
of Sciences in Washington, D.C., and it is defined as the development and application of statisti- 
cal methodologies and techniques in the environmental sciences (Hunter, 1990). The environ- 
metrics approaches and techniques given in this book are based upon research results developed 
largely in the anas of statistics, stochastic hydrology and statistical water quality modelling. 
This book presents pehnent developments from these fields in a systematic and coherent fashion 
under the unifying umbrella of environmetrics. Furthermore, the title of the book reflects the 
fact that the time series modelling and other procedures given in the book should be especially 
useful for scientists, engineers and applied statisticians studying water resources and environ- 
mental systems. Nonetheless, students, teachers, practitioners, and researchers working in many 
other fields where time series models arc applied may find much of the material to be quite help 
ful for addressing many different kinds of data analysis problems. 

As brief illustrations of the usefulness and importance of environmetrics, consider an appli- 
cation from statistical water quality modelling and another one from stochastic hydrology. 
Figure 1.1.1 displays a graph of 72 average monthly phosphorous observations (in mil l ip i s  
per lime) from January, 1972, until December, 1977, for measurements taken by the Ontario 
Ministry of the Environment downstream from the Guelph sewage m t m e n t  plant located on the 
Spced River in the Grand River basin, Ontario, Canada. Notice in this figure that the abscissae 
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along the X axis represent time, where the monthly observations are numbered sequentially from 
1 to 72. The ordinates along the Y axis give the values of the phosphorous concentrations in 
mg/L For easier interpretation of the graph, the measurements are plotted as small circles at 
discrete points in time and are joined by swight lines. In February, 1974, a pollution abatement 
procedure was brought into effect by implementing conventional phosphorous treatment at the 
Guelph station. Observe in Figure 1.1.1 the manner in which the man-made intervention of 
phosphorous removal has dramatically decreased the mean level of the series after the interven- 
tion date. Moreover, as indicated by the blackened circles in this figure, there are missing data 
points both before and aftcr the intervention date. For displaying a missing value on the graph, 
the missing observation is replaced by its monthly average across all of the years. However, 
estimating a missing monthly value by a specified monthly mean may not be an accurate pro- 
cedure since the autocorrelation or dependence structure inherent in the time series is ignored 
and the influence of the intervention is not considered. It is explained in Chapter 19 how the 
intervention model can be used not only to estimate the missing observations where the auto- 
dependence structure among measurements is automatically taken into account but also to model 
statistically the effects of the tertiary phosphorous treatment for reducing the mean level of the 
series. In Section 19.4.5, intervention analysis is employed for realistically modelling the water 
quality time series of Figure 1.1.1 by constructing an appropriate intervention model. The inter- 
vention model fitkd to the series in Figure 1.1.1 shows that there is a 75% drop in the mean level 
of the series where the 95% confidence interval is from 71% to 78%. Rigorous statistical state- 
ments like this are extremely useful in environmental impact assessment studies. Besides 
Chapter 19, other trend analysis procedures and applications are given in Chapters 22 to 24 of 
Part x. 

As a second demonstration of the efficacy of environmetrics, an application from stochastic 
hydrology is utilized. Stochastic hydrology arose in the early 1960’s in the field of water 
resources and it deals with the application of stochastic and time series models to hydrological 
time series (Maas et al., 1962). Because simulated sequences from time series models fitted to 
riverflow series are used in the design and operation of systems of reservoirs, stochastic hydrol- 
ogy is also referred to as synthetic or operational hydrology. The water quantity application 
involves an interesting water resources systems problem that was solved in Brazil by Silva et al. 
(1984). In 1984, hydroelectric plants accounted for 85% of Brazil’s installed electrical capacity 
of 40,OOO MW. In order to optimize the generation of power from a vast complex of hydroelec- 
tric plants, various types of linear multivariate time series models were used to model and simu- 
late flows into the reservoirs (Pereira et al., 1984). To coordinate the most economical operation 
of both the hydrothermal generating system and the hydroelectric system, stochastic dynamic 
programming was used (Pereira and Pinto, 1985). Silva et al. (1984) clearly demonstrated that 
their use of time series models as well as other systems science techniques for optimally operat- 
ing the huge elecmcal system clearly saved the country about $87 million U.S. in five years. 
Because of this p a t  practical accomplishment, in 1985 the Institute of Management Science 
W S )  awarded the authors second prize at the 14th Annual Competition for the Edelman 
Award for Management Science Achievement. Time series models similar to those used in the 
Brazilian study are presented in Parts W to IX in this book. 

There are many specific reasons why one may employ time series models in environmental 
engineering. For instance, in the first application referred to above, the intervention model is 
utilized for quantifying the magnitude of a step trend in a water quality time series. In the 
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Figure 1.1 .I. Monthly phosphorous data for the Speed River 
near Guelph, Ontario, Canada. 

second application, simulated sequences and forecasts from multivariate time series models are 
used for maximizing profits by economically operating a complex system of hydroelectric power 
plants. However, there are also some very general advantages and uses for employing time 
series models, and, for that matter, most other types of mathematical models. Firstly, a model 
provides a common communication medium by which scientists, engineers, statisticians and 
other decision makers can realistically discuss an environmental problem. For instance, the 
graph in Figure 1.1.1 geometrically displays the obvious step drop in the phosphorous series due 
to the tertiary treatment. Additionally, as shown in Section 19.4, the intervention model fitted to 
this series accurately models this trend as well as other characteristics of the data such as auto- 
correlation and a pure random component. By examining the estimate for one of the parameters 
in the model, interested parties can see how the magnitude of the improvement in phosphorous 
levels is quantified. This type of representation of information and accompanying communica- 
tion lead to a second important benefit of formal modelling - understanding. By discussing a 
problem with others and using mathematical models as a means of communication, the ultimate 
result is a better understanding of the problem by everyone concerned. In spite of the fact that 
the data in Figure 1.1.1 contain some randomness, missing values and a step trend, one can sort 
out these components using graphs and an intervention model, and, thereby, better understand 
what is happening. Moreover, a clearer understanding of the problem ultimately leads to 
improved decision making. Suppose, for instance, environmental authorities require that there 
be a 90% drop in the phosphorous levels in the river. The results of the intervention study 
clearly demonstrate that more intensive tertiary treatment would be required to reduce the 
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phosphorous concentrations. Alternatively, if the environmental regulators want only an 77% 
reduction, one could argue that this level is almost achieved, since the 95% confidence interval 
for the estimated 75% reduction is from 71% to 78% and 77% is contained within this interval. 

In summary, the modelling process can lead to better communication and understanding 
which eventually can result in improved decisions being made. However, inherent in this argu- 
ment is that the mathematical model being used properly models the physical phenomena that 
are being studied. When modelling nature within the context of the scientific method, one 
should always employ a mathematical model that is realistically designed for capturing the key 
characteristics of the physical process being examined. One should always strive to design a 
mathematical model to fit the physical problem and never try to distort the physical process to 
fit a given mathematical model. 

In the next section, it is explained how statistical modelling can enhance the scientific 
method. Subsequently, the main components of a statistical scientific investigation are 
pointed out and general approaches to data analysis are discussed. For systematically fitting a 
time series model to a given data set, an overall systems design approach to model construction 
is presented in Section 1.3. The hydrological cycle is discussed in Section 1.4 as a basic physi- 
cal structure for describing the kinds of environmental systems studied in this book. The 
importance and role of environmetrics in environmental decision making are pointed out in 
Section 1.5. The organization of the book is thoroughly explained in Section 1.6, along with 
suggestions of various routes that can be followed when studying the rich variety of environ- 
memcs techniques that are presented. Before the conclusions, a flexible decision support sys- 
tem is described in Section 1.7 for permitting a user to take full and immediate advantage of the 
environmetrics technologies given in the book. 

1.2 THE SCIENTIFIC METHOD 

1.2.1 Spaceship Earth 

During the fvst weekend of December, 1989. the Cold War between the two superpowers 
came to an official end. On December 2 and 3, Soviet President Mikhail Gorbachev and Ameri- 
can hesident George Bush held friendly bilateral meetings on ships anchored off the island of 
Malta in the Mediterranean Sea. Besides establishing a good working relationship between the 
two leaders, the summit’s main achievement was the prospect of achieving an early agreement 
on decreasing by fifty per cent the superpowers’ long-range nuclear arsenals. Massive nuclear 
and conventional weapon systems had been developed by both the Americans and Soviets during 
the Cold War period which lasted from the end of World War II right up until the end of the 
1980’s. At last, the threat of the destruction of the entire human race by a global thermonu- 
clear war between the two superpowers seemed to be waning. Henceforth, the total number of 
nuclear weapons would subside and, hopefully, this would take place as quickly as possible. 

Although the threat of extinction by a nuclear war has lessened, the citizens of the world 
are now well aware of an even more ubiquitous and deadly menace to human survival. This is 
the continuing ruination by mankind of the natural environment which supports all life forms on 
the planet earth. This environmental devastation of the air, land and water is being brought 
about by human activities such as cutting down forests, releasing untreated industrial and human 
wastes into the environment, widespread spraying of improperly tested insecticides on crops, 
draining too many wetlands, driving too many cars, excessive energy consumption, and, of 
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course, overpopulation. Although proper management of the environment was not on the agenda 
at the Malta Summit, it seemed that nature gave Gorbachev and Bush a timely omen by flexing 
its muscles. On December 2,1989, a violent storm with gusting winds of up to 100 km per hour 
created waves up to 4 metres high which played havoc with arrangements for the first day of the 
meeting. Because the Soviet missile cruiser Slava was bobbing wildly up and down like a cork 
in the storm, it was impossible to hold the first meeting aboard the Soviet cruiser as planned. 
Rather, the two Presidents were forced to meet for their f i s t  round of talks on the larger Soviet 
ship Maxim Gorky, which was moored in much calmer waters alongside a dock in the Maltese 
port of Marsaxlokk. For those who were thinking about the urgent environmental issues that 
these two world leaders as well as others must address, the message was clear - nature is the 
key player here on earth and it should be treated with respect. 

For a dramatic example of an adverse environmental change caused by man, consider the 
so-called greenhouse effect. As reported by Levine (1990), during the past ten years, the trace 
gas composition of the atmosphere has been changing significantly over time. The buildup of 
atmospheric greenhouse gases including carbon dioxide, methane, nitrous oxide, chlorofluoro- 
carbons and tropospheric ozone, could lead to global warming. This in turn could cause many 
undesirable aftermaths such as the melting of the polar icecaps and the ensuing flooding of coa- 
stal regions. Additionally, related climatic changes could turn fertile regions into deserts and 
thereby bigger huge migrations of populations to more hospitable regions. One major factor for 
the increase in C02  levels in the atmosphere is the conversion of forests to agricultural land 
through burning. Because the carbon incorporated in the trees is not balanced by carbon accu- 
mulated in crops or grasses, the burning constitutes a net release of carbon to the atmosphere. 
Tropical deforestation through burning is especially serious in the Amazon rainforests of Brazil. 
For example, during an American space shuttle flight in 1988, the astronauts photographed a 
biomass burn smoke cloud over the Amazon region which covered 3,000,000 km2. The size of 
this cloud was second in size to the largest smoke cloud of 3,500,000 km2 which was photo- 
graphed by astronauts in 1985. Prior to 1985, the larger biomass clouds covered areas of only 
300,000 km2 (Levine, 1990). Other environmental problems caused by man-made changes to 
the atmosphere include depletion of stratospheric ozone which absorbs biologically lethal solar 
ultraviolet radiation, and acid rain which is insidiously decimating forests in the Northern Hemi- 
sphere. 

The earth, in fact, has often been compared to a spaceship containing a valuable and 
fragile environment. It is the only known spaceship in the universe within which humans and 
other life-forms can live. Therefore, its natural resources should not be squandered, ruined or 
destroyed. As an illustration of what could happen to the entire planet, consider what may have 
taken place on Easter Island many centuries ago. Easter Island, located in the South Pacific 
ocean 2,700 km west of Chile, has an area of 163 km2 and holds the distinction of being the most 
isolated piece of inhabited land in the world. On Easter Sunday in 1722, Jacob Roggereen, a 
Dutch explorer, discovered this remote island which he aptly named Easter Island. Today, the 
island is controlled by Chile. Easter Island is best known for its large stone statues called moai. 
More than 600 of these statues of grotesquely-shaped humans are scattered on the island and 
some of them are as high as 12 meters and weigh as much as 82 memc tons. However, most of 
the statues range from 3.4 to 6 meters in height. It is believed that most of these giant statues 
were sculpted in the period from about 1400 to 1680 A.D. What is not known is why the great 
moai culture that designed, built and erected these monoliths suddenly collapsed around 1680. 
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One hypothesis of what took place on Easter Island is provided by Flenley and King (1984) and 
Dransfield et al. (1984) in articles published in the journal Nature. More specifically, pollen 
records (Flenley and King, 1984) and shells from palm fruits coming from an extinct type of 
Chilean wine palm (Dransfield et al., 1984) suggest the existence of forests on the island and 
their decline during the last millennium. The authors of the two papers conjecture that the 
deforestation of Easter Island by the moai people caused their own cultural disintegration. In 
other words, the self-imposed environmental destruction of Easter Island led to the extinction of 
a pea t  culture. Imagine what went through the minds of the remaining moai inhabitants as they 
cut down the last of the date palms and thereby severed their umbilical cord with nature. When 
one contemplates the analogy of Easter Island to the current treatment of the environment on 
spaceship earth by the world civilizations, the ultimate result is frightening. 

The famous statistician George Box believes that the root cause of the present sorry state of 
the world is the scientific method. As explained by Box (1974), the scientific method provides 
the secret of learning fast and allows the normally very slow process of learning by chance 
experiences to be greatly accelerated. The scientific method furnished the fuel for the industrial 
revolution which started in Great Britain in the early 1700’s and spread quickly to most of con- 
tinental Europe and America in the 1800’s. Today, the industrial revolution is a world-wide 
phenomenon along with the expansion into the present information age or, as it is also called, the 
second industrial revolution. In all of the changes brought about by the scientific method there 
are both advantages and drawbacks. For example, scientific medicine is responsible for fewer 
deaths at birth and by disease along with longer life expectancies. The disadvantage is that 
populations can grow too large for the environment to support properly. Scientific agricultural 
methods result in higher crop yields but at the expense of massive deforestation, the addition of 
chemical fertilizers and poisonous insecticides to the natural environment, as well as overpopula- 
tion. The scientific method furnishes the key for massive industrial expansion in order to pro- 
duce great numbers of motor vehicles, lawn mowers, televisions, packaged foods and many other 
products that are in high demand. Unfortunately, the by-products that are endlessly dumped into 
the environment during the manufacture, utilization and ultimate disposal of these products are 
seriously polluting the air, earth and water. In short, the life support system for humanity is seri- 
ously ill because of the scientific method and it may never recover if drastic action is not taken 
now. 

What can help to save humanity from its present dilemma? Well, mankind used the scien- 
tific method to create the current predicament and mankind can utilize the scientific method to 
assist in restoring and properly managing the environment. However, extremely quick and 
decisive action is required before it is too late. Box (1974) believes that statistical methods can 
act as a catalyst to further accelerate the scientific method for solving pressing environmental 
problems. In the next section, the scientific method is defined and the manner in which statistics 
can improve this powerful philosophy on the learning process is explained. Moreover, the poten- 
tial influence of scientific studies of environmental problems upon the overall decision making 
process is described in Section 1.5. With knowledgeable and committed people at the helms of 
government and industry, as well as widespread public awareness, hopefully the current environ- 
mental mess can be rectified. 
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1.21 Description of the Scientific Method 

Professor John Polanyi, winner of the 1986 Nobel Prize for Chemistry, presented a seminar 
on science, technology and society at Wilfrid Laurier University located in Waterloo. Ontario, 
Canada, on September 26,1990. In his speech, he pointed out that the overall purpose of science 
is to search for truth. The general methodology which is employed to try to discover truths 
about nature is called the scientific method. Box (1974, 1976) considers the scientific method 
to be a process of controlled learning. By employing appropriate statistical methods in con- 
junction with the scientific method, the learning process can be made as efficient as possible. 
Furthermore, because this formal learning process can result in the discovery of thought- 
provoking and unforeseen truths, Groen et al. (1990) call science the discipline of curiosity. 

A mandate of environmental agencies is to monitor the natural environment by taking 
measurements of various natural phenomena. For example, Environment Canada possesses mas- 
sive statistical records on variables such as rivefflows, temperature. precipitation, barometric 
pressures, and a wide range of water quality variables, from the east to west coasts of Canada. 
These huge accumulations of data on their own do not allow scientists and engineers to reach a 
better understanding of how various components of the environment function. On the other 
hand, speculative theoretical models or hypotheses about how the environment works, will not in 
the absence of data verification shed insight into what is taking place either. To reach a better 
understanding of nature through science, one must consider both the available data and pro- 
posed theories in order to be able to explain the behaviour of the phenomenon being studied. 

Following the research of Box (1974, 1976), Figure 1.2.1 displays graphically how iterative 
learning between theory and data is carried out in science. In this figure, the theoretical realm of 
models and ideas is called hypotheses while the real world of facts and observations is referred 
to as data. Starting at the top left part of Figure 1.2.1, an initial hypothesis, H,, about how 
nature behaves leads by a process of deduction to direct consequences of the theory which can 
be compared to the measured data. If these consequences fail to agree with the data, one can 
exploit the differences or errors in order to revise the hypothesis or theory by a process called 
induction. Notice in Figure 1.2.1 that induction goes from the data to the theory or, in other 
words, from specific facts to the general hypothesis, which is appropriately modified based upon 
the above stated discrepancies. Using the revised hypothesis, H 2 ,  the learning cycle is repeated 
by employing deduction to go from the general to the specific. If the consequences of the new 
hypothesis are not in accordance with the data, one can utilize induction again as guidance for 
modifying the theory. These learning cycles consisting of deduction and induction are repeated 
as often as necessary until an acceptable hypothesis or theory is found. Eventually, a theory may 
be discovered which cannot be refuted by the available data. Further, this entire process of itera- 
tive learning leads to a much deeper understanding of what is occuning in the real world. 

Figure 1.2.1 depicts the scientific learning process as an iterative procedure. One can also 
envisage the scientific method as a feedback system. As shown in Figure 1.2.2, the initial idea 
for a scientific study is stated as a hypothesis, H1, which is then subjected to the ultimate test as 
to whether or not it describes what is happening in nature. More specifically, the discrepancies 
or errors between the data and the consequences of hypothesis H, lead to a modified hypothesis 
H 2 .  This feedback loop can continue so that H 2  leads to H 3  and, in general, H; becomes Hi+,, 
until the data no longer refutes the hypothesis. 
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Figure 1.2.1. The iterative learning process used in science 
(Box, 1974, 1976). 

At the bottom of Figure 1.2.2 is the dab input to the scientific method. The data are 
placed here because they constitute the foundations of this whole learning procedure. As noted 
earlier, any hypothesis or mathematical model must reflect what is happening in the real world 
as represented by the observations. In the types of environmental problems used in applications 
in this book, the data were usually collected over a relatively long time period. For instance, 
average monthly rivefflows are often available over a time span of 50 to 100 years. Weekly 
water quality data may be measured over a time period of 5 to 10 years. Whatever the case, 
when one is carrying out many environmental scientific studies, one can only use the available 
data, even though there may be many problems with these observations. There may simply not 
be enough time and money to obtain more data before the completion of the study. As a matter 
of fact, in many environmental agencies throughout the world, the scientists analyzing the 
natural data sets did not take part in  designing the data collection procedure in the f i s t  place. 
Nonetheless, whenever possible, scientists are advised to assist actively in the design of the 
scheme for collecting the data which they will eventually analyze within the framework of the 
scientific method. 

The methodology for efficiently collecting data for use in a scientific study is called exper- 
imental design. To obtain observations from the real world one must carry out experiments that 
are well designed. As just noted, for the case of environmental sciences such as hydrology and 
environmental engineering, one may have to collect data in the field over a fairly long time 
period. This is also the situation for areas like economics and history. However, in traditional 
and more basic sciences such as chemistry and physics, one can often obtain appropriate data 
within a fairly brief interval of time using experiments set up in the laboratory. 
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Figure 1.2.2. Feedback loop in the scientific method (Box, 1974, 1976). 

To explain more specifically how experimental design plays a key role in the scientific 
method, refer to the expanded version of Figure 1.2.2 shown in Figure 1.2.3. At the base of the 
entire approach is nature depicted as a tree. An experimental design forms a filter or window 
on nature for efficiently obtaining the most appropriate observations for testing hypotheses. 
The available data may have been obtained from a formally designed experiment or data that 
were collected in an empirical fashion over the years. At each iteration in the scientific method, 
a current hypothesis Hi about the state of nature leads to specific consequences that are com- 
pared with facts obtained from the analysis of the available data. Differences between the conse- 
quences and facts can suggest how H i  can be modified to produce Hi+, .  However, when it is not 
obvious as to what changes should be made to an unsatisfactory Hi or when further data may be 
required to c o n f m  with more confidence a good hypothesis, further data should be obtained. 
One can see in the bottom right portion of Figure 1.2.3 that experimental design can be 
employed to obtain new observations. Notice that all data contain noise that must be taken into 
account in any data analysis. When experimental design is used, it is often possible to keep the 
noise to a minimum level, compared to when good data collection procedures are not utilized. 
Because the data represent the true state of nature, the scientific method leads to a convergence 
on the truth. If the noise level or experimental error is kept smaller, it will certainly be quicker 
and easier to discover the hypothesis that represents the true state of the component of nature 
being studied. Furthermore, even if two scientists who are separately studying the same problem 
start with different hypotheses and follow different routes, they will ultimately converge to the 
same destination when using the scientific method. For a good description of experimental 
design, readers may wish to refer to the textbook of Box et al. (1978) as well as references 
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2.3. Data collection and analysis in the scientific me1.A 
(Box, 1974, 1976; Box et al., 1978). 

In the scientific method, one must test a hypothesis using real data. An explanation of 
hypothesis testing is given in Section 23.2 of the book just before the introduction of non- 
parametric statistical trend tests. The mathematical model underlying a given hypothesis is often 
expressed using some type of probabilistic model. For instance, a stochastic differential equa- 
tion or a time series model may be employed to describe a given hydrological system where one 
might be testing a hypothesis about the output of the system given certain inputs. By definition, 
however, a mathematical model can never be the phenomenon it is describing, but only an 
approximation thereof. Nonetheless, if the mathematical model reflects well the key characteris- 
tics of the system, it may form a good basis for formally structuring the hypothesis and carrying 
out related data analyses. Ln Section 1.4.3, probabilistic models are classified according to infor- 
mative criteria. 
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Another point to keep in mind is that the scientific method is purposefully designed to find 
out where one is wrong. In this way, one can learn from experience and come up with even a 
better hypothesis and underlying model (McPherson, 1990). As noted by Box (1974), there is no 
place in science for the man who wants to demonstrate that he has always been right. 

1.2.3 Statistics in a Scientific Investigation 

To carry out a systematic scientific investigation for discovering truths about nature, 
scientists and engineers employ the scientific method discussed in the previous subsection. 
From the outline of the main components of the scientific method, one can see that statistics 
plays a key role in the scientific method displayed in Figures 1.2.1 to 1.2.3. In fact, one can 
argue that by definition the scientific method must always involve statistics since one must use 
real data in order to refute or verify the current hypothesis. As noted by Box (1974), two main 
tasks in a given scientific investigation are: 
1. the design problem where one must decide upon the appropriate data to obtain at each 

stage of an investigation. 
2. the analysis problem where models are employed for determining what the data entitles 

the investigator to believe at each stage of the investigation. 
In order to execute comprehensive analyses of the data, it is absolutely essential to deter- 

mine properly the relevant data to obtain at the design phase by using appropriate techniques 
from experimental design. No amount of skill and experience in data analysis can extract infor- 
mation which is not contained in the data to begin with. Accordingly, suitable data collection 
schemes are needed for carrying out a time series analysis investigation. Within the statistical 
and engineering literature, extensive research has been published about designing optimal data 
collection schemes across a network of stations. For example, Moss (1979) wrote an introduc- 
tory paper for a sequence of twenty-four papers published in Volume 15, Number 6, 1979, of 
Water Resources Research. For use in environmental pollution monitoring, Gilbert (1987) 
presents statistical methods from experimental design. Researchers at an international sympo- 
sium that took place in Budapest, Hungary, delivered papers on how to design monitoring sys- 
tems in order to detect changes in water quality variables (Lcrner, 1986). At an international 
symposium held in Fort Collins, Colorado, on the design of water quality information systems 
(Ward et al., 1989), authors presented papers on topics ranging from data collection and network 
design to the roles of an information system within an overall water quality management system. 
Harmancioglu and Alpaslan (1992) describe water quality monitoring network design within a 
multiple objective framework. Other research regarding the proper design of water quality col- 
lection schemes for meeting a range of goals includes contributions by Ward et al. (1986). Ward 
and Loftis (1986), Whitfield (1988), and Loftis et al. (1991). Lettenmaier et al. (1978) suggest 
data collection schemes to use when one intends to employ the intervention model (see Section 
19.7) to ascertain the effects of an intervention upon the mean level of a time series. Because 
most time series models must be used with a sufficient number of observations separated by 
equal time intervals, proper sampling is of utmost importance in time series analysis. If avail- 
able measurements are not evenly spaced, appropriate data filling techniques can be utilized to 
estimate a series of evenly spaced data from the given information. As explained in Section 
19.3.2, the particular technique to employ for data filling depends upon the type and amount of 
missing data. An advantage of employing nonparametric tests for detecting trends in time series 
is that they can usually be used with unequally spaced observations (see Chapter 23). 
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As already mentioned in Section 1.2.2, when dealing with time series studies in water 
resources and other environmental sciences, often the data were collected over a long period of 
time and the people analyzing the collected data did not take part in designing the data collection 
procedure in the first place. Of course, wherever possible, practitioners are advised to actively 
take part in the design of the scheme for collecting the data which they will analyze. Neverthe- 
less, because environmental scientists are often confronted with analyzing data that were already 
collected, this book concentrates on data analysis while keeping in mind the great import of effi- 
cient data collection. 

1.2.4 Data Analysis 

recommends adhering to the following two steps: 
1.  exploratory data analysis, 

2. confirmatory data analysis. 

The main purpose of the exploratory data analysis phase of data analysis is to discover important 
statistical properties in the given observations by carrying out simple graphical and numerical 
studies. The major objective of the confirmatory data analysis stage is to c o n f m  statistically in 
a rigorous fashion the absence or presence of certain properties in the data. 

In Part X of the book, it is explained how useful exploratory and confirmatory data analysis 
tools can be effectively employed for studying environmental data. Hydrological time series, 
such as seasonal riverflows, temperature and precipitation, are usually quite suitable for analysis 
purposes since, for example, they possess few missing values and outliers. However, other types 
of environmental series like water quality time series are often quite messy due to many factors. 
For instance, water quality time series may possess many missing observations among which 
there are long periods of time for which there are no measurements. Moreover, the data may 
have many extreme values and be affected by external interventions such as indushial develop- 
ment and other land use changes in a river basin. Fortunately, the data analysis procedures of 
Part X are designed to handle both well behaved and messy time series. 

Many of the exploratory data analysis tools are presented in Part X. although graphical 
procedures are used throughout the book for explanation purposes. A wealth of time series 
models that can be used in data analysis studies are presented in Parts Il to IX in the book. 
Additionally, nonparametric trend tests and regression analysis methods are discussed in 
Chapters 23 and 24, respectively. These latter two types of confirmatory data analysis tech- 
niques are especially well designed for use with messy environmental data. 

The graph in Figure 1.1.1 of the average monthly phosphorous data demonstrates how a 
useful exploratory data analysis tool can usually convey a wealth of information. For instance, 
as already pointed out in Section 1.1, one can clearly see the drop in the mean level of the series 
due to the introduction of phosphorous treatment. Moreover, the location of the missing values 
marked as filled-in circles can be clearly seen. Within a scientific study, one may wish to test 
the hypothesis that there is a significant step drop in the mean level of the phosphorous and also 
to estimate its magnitude. The intervention model of Part VIII in the book can be employed for 
these purposes. More specifically, the details of this trend analysis assessment for the phos- 
phorous data are presented in Section 19.4.5. From a qualitative viewpoint, the intervention 
model for the phosphorous series possesses the components shown below: 

When analyzing a given set of data within an overall scientific investigation, Tukey (1977) 
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Phosphorous = Intervention + Missing + Correlated 
Series Component Value Noise 

Terms 

Notice that this flexible model can simultaneously model the effect of the intervention, estimate 
the four missing values. and handle a correlated noise term. The estimate of the parameter in the 
intervention component, along with its standard emor of estimation, allows one to carry out a 
hypothesis or significance test to see if there is a drop in the mean level and to quantify the mag- 
nitude of the drop. Indeed, as would be expected from the results of the exploratory graph in 
Figure 1.1.1, there is a significant step trend in the mean level. The best estimate for this drop is 
a 76% decrease compared to the previous mean, where the 95% confidence interval spans from 
68% to 84%. 

The exploratory and confirmatory data analysis study for the phosphorous time series 
points out a major contribution of this book - the use of statistical methods in environmental 
impact assessment. In a statistical environmental impact assessment, one is often required to 
detect and model trends in time series. In Section 22.3, a variety of useful graphical techniques 
are presented that can be employed as exploratory data analysis tools for confirming the presence 
of suspected trends as well as discovering unknown trends. Additionally, in Section 24.2.2, a 
regression analysis technique is described for tracing trends on the graph of a data set. The con- 
firmatory data analysis tools that can be employed in trend assessment are: 
1.  

2. nonparametric tests (Chapter 23), 

3. regression analysis (Chapter 24). 

Additionally, overall approaches for analyzing messy environmental data that fall under the 
paradigm of exploratory and confirmatory data analysis are presented in Chapter 22, Section 
23.5 and Section 24.3. In all three cases, detailed environmental applications are given to 
explain clearly how the methodologies work. 

Each of the case studies in statistical environmental impact assessment presented in the 
book deal with the modelling and analysis of trends caused by one or more external interventions 
that have already taken place. For example, the step decrease in the monthly phosphorous level 
in the time series shown in Figure 1 . 1 . 1  from January, 1972 to December, 1977, was created by 
the tertiary phosphorous treatment which started in February, 1974. Consequently, the formal 
trend analysis of the phosphorous observations constitutes a posterior environmental impact 
assessment. In some situations, it may be required to find out the potential effects upon the 
environment of a planned project, before permission is granted for commencing construction. 
For instance, when designing a series of reservoirs for the production of hydroelectric power and 
other benefits, decision makers may wish to know the potential impacts of the scheme upon a 
range of hydrological and other environmental variables. Hence, scientists would perform an a 
priori environmental impact assessment using appropriate scientific tools. Although this book 
does not consider a priori environmental impact assessments, some of the statistical tools used in 
the many posterior environmental impact studies that are presented could provide some guidance 
in a priori studies. For example, knowledge gained from intervention investigations of reservoirs 
that have already been built could be employed for simulating possible environmental scenarios 
for planned reservoir systems. 

intervention analysis (Chapter 19 and Section 22.4), 
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1.3 PHILOSOPHY OF MODEL BUILDLNG 

1.3.1 Occam’s Razor 

To better understand and control his environment, mankind uses models. In order to be 
sufficiently accurate and realistic, a model must be able to capture mathematically the key 
characteristics of a system being studied. At the same time, a model must be designed in a sim- 
ple straightforward manner so that it can be easily understood, manipulated and interpreted. 
Because of the great complexity of water resources and other natural systems, models are exten- 
sively developed and applied in water resources and environmental engineering. 

Time series models constitute an important class of models which can be used for address- 
ing a wide range of challenging problems in the environmental sciences. In fact, time series 
models are a type of stochastic model designed for fitting to observations available at discrete 
points in time. An example of a time series is the graph of the average monthly phosphorous 
measurements for the Speed River shown in Figure 1.1.1. The specific type of time series model 
that is fitted to this series in Section 19.4.5 is the intervention model, briefly referred to in Sec- 
tion 1.2.4. 

As explained in the previous subsection, a comprehensive data analysis study can be cm- 
ried out by following the two main steps consisting of exploratory and confirmatory data 
analysis. Subsequent to employing informative graphical methods at the exploratory data 
analysis stage to appreciate the main statistical properties of the observations being studied, for- 
mal modelIing can be done at the confirmatory data analysis stage to ascertain more precisely 
how the data are behaving. For instance, one may wish to use an intervention model to test the 
hypothesis that there is a step drop in the mean level of the series in Figure 1.1.1 and to estimate 
the magnitude of this decrease (see Section 19.4.5). 

In the next subsection, a systematic procedure is outlined for determining the most 
appropriate time series model to fit to a given data set. This general model building approach is, 
in fact, adhered to for applying all of the time series models presented in this book to measure- 
ments taken over time. The basic idea underlying the model construction procedure of Section 
1.3.2 is to identify a simple model which has as few model parameters as possible in order to 
provide a good statistical fit to the data. 

The principle of model parsimony has historical roots that go back far into the past. A r i s -  
totle, for example, postulated that nature operates in the shortest possible way. A 14th century 
English Franciscan monk by the name of William of Occam (1280-1349) developed a principle 
now known as Occam’s razor. One version of his principle states that when faced with compet- 
ing explanations choose the most simple one. This is analogous to using a sharp thin razor to 
make a clean cut through some material. Another equivalent statement for Occam’s razor is 
entities are not to be multiplied without necessity. Bertrand Russel (1946). the famous 20rh cen- 
tury British mathematician, found Occam’s razor to be very informative in logical analysis. This 
is because there is only one explanation or description of something which is minimum, whereas 
there can be an infinity of explanations which bring in other entities. Russell went on to claim 
that adherence to the minimum necessary explanation or description ensures that the examina- 
tion of hypotheses and evidence for and against them will remain coherent. Checkland (1981) 
provides a good explanation of Occam’s principle in his book on the theory and practice of sys- 
tems engineering. 
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In fact, model parsimony is a key assumption embedded in the scientific method of Section 
1.2. One should always smve to model nature and postulate hypotheses thereof in the most 
straightfonvard and simple manner, while still maintaining an accurate description of the 
phenomenon being modelled. Further discussions on modelling philosophies in time series 
analysis are presented in Section 5.2 as well as Section 6.3. 

1.33 Model Construction 
In time series modelling and analysis, one wishes to determine the most appropriate sto- 

chastic or time series model to fit to a given data set at the confiiatory data analysis stage. No 
matter what type of stochastic model is to be fitted to a given data set, it is recommended to fol- 
low the identification, estimation, and diagnostic check stages of model construction (Box and 
Jenkins, 1976). At the identification stage, the more appropriate models to fit to the data can be 
tentatively selected by examining various types of graphs. Some of the identification informa- 
tion may already be available from studies completed at the exploratory data analysis step dis- 
cussed in Section 1.2.4. Because there may be a range of different families of stochastic models 
which can be fitted to the time series under consideration, one must choose the one or more fam- 
ilies of models which are the most suitable to consider. The family selections can be based upon 
a sound physical understanding of the problem, output from the identification stage, and explora- 
tory data analyses. Although sometimes it is possible to choose the best model from one or more 
families based solely upon identification results, in practice it is often not obvious which model 
is most appropriate and hence two or three models must be tentatively entertained. At the &ti- 
mation stage, maximum likelihood estimates can be obtained for the model parameters and sub- 
sequently the fitted model can be subjected to diagnostic checks to ensure that the key model- 
ling assumptions are satisfied. When considering linear stochastic models such as the ARMA 
(autoregressive-moving average) models of Chapter 3, one should check that the model residuals 
are not correlated, possess constant variance (i.e., homoscedasticity) and are approximately nor- 
mally distributed. If the residuals are not white noise, the model should be redesigned by repeat- 
ing the three phases of model construction. In practice, it has been found that a suitable Box- 
Cox power transformation (Box and Cox, 1964) (see Section 3.4.5) can rectify anomalies such as 
heteroscedasticity and non-normality. The specific tools utilized at the three stages of model 
construction are dependent upon the particular family of models being entertained. The logic 
underlying the traditional approach to model construction is displayed as a flowchart in Figure 
1.3.1. 

In Part III of this book, a wide variety of model building tools are presented for use with 
ARMA (defined in Chapter 3) and ARIMA (autoregressive integrated moving average) (Chapter 
4) models that can be fitted to nonseasonal stationary and nonstationarity time series, respec- 
tively. Most of the identification, estimation and diagnostic check methods described in 
Chapters 5 ,  6, and 7, respectively, in Part In, can be expanded for employment with the many 
other kinds of time series models presented in this book. 

1.33 Automatic Selection Criteria 
As noted in Section 1.3.1, a basic tenet of model building is to keep the model as simple as 

possible but at the same time provide a good fit to the data being modelled. Automatic selec- 
tion criteria (ASC) are now available for balancing the apparently contradictory goals of good 
statistical fit and model simplicity. In Section 6.3, a number of ASC are defined and it is 
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Figure 1.3.1. Model construction. 

explained how they can enhance the three stages of model construction pomayed in Figure 1.3.1. 
One example of an ASC is the Akaike information criterion (AIC) of Akaike (1974) which is 
used throughout this book. 

In general, an ASC is defined as follows: 

ASC = Good Statistical Fit + Complexity 

The first term on the right hand side is written as some function of the value of the maximized 
likelihood function for the model fitted to the data (see Section 6.2 for a discussion of maximum 
likelihood estimation). This term is defined in such a way that the smaller the value the better 
the statistical fit. One would expect that a more complex model would furnish a more accurate 
description of the data. The purpose of the second entry in the ASC formula is to guard against 
having a model which is too complex and to abide by the principle of Occam’s razor of Section 
1.3.1. The complexity component in the ASC is a function of the number of model parameters, 
where a smaller value means that there are fewer parameters in the model. Hence, overall one 
would like to select the model which has the lowest value for the ASC. In Chapter 6, Figure 
6.3.1 depicts how an ASC can be used in model construction. 
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1.4 THE HYDROLOGICAL CYCLE 

1.4.1 Environmental Systems 

The basic structure of the scientific method described in Section 1.2 is depicted in Figure 
1.2.3. Because the scientific method seeks to discover truths about nature, the natural world as 
represented by the tree in Figure 1.2.3 is shown as the foundation of the scientific method at the 
bottom of the figure. In order for the scientific method to work, one must employ mathemati- 
cal models that reflect the important physical characteristics of the system being studied. 

When carrying out a scientific study, one can better appreciate what is taking place if one 
envisions a conceptual framework of the physical world within which the mathematical model- 
ling is being done. An ideal paradigm for accomplishing this is the systems design approach to 
modelling. In systems modelling, one thinks of an overall system composed of subsystems that 
interact with one another in some sort of hierarchical manner. Individual subsystems can be stu- 
died and analyzed in detail using powerful mathematical models. By properly connecting the 
subsystems together, one can synthesize the overall system behaviour, given the initial condi- 
tions and operating rules within the subsystems. 

A question that naturally arises is how one should define the boundaries of the system and 
its subsystems given the type of problem being studied. As explained by authors such as White 
et al. (1984) and Bennett and Chorley (1978). there are many ways in which one can define 
environmental systems. At the solar system level, the system consists of the sun and each of 
the nine planets which rotate around the sun. The yearly rotation of the earth around the sun 
along with the tilting of the earth’s axis is the main cause of the seasons on earth. The rotation 
of the moon about the earth creates tides in the oceans and seas. Besides gravitational forces, 
direct solar energy from the sun constitutes the major input for environmental systems contained 
on, in and around each planet If one is studying the overall environmental system for the planet 
earth on its own, then one must subdivide this system into finer subsystems which may not be 
explicitly considered when looking at the earth and the other planets at the solar system level. 
More specifically, at this level one may wish to subdivide the overall global environmental sys- 
tem into a number of major subsystems which include the atmosphere, hydrosphere and litho- 
sphere (earth’s crust). The biosphere subsystem, in which plant and animal life exist, occurs at 
the transition zone between the lithosphere and atmosphere as well as within the hydrosphere. 
Different kinds of ecosystems are contained within the biosphere system. 

Any of the aforementioned global subsystems can, of course, be further subdivided into 
finer subsystems. For instance, the atmosphere can be vertically categorized from the earth’s 
surface outward, into subsystems consisting of the troposphere, stratosphere, mesosphere and 
thermosphere. Within the lower part of the atmosphere, one can examine the various circulation 
subsystems around the world. 

In summary, one can define environmental systems in a hierarchical fashion from 
overall large systems at the planetary level to very detailed subsystems at much lower levels. 
The system definitions to be entertained depend upon the particular problem being studied. For 
example, if one is examining water pollution problems within the Great Lakes in North America, 
the largest environmental system to consider may be the drainage basin for the Great Lakes. 
Within this overall system, one could examine river subsystems through which pollutants carried 
by water can flow into the Great Lakes. The definitions of subsystems could be made as detailed 
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as required for the problem at hand. Within and among the subsystems, appropriate mathemati- 
cal models could be used to model precisely the physical, chemical and biological interactions. 

One particular environmental system which may form a basis for many problems examined 
by water resources and environmental engineers is the well known hydrological cycle. This 
important environmental system is described in the next subsection. Subsequently, a range of 
mathematical models that can be used for modelling natural phenomena within the hydrological 
cycle, as well as other environmental systems, are classified according to informative criteria. 
Based on these discussions, one can appreciate the role of time series models for describing and 
analyzing important environmental phenomena. 

1.4.2 Description of the Hydrological Cycle 

Hydrology is the science of water. In particular, hydrology deals with the distribution and 
circulation of water on the surface of the land, underground and in the atmosphere. Additionally, 
hydrology is concerned with the physical and chemical properties of water and its relationships 
to living things. Similar definitions for hydrology can be found in hydrological books written by 
authors such as Eagleson (1970), Linsley et al. (1982) and McCuen (1989). 

The environmental system which hydrologists employ to describe the components of their 
science is called the hydrological cycle. Figure 1.4.1 displays a schematic of the hydrological 
cycle which is based upon the figure provided by Eagleson (1970, p. 6). The throughput to the 
hydrological system in Figure 1.4.1 is water which can occur in a liquid, solid or vapour phase. 
Because the hydrological cycle does not allow water to escape, it forms a closed system with 
respect to water. The main forces which propel the water through the hydrological cycle are 
solar energy and gravity. As pointed out by Eagleson (1970, p. 5),  the dynamic processes of 
vapour formation and transport are powered by solar energy while precipitation formation and 
the flow of liquid water are driven by gravity. The transformation of water from one phase to 
another as well as the transportation of water from one physical location to another are the main 
features of the hydrological cycle. To understand the possible routes and phases a water 
molecule passes through in the hydrological cycle in Figure 1.4.1, one can s m  at any point in 
the cycle. Note that all water is returned from the atmosphere to land or surface bodies of water 
through the process of precipitation by going from vapour to liquid form. Liquid water can 
infiltrate into the soil and flow overland via streams, rivers and lakes to the oceans. Evapora- 
tion is the dynamic process which returns water from its liquid phase in streams, rivers, lakes 
and oceans to its vapour phase in the atmosphere. Water molecules can also be released to the 
atmosphere from the surfaces of plants through a process called transpiration. Evnpotranspira- 
tion consists of the total water transferred to the atmosphere by transpiration from plants plus 
evaporation from the soil on which the plants are growing. It is interesting to note that in land 
areas having a temperate climate, approximately 70% of the precipitation returns to the atmo- 
sphere via evapotranspiration while the remaining 30% mainly appears as riverflows (McCuen, 
1989, p. 668). Sublimation takes place when water is transformed from its solid form directly 
to its gaseous state in the atmosphere. Notice also in Figure 1.4.1 the various ways in which 
water can enter and leave the two subsystems consisting of soil and underground aquifers. 

Interest in ideas related to hydrology can be traced back to the ancient Egyptians, Greeks 
and Romans. For instance, as early as 3,000 B.C., the Egyptians had gauges called nilometers to 
measure the stages or depths of the Nile River. A nilometer consists of a stone pillar on which 
markings indicate the depth of the Nile, especially during flooding. However, it was not until 
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Figure 1.4.1. The hydrological cycle (Eagleson, 1970, p. 6). 

the Renaissance that the first essentially correct picture of the hydrological cycle was produced 
by Leonard0 da Vinci. Hence, this first accurate description of an important environmental 
system is now more than 400 years old. Besides providing a good conceptual description about 
how the transformation and transportation of quantities of water takes place on earth, the hydro- 
logic cycle can be used for other purposes. Specifically, the hydrologic cycle furnishes a frame- 
work for understanding how man-made pollution can enter the hydrologic system at any point 
and pollute our entire environment by following the ancient pathways traced out by water in all 
of its forms. Therefore, the science of hydrology provides solid foundations upon which 
many other environmental sciences can build and interact. 

During the past century, the development of hydrology has been mainly led by civil and 
agricultural engineers working on traditional engineering problems such as water supply and 
flood control. Consequently, the field of hydrology has been pragmatic in its outlook and nar- 
rowly focused upon only a few aspects of the overall hydrological cycle displayed in Figure 
1.4.1. However, in order to make wise and timely decisions regarding solutions to pressing 
environmental problems occurring throughout the hydrologic cycle and right up to the glo- 
bal level, a fundamental scientific understanding of hydrology is required. Accordingly, in 
1987 the National Research Council of the United States established a panel to conduct an 
assessment of hydrology that appeared as a report (National Research Council, 1991) which is 
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summarized by the panel chairperson P.S. Eagleson (1991). The authors of this report, as well as 
Falkenmark (1990). describe many key rtsearch areas in which the science of hydrology should 
be expanded so that sound environmental policies can be properly devised and implemented. 
Indeed, they correctly point out that hydrology should be developed into a comprehensive and 
distinct geoscience. Moreover, they note that human activity and decision making can have 
dramatic influences upon the hydrological cycle and hence are an integral part of that cycle. 

1.43 Classifying Mathematical Models 
A general framework in which to envision how various components from nature interact 

with one another is to employ the environmental systems approach outlined in Section 1.4.1. A 
particularly informative environmental system for use as a sound scientific structuxt in water 
resources and environmental engineering is the hydrological cycle of Section 1.4.2 and Figure 
1.4.1. Within a given environmental systems framework such as the hydrological cycle, one can 
use the scientific method of Section 1.2 to develop a range of specific models to describe natural 
phenomena occurring in the system. In order to abide by the principle of Occam's razor of Sec- 
tion 1.3.1, the simplest models to describe nature are almost always formulated in terms of 
appropriate mathematical equations. Hence, one can argue that mathematics is the language of 
science. Indeed, some mathematicians feel that mathematics should be considered as a separate 
scientific discipline. In reality, mathematics constitutes an interdisciplinary scientific field 
which supports all areas of science. 

One should keep in mind that real problems in the natural and social world inspired 
scientists to develop the most useful and dramatic contributions to scientific mathematics. 
For example, to describe properly his revolutionary laws of nature, Sir Issac Newton developed 
the mathematics of calculus. In order to solve practical problems in agriculture, Sir Ronald A. 
Fisher invented experimental design and many other branches of statistics (Box, J., 1978). 
Worthwhile areas of game theory were formulated for modelling and analyzing actual social 
disputes (see discussion in Section 1.5.2). 

Since the time of Newton, great progress has been accomplished in building a treasure 
house of many different kinds of mathematical models. To appreciate the general types of 
mathematical models that are available for application to scientific problems, it is informative to 
classify these models according to useful criteria. Two overall categories into which mathemati- 
cal models can be placed are deterministic and stochastic models. When a mathematical model 
can be employed for determining exactly all the states of a system, the model is said to be deter- 
minktic. For instance, when plotting on a graph all values of an algebraic function representing 
the states of a system, the precise locations of all possible points on the curve are known because 
the equation is deterministic. 

If a state of a system can only be described using probabilistic statements and hence its pre- 
cise value is not known, the mathematical equations describing the system are said to be sto- 
chastic or probabilistic. For example, when forecasting tomorrow's weather conditions using 
an appropriate stochastic model along with the latest meteorological information, a meteorolo- 
gist may state that there is an 80% chance of snowfall tomorrow. This means that there is still a 
20% chance that no precipitation may occur. The meteorologist may go on to forecast that he or 
she is 95% confident that the amount of snow accumulation will be between 15 and 20 cm. 
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Mast natural phenomena occurring in environmental systems appear to behave in 
random or probabilistic ways. In other words, it is almost impossible to say exactly how nature 
will behave in the future, although one can often make reasonable predictions about Occurrences 
using probabilistic statements. Consequently, the mathematical tools presented in this book fall 
within the realm of stochastic models. 

As explained in Section 2.3, stochastic models are mathematical models for describing 
systems which evolve over time according to probabilistic laws. When discussing the theoretical 
aspects of stochastic models, the term stochastic processes is often used in place of stochastic 
models. Following Cox and Miller (1965), Table 1.4.1 describes a method for categorizing sto- 
chastic models according to the two criteria of time and state space. Notice that time can be 
either discrete or continuous. The state space or values of the variables describing the system 
being modelled can also be subdivided according to discrete and continuous values. Examples 
of the four kind of models that can be categorized using the above criteria are given in Table 
1.4.1. Markov chains, for instance, fall under the subdivision of stochastic models which incor- 
porate discrete time and discrete values of the state space in their mathematical structure. Sto- 
chastic differential equations can handle continuous time and continuous values of the state 
space (Kloeden and Platen, 1992). Point processes, such as Poisson processes, model discrete 
values over continuous time. 

Table 1.4.1. Classifications of stochastic models. 

STATE SPACE 
Discrete Continuous 
Markov Time Series 
Chains Models 

Continuous Point Stochastic 
Processes Differential E Equations 

Discrete 
TIME 

This book deals with stochastic models that model continuous observations measured at 
discrete points in time. Because these models formally describe measurements available over 
discrete time in the form of a time series, they are usually referred to as time series models. The 
application of time series models to actual data is popularly referred to as time series analysis. 

Why are time series models of such p a t  import in the environmental sciences? The 
answer is quite simple. In order to understand how a natural system is behaving, scientists 
take measurements over time, hopefully according to a proper experimental design (see Sec- 
tion 1.2.3). An example of a water quality time series is displayed graphically in Figure 1.1.1. 
Time series models are specifically designed for formally modelling this type of information 
which occurs frequently in practice. Furthermore, techniques for fitting time series models to 
data are now highly developed (see Sections 1.3.2 and 1.3.3) and, hence, these time series 
models can be immediately employed for modelling, analyzing and better understanding press- 
ing scientific problems. 

In 1970, Box and Jenkins dramatically launched time series modelling into the realm of 
real world applications with the publication of their seminal book entitled “Time Series 
Analysis: Forecasting and Control” (the second edition was published in 1976). Besides 
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presenting a wide variety of useful time series models, they showed how these models can be 
applied to practical problems in a wide range of disciplines. One should keep in mind that both 
Box and Jenkins considered themselves foremost to be scientists and not mathematicians. In 
other words, these scientists developed and used mathematical tools for scientifically studying 
actual problems. 

Some of the time series models presented in this book are also discussed by Box and Jen- 
kins (1976). However, in this book the latest developments in time series modelling are 
given, including many new procedures for allowing models to be conveniently fitted to data 
within the framework of model construction outlined in Section 1.3.2. Moreover, this book 
presents other kinds of models, such as many of those given in Parts V to X, which are especially 
useful in water resources and environmental engineering. As mentioned in Section 1.1, this 
book is a document falling within the challenging field of environmetrics and contains a range of 
useful time series models which are currently completely operational. 

When using a mathematical model to describe a natural system, one would like the model 
to have a sound physical basis, in addition to possessing attractive mathematical properties. As 
pointed out in various sections of this book, certain time series models are well designed for 
various kinds of applications in hydrology and water quality modelling. For example, as 
explained in Section 3.5, ARMA models possess good physical justifications for use in model- 
ling annual streamflows (Salas and Smith, 1981). 

1.5 DECISION MAKING 

1.5.1 Engineering Decision Making 

The scientific method of Section 1.2.2 provides a solid foundation upon which solutions to 
the physical aspects of environmental problems can be properly designed and tested. As  pointed 
out in Section 1.2.3, statistical and stochastic models have a key role to play for enhancing 
scientific investigations in terms of accuracy, speed and better understanding. Furthermore, by 
keeping in mind the hydrological cycle of Figure 1.4.1. the overall physical relevance of 
environmental problems being studied can be kept in correct perspective. 

The physical characteristics of environmental investigations can involve physical (ex. 
waterflow), chemical and biological factors. For instance, one may wish to examine how indus- 
trial chemical pollutants discharged into rivers affect certain populations of fish and suggest 
correct measures for overcoming any serious problems. Scientists may discover why and how 
fish populations are dwindling and be able to design pollution controls to rectify the situation. 
However, to implement corrective measures, finances are required and political decisions must 
be made. Therefore, in addition to generating physical solutions to a given environmental prob- 
lem by use of the scientific method, scientists must also take into account the socio-economic 
aspects of decision making. In other words, both the physical realm of nature as well as the 
social world created by mankind’s ability to think, must be properly accounted for in real 
world decision making. 

As an example of a planned large-scale engineering project which could adversely affect 
the environment consider the case of the Garrison Diversion Unit (CDU). As explained by 
Hipel and Fraser (1980) and Fraser and Hipel (1984). the GDU is a partially constructed mul- 
tipurpose water resources project in the United States which involves the transfer of water from 
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the Missouri River basin to areas in central and eastern North Dakota that are mainly located 
within the Hudson Bay drainage basin. Figure 1.5.1, which is taken from Hipel and Fraser 
(1980) and also Fraser and Hipel (1984, p. 26), shows the major regions affected by this large 
project located in the geographical centre of the North American continent. After the system 
becomes operational, water will be pumped from Lake Sakakawea on the Missouri River via the 
McClusky canal to the Lonetree Reservoir located in the Hudson Bay drainage basin. From the 
Lonetree Reservoir water will flow along the Velva and New Rockford canals to major irrigation 
areas. Additionally, water from the Lonetree Reservoir will augment flow in the James River for 
downstream irrigation. The resulting runoff from the irrigated fields would flow via the Red and 
Souris Rivers into the Canadian province of Manitoba. Adverse environmental effects from the 
GDU include high pollution levels of the irrigation waters, increased chances of flooding in the 
Souris River, and the possibility of catastrophic environmental damage caused by foreign biota 
from the Missouri River basin destroying indigenous biota, such as certain fish species, in the 
Hudson Bay drainage basin. 

4'"'N"p'G THE GARRISON DIVERSION UNIT I 

Figure 1.5.1. Map of the Garrison Diversion Unit (Hipel 
and Fraser, 1980; Fraser and Hipel, 1984, p. 26). 
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Because the GDU involved a variety of interest groups which interpreted the problem 
from different perspectives, the GDU project escalated into a serious international environ- 
mental conflict. The American proponents of the GDU wanted the full project, as approved by 
the U.S. Congress in 1965, to be built. However, Canada was afraid of potentially disastrous 
environmental consequences within its own borders while American environmentalists did not 
like some adverse environmental effects which could take place in North Dakota. The GDU 
controversy also involved the International Joint Commission (LJC), an impartial body initiated 
by the Boundary Waters Treaty of 1909 between the U.S. and Canada for investigating conflicts 
arising over water quantity and quality. 

In order for a large-scale project like the GDU to be eventually implemented and brought 
into operation, the following factors must be adequately satisfied: 

Proper Physical Design - For instance, physical structures such as dams, pumping stations 
and irrigation channels for the GDU must be correctly designed so that natural physical 
laws are not violated and the project is safe. 
Environmentally Sound Project - If. for example, the GDU project were to be built and 
come into operation, adverse environmental consequences must be less than agreed upon 
levels. The ability to meet environmental standards must be incorporated into the basic 
design of the project. 
Economical and Financial Viability - For the case of the GDU, the project must be 
economically feasible and sufficient financial resources must be available to pay for the 
project. It is interesting to note that some benefit-cost ratios for the GDU produced ratios 
much less than one. 
Socially and Politically Feasibility - A politically feasible solution to the GDU project 
must be found before it can come into operation. 
Unfortunately, for the case of the GDU only the first factor of the four listed above was 

ever properly satisfied. The Garrison dam on the Missouri River (see Figure 1.5.1) was com- 
pleted by the Bureau of Reclamation of the U.S. Department of the Interior in 1955. Other phy- 
sical facilities, such as the canals shown in Figure 1.5.1, were designed but never completely 
constructed. Environmental effects of the project were almost entirely ignored in the initial 
design of the project. The social repercussions caused by the ensuing political controversy 
over environmental problems as well as suspect economic studies eventually prevented the 
completion of the project, even though hundreds of millions of dollars had already been spent. 

The main lesson garnered from this GDU fiasco is that all of the factors given above must 
be properly taken into account by scientists and other decision makers in any engineering pro- 
ject. Otherwise, the project may never be completed as first envisioned or it may be cancelled 
altogether. The scientific method and related mathematical modelling are especially important 
for ensuring physical and environmental soundness. Indeed, one should also follow a scien- 
tific approach in socio-economic modelling and analyses. Because the last two factors given 
above involve activities that relate directly to mankind as distinct from his natural environment, 
the models for studying these activities are sometimes referred to as decision making tools. As 
explained in Section 1.5.2, many of these decision making methods were developed within a 
field called operational research. 
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Figure 1.5.2 summarizes a systems design approach to decision making in engineering, 
which must properly consider the important factors mentioned before. To keep in mind that the 
entire activity takes place within the environment or natural world, the flowchart is enclosed by a 
wavy line. Notice that the physical, environmental, economical and financial considerations pro- 
vide background information that can affect the preferences and actions of the decision makers 
who are included in the social and political modelling and analyses. If, for example, a first class 
environmental impact assessment is canied out beforehand for the project, there is a higher pro- 
bability that decision makers will approve a design which abides by the suggested environmental 
standards. Additionally, if this project is economically and financially viable, the project has an 
even higher chance of being accepted by the decision makers. The political game that could take 
place among the decision makers who can influence the final decision can be modelled using 
techniques from conflict analysis (Fang et al., 1993; Hipel, 1990; Fraser and Hipel, 1984). The 
results of all of these formal studies provide background information upon which the actual deci- 
sion makers can base their decisions. As shown by the feedback loops in Figure 1.5.2, additional 
information can be obtained as required and appropriate changes can be made. Moreover, some 
decision makers may obtain some of their information directly from their own observations of 
real world events. Hence, in Figure 1.5.2 there is an arrow going from the real world to the box 
labelled information for decision makers to indicate that people do not have to rely entirely upon 
results generated from formal studies. Finally, the design problem referred to in Figure 1.5.2 is 
not restricted to the construction of a new project such as the GDU. It can also represent situa- 
tions such as a change in operating policy of a system of reservoir and the design of pollution 
control devices for installation in existing industrial facilities. 

The remainder of Section 1.5, deals mainly with mathematical models that can be 
employed for modelling and analyzing decision making. In the next subsection, decision making 
models from the field of operational research are classified according to useful criteria. Subse- 
quently, the use of conflict analysis for modelling and analyzing the GDU dispute is described 
and the importance of sound scientific modelling within the overall decision making process 
is once again emphasized. 

1.5.2 Decision Making Techniques in Operational Research 
The field of operational research consists of some general methodologies and many 

specific techniques for studying decision making problems. The British initiated operational 
research just prior to World War I1 when they performed research studies into the operational 
aspects of radar systems for detecting incoming enemy aircraft to the United Kingdom. 
Throughout the war, the British employed OR in all of their military services for successfully 
solving large scale military problems involving the movement of great numbers of military per- 
sonnel and huge quantities of war materials (Blackett, 1962; Waddington, 1973). The American 
military also used this systems science approach to problem solving during the second world war 
but called it operations research. Many practitioners now simply refer to operational research 
or operations research as OR. Since the war, OR has been extensively expanded and utilized for 
looking at operational problems in many different fields outside of the military such as manage- 
ment sciences, transportation engineering, water resources and industrial engineering. Opera- 
tional research societies have sprung up in most industrialized countries along with the publica- 
tion of many OR journals. 
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Figure 1.5.2. Engineering decision making. 

The discipline of OR is both an art and a craft. The art encompasses general approaches 
for solving complex operational problems while the craft consists of a great variety of mathemat- 
ical techniques which are meant to furnish reasonable results when properly applied to specific 
problems. Following Hipel (1990), Table 1.5.1 shows how OR methods can be categorized 
according to the criteria of number of decision makers and number of objectives. As shown 
in that table, most OR techniques reflect the viewpoint of one decision maker having one objec- 
tive. Optimization techniques including linear and nonlinear programming, fall under this 
category because usually they are employed for minimizing costs in terms of dollars or maximiz- 
ing monetary benefits from one group’s viewpoint subject to various constraints. Often both 
economical and physical constraints can be incorporated into the constraint equations in optimi- 
zation problems. Many of the probabilistic techniques like queueing theory, inventory theory. 
decision theory and Markov chains, fall under the top left cell in Table 1.5.1. An example of a 
technique designed for handling multiple objectives for a single decision maker is multicriterion 
modelling (see, for instance, Vincke (1992). Radford (1989), Roy (1985) and Goicoechea et al. 
(1982)). This method is designed for finding the more preferred alternative solutions to a 
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problem where discrete alternatives are evaluated against criteria ranging from cost (a quantita- 
tive criterion) to aesthetics (a qualitative criterion). The evaluations of the criteria for each alter- 
native reflect the objectives or preferences of the single decision maker. In Table 1.5.1, team 
theory is categorized according to multiple decision makers and one objective because in a sport- 
ing event, for instance, each team has the single objective of winning. 

Conflict analysis (Fraser and Hipel, 1984), as well as an improved version of conflict 
analysis called the graph model for conflict resolution (Fang et al., 1993). constitute examples 
of techniques in Table 1.5.1 which can be used for modelling and analyzing disputes in which 
there are two or more decision makers, each of whom can have multiple objectives. Conflict 
analysis is a branch of game theory which was specifically designed and developed for studying 
problems in multiple objective-multiple participant decision making. In fact, conflict analysis 
constitutes a significant expansion of metagame analysis (Howard, 1971) which in turn is radi- 
cally different from classical game theory (von Neumann and Morgenstern, 1953). A com- 
parison of game theory techniques, their usefulness in OR as well as a description of present and 
possible future developments are provided by Hipel (1990). Additionally, Hipel (1990) explains 
how appropriate OR methods can be employed for studying both tactical and strategic problems 
which arise in decision making. In particular, conflict analysis is especially well designed for 
handling decision making at the strategic level where often compromise solutions must be 
reached in order to satisfy a wide range of different interest groups. Within the next subsection, 
the GDU environmental conflict introduced in Section 1.5.1 is employed to demonstrate how 
conflict analysis and other techniques like statistical methods from environmemcs can be used 
for systematically studying complex environmental problems. 

Table 1.5.1 Classifications of decision making techniques. 

OBJECTIVES 

One Two or  More 

Multicriterion 
Modelling 

Methods 
DECISION 
MAKERS 

vsis I 



30 Chapter 1 

Operational research is probably the largest and most widely known field within which 
formal decision making techniques have been developed. Nonetheless, since World War II, 
other systems sciences fields have been started for efficiently solving well structured problems 
in order to satisfy specified objectives. Besides OR, the systems sciences include system 
engineering (see, for instance, Checkland (1981) and references contained therein) and systems 
analysis (Miser and Quade, 1985. 1988). A large number of standard textbooks on OR are now 
available, such as contributions by Hillier and Lieberman (1990) and Wagner (1975). An 
interesting book on the application of OR methods to various water resources problems, is pro- 
vided by bucks  et al. (1981). Unfortunately, none of the classical OR texts satisfactorily deal 
with problems having multiple decision makers (i.e., the second row in Table 1.5.1). However, 
Rosenhead (1989) and Hipel (1990) clearly point out directions in which OR and other systems 
sciences fields should be expanded so that more complex problems having many decision mak- 
ers, unclear objectives and other difficult characteristics, can be properly modelled. Indeed, 
fields outside of OR, such as artificial intelligence and expert systems, as well as information 
and decision technologies, are already tackling challenging research problems in decision mak- 
ing at the strategic level where situations are usually not well structured. A monograph edited by 
Hipel (1992) on multiple objective decision making in water resources contains a sequence of 
eighteen papers regarding some of the latest developments in tactical and strategic OR tech- 
niques along with their application to challenging water resources systems problems. 

1.53 Conflict Analysis of the Garrison Diversion Unit Dispute 

The GDU dispute is employed in this section to explain how the engineering decision mak- 
ing procedure of Figure 1.5.2 can be carried out in practice. As pointed out in Section 1.5.1, the 
GDU is an important environmental dispute between Canada and the United States. Figure 1.5.1 
depicts the location of the GDU irrigation scheme dong with the physical facilities such as 
dams, canals and irrigation fields. 

Hipel and Fraser (1980) and Fraser and Hipel (1984) carried out a metagame analysis and 
conflict analysis, respectively, of the GDU conflict as it existed in 1976, while Fang et al. (1988, 
1993) also performed an analysis of the dispute for the situation that took place in 1984. To 
explain the type of engineering decision making used in the GDU conflict, only the results for 
1976 are utilized. 

Figure 1.5.3 depicts the general procedure for applying conflict analysis to an actual 
dispute. Initially, the real world conflict may seem to be confusing and difficult to comprehend. 
Nonetheless, by systematically applying conflict analysis according to the two main stages of 
modelling and analysis the controversy can be better understood in terms of its essential charac- 
teristics and potential resolutions. The modelling stage consists of ascertaining all the decision 
makers as well as each decision maker’s options and relative preferences. At the analysis 
stage, one can calculate the stability of every possible state (also called an outcome or scenario) 
from each decision maker’s viewpoint. A state is stable for a decision maker if it is not advanta- 
geous for the decision maker to move unilaterally away from it. Equilibria or compromise reso- 
lutions are states that are stable for every decision maker. The results of the stability analysis 
can be studied and interpreted by actual decision makers or other interested parties in order to 
understand their meaning in terms of the actual conflict. These findings may suggest types of 
sensitivity analyses that can be carried out, for example, by seeing how appropriate preference 
changes affect the overall equilibria. Moreover, the feedback arrows in Figure 1.5.3 indicate that 
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the procedure for applying conflict analysis is done in an iterative fashion. 
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Figure 1.5.3. Applying conflict analysis. 

To explain briefly the modelling and analysis of the GDU conflict using the approach of 
Figure 1.5.3, consider the dispute as it existed in 1976. Table 1.5.2 lists the decision makers 
involved in the conflict along with the courses of actions or options available to each decision 
maker. Briefly, the U.S. Support for the project consists of the U.S. Bureau of Reclamation of 
the U.S. Department of the Interior, the State of North Dakota and support groups within North 
Dakota. As shown in Table 1.5.2, the U.S. support has three mutually exclusive options avail- 
able to it. The f i s t  one is to proceed to complete the GDU project as approved by Congress 
while the other two options constitute reduced versions of the full project to appease the Cana- 
dian Opposition (option 2) or the U.S. Opposition (option 3). 
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The U.S. Opposition consists mainly of environmental organizations such as the National 
Audubon Society and the Environmental Protection Agency. It has the single option of taking 
legal action against the project based upon American environmental legislation (option 4). 

Table 1.5.2. Conflict model for the GDU dispute. 

Decision Makers and Options 
U.S. support 
1. Complete full GDU. 
2. Building GDU modified to 

reduce Canadian impacts. 
3. Construct GDU modified 

to appease U S .  

U.S. Opposition 
4. Legal action based on 

environmental legislation. 

Canadian Opposition 
5. Legal action based on the 

Boundary Waters Treaty of 1909. 

International Joint Commission (UC) 
6.  Support full GDU. 
7. Recommend GDU modified to reduce 

Canadian impacts. 
8. Support suspension of GDU 

except for the Lonetree Reservoir. 
9. Recommend cancellation of the GDU. 

Representative State 

N Strategy 
N for 

Y 
U.S. support 

N Strategy for 
U.S. Opposition 

Y Strategy for 
Canadian 
Opposition 

N 
N 

Y for IJC 
Strategy 

N 

The main Canadian organizations opposed to the GDU are the Federal Government in 
Ottawa, the Manitoba Provincial Government and Canadian environmental groups. The single 
course of action available to the Canadian Opposition is the ability to take legal action based 
upon the Boundary Waters Treaty of 1909 between the United States and Canada (option 5) .  
This treaty confers legal rights to Canadians citizens for taking action in American courts when 
water quantity or quality is infringed upon by the Americans. The Americans also have the same 
rights under this treaty for entering Canadian courts. 

The International Joint Commission (UC) was formed under Article VI of the Boundary 
Waters Treaty as an impartial body to investigate water and other disputes arising between the 
two nations. Three Canadians and three Americans form the UC. Whenever the UC is called 
upon by the U.S. and Canada to look at a problem, it employs the best scientists from both coun- 
tries to carry out rigorous scientific investigations in order to come up with a proper environmen- 
tal impact assessment. As a matter of fact, the quality of the work of the WC is so well 
respected that its findings usually significantly influence the preferences of decision makers 
involved in a given dispute. Because the GDU project is concerned with water quality, the UC 
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can only give a recommended solution to the problem. As shown in Table 1.5.2. the UC has 
basically four mutually exclusive recommendations it could make after its study is completed. 
One option is to support completion of the full GDU project (option 6) while the other three 
(options 7 to 9) are reduced versions thereof. 

Given the decision makers and options, one can determine strategies for each decision 
maker and overall states. A strategy is formed when a decision maker decides which of his or 
her options to select and which ones he or she will not take. To explain this further, refer to the 
column of Y’s and N’s in Table 1.5.2. A “Y” means that “yes” the option opposite the Y is 
taken by the decision maker controlling it while a “N” indicates “no” the option is not 
selected. Notice from Table 1.5.2, that the strategy taken by the U.S. Support is where it takes 
option 3 and not options 1 and 2. Possible strategies for each of the other three decision makers 
are also indicated in Table 1.5.2. 

After each decision maker selects a strategy, a state is formed. Writing horizontally in text 
the vertical state listed in Table 1.5.2, state (NNY N Y NNYN) is created by the U.S. Support, 
U.S. Opposition, Canadian Opposition and UC choosing strategies (NNY), (N), (Y) and 
(NNYN), respectively, in order to form the overall state. 

In the GDU conflict, there is a total of 9 options. Because each option can be either 
selected or rejected, there is a total of 29=512 possible states. However, many of these states 
cannot take place in the actual conflict because they are infeasible for a variety of reasons. For 
instance, options numbered 1 to 3 are mutually exclusive for the U.S. Support because it can 
only build one alternative project. Hence, any state which contains a strategy in which the U.S. 
selects more than one option is infeasible. Likewise, options 6 to 9 are mutually exclusive for 
the UC. When all of the infeasible outcomes are removed from the game, less than 50 out of 5 12 
outcomes are left. 

From Figure 1.5.3, the final step in modelling a conflict is to obtain relative preferences 
for each decision maker. The most precise type of preference information needed in a conflict 
study is ordinal where states are ranked from most to least preferred. This could include sets of 
states for which states are equally preferred within each set. Conflict analysis can also handle 
more general types of preferences such as intransitive preferences where a decision maker 
prefers state x to y, y to z, but z to x. When preferences are transitive, a decision maker prefers 
state x to y, y to z ,  and x to z. Cardinal utility functions are not used to represent preferences in 
conflict analysis because in practice they are almost impossible to obtain. 

Preferences are often directly expressed in terms of options. For example, the U.S. Sup- 
port most prefers states in which it selects its first option while the IJC chooses option 6. 
Assuming transitivity, algorithms are available to transform option preferences to state prefer- 
ences such that the states are ranked from most to least preferred. 

To give a general idea of the preferences in the GDU dispute, a preference description for 
the U.S. Support is now continued. Compared to states for which the full GDU is built, the U.S. 
Support prefers less states where the full GDU project is not built and the UC also recommends 
this. 

The US. Opposition prefers to take legal action if the full project were built. On the other 
hand, the U.S. Opposition would prefer not to press legal action if the U.S. were to select its 
third option. 
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The Canadian Opposition most prefers that no project be built. If option 2 were not 
chosen by the U.S. Support, the Canadian Opposition would prefer to take legal action based on 
the Boundary Waters Treaty. However, if the UC recommended a given alternative which the 
U.S. Support decided to follow, the Canadian Opposition would prefer not to oppose it by going 
to court. This is because the UC always carries out first class scientific and economic studies 
which are greatly respected by the Canadian government as well as others. Additionally, if the 
dispute were to end up in an American court or perhaps at the international court in the Hague, 
the court would probably follow the recommendations of the UC in its ruling. Consequently, this 
application clearly demonstrates how good science can dramatically affect the strategic deci- 
sion making. In Figure 1.5.2 proper scientific studies are used for the basic design of the project 
as well as the environmental considerations. Sections 1.2 to 1.4 outline how scientific investiga- 
tions and related mathematical modelling can be carried out in practice. 

Because the IJC is an impartial body, all of the states are equally preferred for it prior to 
the release of its comprehensive International Garrison Diversion Study Board Report in 
October, 1976. The report, which was commissioned by the UC, consists of an overall report 
plus five detailed reports given as appendices. The five appendices are entitled Water Quality, 
Water Quantity, Biology, Uses, and Engineering Reports. All of the reports, and especially the 
f i i t  two given above, make extensive use of statistics. Indeed, the GDU study constitutes an 
excellent example of how an environmental impact assessment should be executed. 

The GDU conflict model is now fully calibrated in terms of decision makers, their options 
and their preferences. This game model provides the basic structure within which the possible 
strategic interactions among the decision makers can be studied. More specifcally, the sys- 
tematic examination of the possible moves and counter moves by the decision makers during the 
possible evolutions of the conflict and the calculation of the most likely resolutions are referred 
to as the stability analysis stage (see Figure 1.5.3). The results of a stability analysis, including 
sensitivity analyses, can be used, for example. to help support decisions made by people having 
real power in a conflict. In practice, one would, of course, use a decision support system to 
cany out all the calculations and provide requested advice to a decision maker. 

The details of the stability calculations are not given here but can be found in Chapter 2 of 
the book by Fraser and Hipel (1984) as well as Chapter 6 in the text of Fang et al. (1993). The 
stability analysis for the GDU was carried out for the situation that existed just prior to the 
release of the study board reports for the IJC in October, 1976. The state given in Table 1 S.2 is 
one of the equilibria predicted by the conflict analysis study and the one that occurred histori- 
cally. Notice in Table 1.5.2 that the U.S. Support is going to build a project to appease the 
American environmentalists and, hence, the U.S. Opposition is not going to court. However, the 
Canadian Opposition will go to court under the Boundary Waters Treaty because the UC is 
recommending a reduced version of the project (option 8). 

In the 1984 conflict analysis study, further reductions were made to the GDU project 
(Fang et al., 1988). As a matter of fact, all portions of the project that could adversely affect 
Canada were cancelled due to increased political pressures. 

The GDU conflict vividly emphasizes the importance of following the main steps of the 
engineering decision making procedure of Figure 1.5.2. Competent scientific and economic 
studies of the project by the UC affected directly the political decision making taking place 
at the strategic level. For instance, the Canadian Opposition and other interested groups put 
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great faith in the UC study board reports and this in turn influenced their strategic behaviour in 
1976, especially in terms of preferences. By 1984, others were also influenced by good science 
and this led directly to the cancellation of most of this irrigation project which was clearly shown 
to be environmentally unsound. 

This book deals exclusively with environmetrics. However, one should always keep in 
mind how the results of environmemc and other related scientific studies fit into the overall 
decision making process of Figure 1.5.2. Even though it may sometimes take a long time, good 
science can have highly beneficial effects on decision making. 

1.6 ORGANIZATION OF THE BOOK 

1.6.1 The Audience 
As defined in Section 1.1, environmetrics is the development and application of statistical 

methods in the environmental sciences. This book focuses upon useful developments in environ- 
mebics coming from the fields of statistics, stochastic hydrology and statistical water quality 
modelling. Of particular interest are time series models that can be employed in the design and 
operation of large-scale water resources projects, as well as time series models, regression 
analysis methods and nonparametric methods that can be used in trend assessments of water 
quality time series. In other words, this book deals with the statistical analyses of both water 
quantity and water quality problems. Moreover, it clearly explains how these problems can be 
jointly considered when carrying out environmental impact assessment studies involving trend 
assessment of water quality variables under the influence of riverflows, seasonality and other 
complicating factors. 

Who will wish to study, apply and perhaps further develop the environmetrics technologies 
presented in this book? For sure, the environmetrics techniques should be of direct interest to 
teachers, students, practitioners and researchers working in water resources and environ- 
mental engineering. However, people from other fields who often consider environmental 
issues, should also find the contents of this book to be beneficial for systematically investigating 
their environmental problems. For example, geographers, civil engineers, urban planners, 
agricultural engineers, landscape architects and many others may wish to apply environ- 
metrics methods given in this book to specific environmental problems that arise in their profes- 
sions. Moreover, keeping in mind the great import of environmetrics and other scientific 
approaches in the overall decision making process (see Section lS), there may be many other 
professionals who may wish to better understand environmetrics and use it to improve their deci- 
sion making capabilities. This group of professionals includes management scientists, opera- 
tional research workers, business administrators and lawyers who may be employed by 
government agencies or industry. Finally, because most of the time series models can also be 
applied to data that are not environmental, there are other professionals who may find this book 
to be a valuable reference. Economists, for instance, who apply time series models to different 
kinds of economic time series may find useful results in this book that can assist them in their 
field of study. As a matter of fact, econometrics is defined as the development and application 
of statistical methods in economics. Chemical engineers may also discover useful ideas in the 
book for application to chemical processes involving input-output relationships. 
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From a teaching viewpoint, this book is designed for use as a course text at the upper 
undergraduate and graduate levels. More advanced theoretical topics and greater depth of topics 
could be used in graduate courses. If all of the chapters in the book are covered in depth the 
book could be used in a two semester (i.e. eight month) course in environmetrics. However, as 
explained in the next section. there are various routes that can be followed for studying a useful 
subset of the chapters. Hence, the book could be used in a variety of specially designed one 
semester environmemcs courses. Exercises are presented at the end of all of the chapters. 

Virtually all of the tools presented in the book are highly developed from a theoretical 
viewpoint and possess appropriate algorithms that permit them to be applied in practice. There- 
fore, the methods are completely operational and can be used now for solving actual problems 
in environmebics. Practitioners who are studying specific environmental problems can refer to 
appropriate environmetrics techniques given in the book that are immediately useful to them. 
Moreover, the McLeod-Hipel Time Series Package (McLeod and Hipel, 1992) described in 
Section 1.7 is a computerized decision support system that can be employed by practitioners for 
applying appropriate environmemcs technologies to their problems and obtaining useful infor- 
mation upon which optimal decisions can be made. 

The book holds a treasurc house of ideas for researchers in environmemcs and time series 
modelling. More specifically, besides defining useful statistical tools as well as informative 
applications of the methods to actual data in order to explain clearly how to use them, the book 
puts the relative importance of environmetrics techniques into proper perspective. Furthermore, 
based upon both practical and theoretical needs, the book provides guidance as to where further 
worthwhile research is required. 

In the next subsection, the overall layout of the book is described and possible routes for 
exploring the countryside of ideas contained in the chapters are traced out. Subsequently, in 
Section 1.6.3 the book is compared to other available books that deal with specific areas of 
environmetrics. 

1.62 A Traveller’s Guide 

There are many different kinds of environmetrics techniques which can be applied to a 
wide variety of environmental problems. Consequently, one could envision a substantial number 
of sequences in which to present topics in environmetrics. For example, one could subdivide 
topics in environmettics according to types of application problems. Another approach is to 
present the statistical methods from simpler to more complex and then to present applications 
later. The motivation for the sequence of presentation of topics in this book is pedagogical. 
First, it is assumed that a reader of this book has the background acquired after completing one 
introductory course in probability and statistics. Next, the order of topics in the book is for a 
reader who is studying environmerrics for the first time. Accordingly, the topics in time series 
modelling are arranged from simpler to more complex. Throughout the book, practical applica- 
tions are given so the reader can appreciate how the methods work in practice and the insights 
that can be gained by utilizing them. After the reader has accumulated a variety of environ- 
memcs tools in the earlier chapters, later in the book more complex environmental impact 
assessment studies are examined and general methodologies are described for systematically 
applying appropriate statistical methods from the toolbox of ideas that are available. Indeed, in 
Part X, general approaches are presented for trend assessment of “messy” environmental data. 
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Of course, many readers of this book may already have some background in environmetrics 
and, more specifically, time series modelling. These readers may wish to skip some of the ear- 
lier topics and immediately start with subjects presented in later sections in the book. Because 
readers may have varying backgrounds and reasons for studying environmetrics, there are many 
different routes through which one could tour the territory of environmetrics topics given in this 
book. The purposes of this section are to outline the topics covered in the book and suggest 
some good itineraries for the environmetrics traveller, depending upon what types of interesting 
tourist spots he or she would like to discover. 

As can be seen from the Table of Contents, the 24 Chapters in the book are divided into 10 
main Parts. The titles of the Chapters within each Part provide guidance about the topics given 
in each Part. For the convenience of the reader, Table 1.6.1 furnishes a tabulation of the titles of 
each of the ten Parts, along with a listing of the Chapter titles. Readers may also wish to refer to 
the brief one or two page descriptions given at the start of each Part where it first appears in the 
book. Finally, an overview of the book is also provided in the Preface. 

Within Part I, labelled Scope and Background Material, Chapter 1 puts the overall objec- 
tives of the book into proper perspective and points out its main contributions to environmetrics. 
In particular, as explained in Section 1.2, statistics provides a powerful means for enhancing the 
scientific method in the search for solutions to pressing environmental problems. This book 
emphasizes the use of time series and other statistical methods for carrying out systematic data 
analysis studies of environmental time series. As pointed out in Section 1.2.4 and described in 
detail in Part X, a data analysis study consists of the two main stages of exploratory data 
analysis plus confirmatory data analysis. When fitting a specific time series model to a 
sequence of observations at the confirmatory data analysis stage, one can follow the identifica- 
tion, estimation and diagnostic check stages of model construction (Section 1.3). Moreover, in 
a given environmetrics study, one should keep in mind the overall physical aspects of the 
environmental problem (Section 1.4) as well as the influence of scientific studies upon the deci- 
sion making process (Section 1.5). In the second chapter of Part I, some basic statistical con- 
cepts that are particularly useful in time series modelling are presented. 

In order to provide the reader with specific tools that can be used in a data analysis study, 
Part I1 of the book describes some simple, yet well designed, time series models for fitting to 
yearly time series. Chapter 3 defines AR (autoregressive), M A  (moving average) and ARMA 
(autoregressive-moving average) models for fitting to stationary nonseasonal time series. As 
explained in Section 2.4, stationarity means that the basic statistical properties of the series do 
not change over time. In Chapter 4, the ARIMA (autoregressive integrated moving average) 
family of models is defined for describing nonstationary yearly time series, where, for exam- 
ple, the mean levels may increase with time. As is the case with all of the models presented in 
the book, each model in Part I1 is clearly defined, its main theoretical properties that are useful in 
practical applications are pointed out, and illustrative examples are employed to explain how to 
fit the model to real data. 

Table 1.6.2 gives a list of all of the time series models presented in the book, acronyms 
used to describe the models, locations in the book where model definitions, model construction 
and applications of the models can be found, as well as brief descriptions of the domains of 
applicability of the models. The nonseasonal time series models of Part I1 actually form the 
theoretical foundations upon which more complicated models of later Parts can be defined. 
However, before defining more models after Part 11, the manner in which the models of Part II 
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Table 1.6.1. Parts and chapters in the book. 

Part 
NUIllbers 

I 

U 

rn 

N 

V 

VI 

vn 

VIlI 

Ix 

X 

Part 
Titles 

Scope and 
Background 
Material 
Linear 
NOllSKLWUll 
Models 
Model 
Construction 

Faecasting 
and 
Simulation 
Long Memory 
Modelling 

Seasonal 
Models 

Multiple Input- 

Models 
Single output 

Intervention 
Analysis 
Multiple Input- 
Multiple Output 
Models 

Handling 
M a y  
Environmental 
Dala 

ch3pter 
Numbers 

1. 

2. 

3. 
4. 

5. 
6. 
I. 
8. 
9. 

10. 

11 .  

12. 

13. 
14. 
15. 

16. 
17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

Chapter Titles 

Environrnetrics, Science and 
Decision Making 
Basic Statistical Concepts 
Stationary Nonseasonal Models 
Nonstationary Nonseasonal Models 

Model Identification 
P a m e t e r  Estimation 
Diagnostic Checking 
Foremsting with Nonseasonal Models 
Simulating with Nonseasonal Models 

The Hurst Phenomenon and 
Fractional Gaussian Noise 
Fractional Autoregressive-Moving 
Avenge Models 
Seasonal Autoregressive lntegnted 
Moving Avenge Models 
Deseasonalized Models 
Periodic Models 
Forecasting with Seasonal Models 
Causality 
Constructing Transfer 
Function-Noise Models 
Forecasting with Tmsfer 
Function-Noise Models 
Building Intervention Models 

G e n e d  Multivariate 
Autoregressive-Moving Avenge Models 
Contemporaneous Autoregressive-Moving 
Avenge Models 
Exploratory Data Analysis and 
Intervention Modelling in 
Confimatory Data Analysis 
Nonprrnmetric Tests for 
Trend Detection 
Regression Analysis and 
Trend Assessment 

are systematically fitted to data is explained in Part III. Specifically, the identification, estima- 
tion and diagnostic check stages of model construction are clearly explained using practical 
applications. Later in the book, these basic model building approaches of Part 111 are 
extended and modified for use with all the other time series models presented in Parts V to 
IX. 
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Two major types of application of time series models are forecasting and simulation. In 
Part IV, procedures are presented for forecasting (Chapter 8) and simulating (Chapter 9) with 
the linear nonseasonal models of Part II. The objective of forecasting is to obtain the best possi- 
ble estimates or forecasts of what will happen in the future based upon the time series model fit- 
ted to the historical time series as well as the most recent observations. When operating a sys- 
tem of reservoirs for producing hydroelectrical power, forecasts of the inflows to the reservoirs 
are used for developing an optimal operating policy which maximizes profits from the sale of the 
electricity. In simulation, time series models are utilized to produce possible future sequences 
of the phenomenon being modelled. Simulation can be used for designing a large scale 
engineering project and for studying the theoretical properties of a given time series model. 

All of the time series models presented in this book can be used for forecasting and 
simulation. As a matter of fact, extensive experiments in forecasting and simulation given in 
many parts of the book demonstrate the great impon of forecasting and simulation in environ- 
metrics as well as the ability of ARMA-type models to perform better than their competitors. 
Table 1.6.3 lists the locations in the book where the forecasting and simulation procedures and 
applications are given for many of the models given in Table 1.6.2. 

Long memory models were developed within the field of stochastic hydrology in an 
attempt to explain what is called the Hurst Phenomenon. Within Chapters 10 and 11 of Part 
V, two long memory models called FGN (Fractional Gaussian noise) and FARMA (fractional 
autoregressive-moving average) models, respectively, are defined for fitting to annual geophysi- 
cal time series. Additionally, the Hurst phenomenon is defined in Chapter 10 and a proper 
explanation for the Hurst phenomenon is put forward. More specifically. it is demonstrated 
using extensive simulation experiments in Chapter 10, that properly fitted ARMA models can 
statistically preserve historical statistics related to the Hurst phenomenon. 

By the end of Parts IV or V, the reader has a solid background in nonseasonal time 
series modelling. He or she knows the basic definitions of some useful yearly models (Part Il 
and also Part V), understands how to apply these models to actual data sets (Part III), and knows 
how to calculate forecasts and simulated sequences with these models (Part IV). The reader is 
now in a position to appreciate how some of these nonseasonal models can be extended for use 
with other kinds of data. As indicated in Tables 1.6.1 and 1.6.2, models for fitting to seasonal 
data are described in Part VI immediately after the Part on long memory models. The three 
types of seasonal models described in Chapters 12 to 14 are the SARIMA (seasonal autoregres- 
sive integrated moving average), deseasonalized, and PARMA (periodic autoregressive-moving 
average) models, respectively. A special case of the PARMA models of Chapter 14 is the set of 
PAR (periodic autoregressive) models. In order to reduce the number of parameters in a PAR 
model, the PPAR (parsimonious periodic autoregressive model) can be employed. The desea- 
sonahzed and periodic models are designed for fitting to natural time series in  which statistical 
characteristics such as the mean and variance must be accounted for in each season. Further- 
more, periodic models can describe autocorrelation structures which change across the seasons. 
Forecasting experiments in Chapter 15 clearly demonstrate that PAR models are well suited for 
forecasting seasonal rivefflows. SARIMA models can be used for forecasting nonstationary 
socio-economic time series such as water demand and electricity consumption. 

In many natural systems, a single output or response variable is driven by one or more 
input or covariate series. The TFN (transfer function-noise) model of Part VII is designed for 
stochastically modelling the dynamic relationship between the input series and the single 
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42 

Sections 14.8 
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Chapter 1 
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Table 1 .6 .3 .  Forecasting and Simulation. 

Names 

A R  

MA 

A R M A  

A R I M A  

F A R M A  

S A R I M A  

P A R  

P A R M A  

PPAR 

t- CARMA 
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response. In stochastic hydrology, one may wish to model formally the manner in which pre- 
cipitation and temperature cause riverflows. Qualitatively, a TFN model for describing this 
dynamic situation is written as: 

Riveflows = Precipitation + Temperature + Noise 

where the noise term is modelled as an ARMA model from Chapter 3. An example of the design 
of a TFN model for use in stochastic water quality modelling is: 

Water = Riverflows + Other + Noise 
Quality Water 
Variable Quality 

(ex. Phosphorous) Variables 
(ex. Water 

Temperatures 
and Turbidity) 

Because the above qualitative equation contains both water quantity and water quality time 
series, the TFN model, as well as the related intervention model of Part VEX, provide a for- 
mal meams for connecting stochastic hydrology (Le., water quantity modelling) with statist- 
ical water quality modelling. 

As shown in the Table of Contents and Table 1.6.1, there are three chapters in Part VII. 
Chapter 16 explains how the residual cross-correlation function can be used to detect different 
kinds of causality between two variables. In Chapter 17, the TFN model is formally defined 
and flexible model building procedures along with illustrative applications are presented. The 
forecasting experiments of Chapter 18 clearly demonstrate that TFN models provide more 
accurate forecasts than their competitors. In fact, one of the forecasting experiments shows that 
a simple TFN model forecasts better than a very complicated and expensive conceptual 
model. 

The intervention model of Part VIII constitutes a special type of TFN that is especially 
well suited for use in environmental impact assessment. Qualitatively, the intervention model 
has the following form: 

Output = Multiple + Multiple + Missing + Noise 
Variable Inpuls Interventions Data 

In addition to describing the effects of multiple input series upon a single response variable, the 
intervention model can simultaneously model the effects of one or more external interventions 
upon the mean level of the output series, estimate missing observations and handle correlated 
noise through an ARMA noise component. For the case of a water quality application, an 
intervention model could be written as: 
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Water = Riverflows + Other + Multiple + Missing + Noise 
Quality Water Interven- Data 

Variable Quality ions 
Variables 

The formal modelling and analysis of a data set using the intervention model is popularly 
referred to as intervention analysis. As pointed out in Section 1.2.4 and explained in detail in 
Section 19.4.5, a special form of the above intervention model can be designed for formally 
describing the drop in the mean level of the phosphorous series shown in Figure 1.1.1.  Applica- 
tions of a variety of intervention models to stochastic hydrology and environmental engineering 
data sets in Chapter 19 and Section 22.4, demonstrate that the intervention model is one of the 
most comprehensive and flexible models available for use in environmetrics. A sound and 
flexible theoretical design coupled with comprehensive model construction methods permit the 
intervention model to be conveniently and expeditiously applied in prxtice. 

When there is feedback in a system, the input affects the output but the output can in turn 
have a bearing upon the input. For example, consider the situation where rivers drain into a 
large lake. The flow in a given river is caused by precipitation. However, evaporation from the 
large lake which is filled by the rivers causes precipitation that once again creates riverflows. To 
model formally this type of situation, one can employ the multivariate ARMA family of models 
of Part M that has the form: 

Multiple = Multiple + Noise 
outputs Inputs 

The terminology multivariate is employed because there are multiple output series. A drawback 
of the multivariate ARMA models is that they contain a great number of parameters. To reduce 
significantly the number of model parameters, one can employ the CARMA (contemporaneous 
ARMA) multivariate model of Chapter 21 for special types of applications. Good model con- 
struction methods, including a parameter estimation method that is efficient both statistically and 
computationally, are available for use  with CARMA models. 

A major strength of this book is the presentation of a variety of useful techniques that 
can be employed in complex environmental impact assessment studies. The objective of 
Part X is to explain how a variety of statistical methods can be used for detecting and model- 
ling trends, as well as other statistical properties, in both water quantity and water quality time 
series. This is carried out within the overall framework of exploratory and confirmatory data 
analyses referred to in Sections 1.2.4 and 22.1. Within Section 22.3 a variety of informative 
graphical tools are described for use as exploratory data analysis tools. Additionally, in Sec- 
tion 24.2.2 it is explained how a technique called robust locally weight regression smoothing 
can be employed for tracing a trend that may be present in a time series. At the confirmatory 
data analysis stage, the three statistical approaches that are employed consist of intervention 
analysis (Chapter 19 and Section 22.4). nonparametric tests (Chapter 23) and regression 
analysis (Section 24.2.3). 

Within a given data analysis study, one must select the most appropriate exploratory and 
confirmatory data analysis tools in order to discover, model and analyze the important statistical 
properties of the data. In fact, data analysis is composed of both an art and a craft The craft 
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consists of a knowledge and understanding of the main types of statistical tools that are avail- 
able. This book, for example, describes and explains the capabilities of a wide variety of statisti- 
cal methods. The art of data analysis is using the most appropriate statistical methods in an 
innovative and efficient manner for solving the data analysis problems currently being 
addressed. The best way to explain how the art and craft of data analysis a r e  carried out in 
practice is through the use of comprehensive real world case studies. 

Three major data analysis studies are presented in Part X of the book for canying out trend 
assessments of water quality and water quantity time series. Each of the studies requires the 
development of a methodological approach within the encompassing structure of exploratory and 
confirmatory data analyses. Table 1.6.4 provides a list of the three trend analysis methodolo- 
gies presented in Part X, the types of data analysis problems each procedure is applied to, brief 
descriptions of the methodologies, and the section numbers where explanations are provided. 
Notice that the first and third approaches in Table 1.6.4 deal with trend assessment of water qual- 
ity and water quantity time series measured in rivers while the second procedure is concerned 
with water quality observations taken from a large lake. In all three studies, informative graphi- 
cal techniques are employed as exploratory data analysis tools. At the confirmatory data 
analysis stage, different statistical methods are employed for trend modelling. Consider the first 
trend assessment methodology listed in Table 1.6.4. After filling in missing observations using 
the approach of Section 22.2, the time series approach of intervention analysis (Part VIII) is 
used to model trends in water quality series trends due to cutting down a forest in the Cabin 
Creek river basin of Alberta, Canada. As a matter of fact, the general form of one of the inter- 
vention models developed to describe the problem studied in Section 22.4.2 is: 

Cabin = Monthly + Cabin + Middle + Noise 
Creek Interventions Creek Fork 
Water Flows Water 

Quality Quality 
Series Series 

Because the trees were not cut down in the nearby Middle Fork river basin, the water quality 
series from this river can account for changes in the same Cabin Creek water quality series that 
are not due to cutting down the trees. The estimate for the intervention parameter for a given 
month in the intervention component in this general intervention model provides an estimate for 
the change in the mean level of the water quality variable for the Cabin Creek for the month. 
Moreover, this model also stochastically accounts for the influence of riverflows upon the water 
quality variable in the Cabin Creek. 

The environmental data used in the second and third studies in Table 1.6.4 are very 
“messy” because they possess undesirable properties such as having many missing values and 
possessing a large number of outliers. Consequently, nonparametric methods are used as con- 
fmatory  data analysis tools in these two studies for trend detection as well as other purposes. 
As explained in Chapter 23, nonpanmemc techniques have fewer underlying assumptions than 
competing parametric approaches and, therefore, are better designed for use with messy data. In 
fact, because nonparametric methods can be used for investigating a wide range of statistical 
characteristics that may be embedded in messy water quality data, Chapter 23 as well as some 
parts of Section 24.3 are dedicated to explaining how nonparamemc tests can be effectively 
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employed in environmental impact assessment studies. The main emphasis in the discussions of 
nonparametric methods is their use in trend detection and modelling. A review of hypothesis 
testing using nonparametric or parametric test statistics is presented in Section 23.2. 

The third approach in Table 1.6.4 employs the regression analysis method called robust 
locally weight regression smooth for clearly tracing trends in time series plots of messy water 
quality data. Besides being used in graphical procedures at the exploratory data analysis stage, 
regression analysis can also be employed as a confmatory data analysis method for a wide 
variety of purposes, including the estimation of the shapes and magnitudes of trends. For exam- 
ple, the last entry in Table 23.5.1 summarizes how regression analysis is employed in the Lake 
Erie water quality study of Chapter 23. Even though regression analysis usually constitutes a 
parametric technique, it can be used with data that are unevenly spaced. 

The intervention model as well as the other types of time series analysis models presented 
in this book assume that observations are available at evenly spaced time intervals. If there are 
gaps in the data, then one must estimate the missing observations before fitting a time series 
model to the data set. Table 1.6.5 lists the data filling techniques described in this book as well 
as the main types of situations in which they can be used. A general discussion of estimating 
missing values is presented in Section 19.3 along with a detailed description of the intervention 
analysis approach to data filling. 

Table 1.6.1 provides a summary of the ten main topics or Parts into which the book is 
divided. Each Part, in turn, is subdivided into a number of chapters. The contents of each 
chapter consist of the introduction, main sections, conclusions, appendices, problems, and 
references. Within the main sections of each chapter, any statistical methods that are described 
are usually accompanied by practical environmental applications so the reader can appreciate 
their usefulness in environmetrics. 

Notice in Table 1.6.1 that the model construction methods for the linear time series 
models of Part I1 are presented in Part III. However, for each of the other time series models of 
Table 1.6.2, the model building procedures are usually given just after the model is defined. 
Illustrative applications are always used for demonstrating how a given time series model is 
fitted to a data set using appropriate model building techniques. The types of environmental 
time series used in the applications include water quantity, water quality, precipitation, ambient 
temperature, as well as miscellaneous series such as tree ring indices and mud varve thicknesses. 

Depending upon the background of the reader, there are a variety of different routes he or 
she can follow when travelling through the environmetrics terrain given in the book. A neophyte 
in environmetrics may wish to follow sequentially the entire itinerary summarized in Table 1.6.1 
in a two semester course. A one semester course could cover Part I, Chapter 3, Part III, 
Chapter 8, Chapters 13 and 14 in Part VI, Chapters 16 and 17 in Part VII, plus some Parts of 
Chapter 19. Someone who already has a background in basic ARMA modelling may wish to 
extend his knowledge by studying the more complex types of time series models given in Parts 
VII to IX and listed in Table 1.6.2. A course on statistical environmental impact assessment 
should concentrate on Parts VII, VIII and X. Someone who is mainly interested in stochastic 
hydrology should not miss studying Part V. Courses that emphasize forecasting and simula- 
tion can cover the topics listed in Tables 1.6.3. 



Methodologies I 

I Trend Assessment Using 

Trend Analysis of Water 
Qual i ty  Data Measured 
i n  Lakes (Chapter  23)  

Trend Analysis of Messy 
Water Qual i ty  Time 
Series  Measured i n  
Rivers (Chapter  24)  

Table I . 6 . 4 .  Trend a s s e s s m e n t  methodologies. 

Kinds of Data 

Waler qual i ty  and  
water  quant i ty  t i m e  
ser ies  measured  in 
r ivers .  

Waler qual i ty  obser-  
vat ions f rom a large 
lake.  

Lessy water  qual i ly  
la la  a n d  waler  quant i ty  
i m e  ser ies  measured  in  
.ivers. 

I)e sc  r i p ti o n s 

In te rvent ion  analysis  is used to  
descr ibe  the  ef fec ts  of c u t t i n g  
down a f o r r s t  upon t h e  m e a n  
levels of water  qual i ty  a n d  q u a n -  
t i ty  l i m e  ser ies .  A seasonal  a d -  
j u s t m e n t  d a l a  filling m e t h o d  is 
used to  e s t i m a t e  missing values  
pr ior  t o  f i t t ing t h e  i r i lervenl ion 
models .  

Nonparamel r ic  t rend  t e s t s  a n d  
o t h e r  s la t i s l ica l  methods  a r e  
used t o  d e l r c t  t r e n d s  i n  waler  
qua l i ty  variables in  a lake  t h a t  
may be affecled by nearby 
indus t r ia l  developments. 

Procedures  a r e  presenled  for  
a c c o u n t i n g  for t h e  e f fec ts  of 
flow upon a given water  qua l i ty  
s e r i e s  a n d  elirniriatirig any  t r e n d  
in t h e  flow before i t s  e f fec t  upon 
t h e  water  qual i ty  s e r i e s  i s  removed 
The S p e a r m a n  par t ia l  r a n k  c o r r e l a -  
t ion  l e s t  is used t o  d e t e c l  l r e n d s  
i n  w a t e r  qual i ty  l i m e  s e r i e s  when 
t h e  effeels  of seasonality a r e  
par t ia l led oul .  

Sect ions 

Sect ion 22.2 descr ibes  
t h e  seasonal  a d j u s t m e n l  
d a t a  filling method.  
The exploratory d a l a  
analysis  is done i n  
Secl ion 22.3 while t h e  
in te rvent ion  modelling 
is car r ied  o u l  i n  Section 
22.4. 

Exploratory a n d  eon-  
f i rmatory  d a t a  analysis  
resu l l s  a r e  presented  
i n  Sect ion 23.5. Table 
23.5.1 lisls al l  of t h e  
s ta t i s l ica l  m e t h o d s  used 
i n  t h e  s tudy .  

~~ 

Sect ion 24.2.2 descr ibes  
t h e  robus t  locally 
weighted regression 
s m o o l h  for  t rac ing  
t rends .  In Sect ion 
24.3. t h e  overall t r e n d  
ana lys i s  methodology is 
presenled  and  applied. 



Techniques 

Intervention 
Analysis 

Seasonal 
Adjustment 

Back 
Forecasting 

Table 1.6.5. Data filling methods described in the  book.  

Purposes 

The intervention model can be  used 
t o  es t imate  missing observations 
simultaneously with o ther  parameters  
in the intervention model. No more 
t h a n  about  5% of the  observations in 
a t ime series should he missing when 
using the  intervention model for da ta  
filling. 

The seasonal ad jus tment  algorithm is 
designed for es t imat ing missing values 
in seasonal t ime ser ies  when there  is a 
grea t  n u m b e r  of missing observations 
and  there  may be long t ime pcriods 
over which no measurements  w e r e  takcn 

A TFN model is used to  connect  t w o  or  
more l ime ser ies  where the  ser ies  over- 
lap in t ime. Then the  calibrated TFN 
model is used to "back forecast" the  
unknown values of the  shor te r  ser ies  
given as  t h e  response variable. 

Locations 

Chapter 19 is dedicated t o  
describing and applying var- 
ious versions of t h e  inter-  
vention model. Section 19.3 
explains in detail how t h e  
intervention model is used 
for filling in data.  Besides 
Chapter 19. other  applications 
of intervention analysis a r e  
presented in Section 22.4.2. 

The seasonal ad jus tment  
algorithm is defined and 
applied in Section 22.2. 

The TFN model along with 
model building techniques 
a r e  presented i n  Chapter 17, 
while t h e  technique of back 
forecasting is  described in 
Section 1 8 . 4 .  
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1.6.3 Comparisons to Other Available Literature 

As mentioned in Section 1.1, this is a book about environmetrics. The techniques and 
methodological approaches presented in this book draw upon developments in the fields of 
statistics, stochastic hydrology and statistical water quality modelling. One purpose of this 
section is to point out some of the main books, journals and other literature from these three 
areas that can provide valuable complementary reference material for the reader. Within each 
chapter, comprehensive references are provided for the specific topics contained in the chapter. 
A second objective of this section is to compare the main contents of this book to other avail- 
able literature. As is clearly explained, this book constitutes a unique contribution to 
environmetrics. 

From the field of statistics, the major type of models used in this book is a wide variety of 
time series analysis models. Because time series analysis is employed extensively in many 
fields, a vast body of literature has evolved, especially during the past three decades when the 
advent of the electronic computer made it possible for both simple and complex time series 
models to be conveniently applied to large data sets. The seminal textbook publication which 
furnishes a systematic and comprehensive presentation of many time series models is the book 
of Box and Jenkins called “Time Series Analysis: Forecasting and Control.” The fvst edition 
of their book appeared in 1970 while the second one was published in 1976. Besides defining 
useful time series models such as ARMA, ARIMA, SARIMA and TFN models, Box and Jenkins 
explain how to fit time series models to data sets by following the identification, estimation and 
diagnostic check stages of model construction. As a result, time series modelling became widely 
accepted for applying to practical problems in many different fields. For example, time series 
analysis has been widely used in economics for forecasting economic time series (Nelson, 1973; 
Montgomery and Johnson, 1976; Granger and Newbold, 1977; Firth, 1977; Makridakis and 
Wheelwright, 1978; Granger, 1980; Abraham and Mol te r ,  1983; Pankratz, 1983) and in electri- 
cal engineering for estimating the state of a system in the presence of additive noise (Ljung, 
1987; Haykin, 1990). In fact, because the time series analysis work of Box and Jenkins (1976) 
has become so widely adopted, many books, including this one, employ the notation of Box and 
Jenkins when defining time series models. Besides the book of Box and Jenkins (1976), text- 
books by statisticians such as Jenkins and Watts (1968), Hannan (1970), Anderson (1971), 
Kendall (1973). Brillinger (1975), Chatfield (1975), Fuller (1976), Jenkins (1979), hiestley 
(1981), Pandit and Wu (1983), McLeod (1983), Vandaele (1983), Young (1984), and Brockwell 
and Davis (1987) furnish in a pedagogical fashion well explained accounts of developments in 
time series analysis. Within the statistical literature, the major journals to refer to for research 
and review articles include the Journal of the Royal Statistical Society (Series A, B and C), 
Biometrika, Journal of the American Statistical Association, the Annals of Statistics, Journal of 
Time Series Analysis, International Journal of Forecasting, and Communications in Statistics. 
Additionally, proceedings from conferences hosted by statistical societies and also by individu- 
als, provide other valuable sources for research material on time series analysis. McLeod 
(1987). for example, edited a book of conference papers on stochastic hydrology. Anderson has 
edited 12 conference proceedings since 1976 (see, for instance, Anderson (1979) and Anderson 
et al. (1985)). 

A number of books on time series analysis in hydrology and water resources have been 
written by authors such as Fiering (1%7), Yevjevich (1972), Clarke (1973), Kottegoda (1980), 
Salas et al. (1980), Bras and Rodriguez-Iturbe (1985), and McCuen and Snyder (1986). A 
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monograph edited by Hipel (1985) contains many original contributions on time series analysis 
in water resources. Both the water resources systems book of Loucks et al. (1981) and the sto- 
chastic modelling text of Kashyap and Rao (1976) contain some chapters on the modelling of 
hydrological time series. Moreover, the book of Helsel and Hirsch (1992) on statistical methods 
in water resources has chapters on exploratory data analysis, regression analysis and trend tests. 
Although the measurement and subsequent analysis of water resources time series started a long 
time ago, the proliferation of time series analysis research in water resources commenced in the 
early 1960’s. In fact, the journals Water Resources Bulletin and Water Resources Research, 
founded at that time by the American Water Resources Association and the American Geophysi- 
cal Union, respectively, have published papers on time series analysis throughout their history. 
Other water resources journals that present applications and theoretical developments in time 
series analysis, include Stochastic Hydrology and Hydraulics, the Journal of Hydrology, Journal 
of the Water Resources Planning and Management Division of the American Society of Civil 
Engineers (ASCE), Journal of the Hydraulics Division of ASCE, Advances in Water Resources 
and Hydrological Sciences Bulletin. Moreover, proceedings from water resources conferences, 
such as the ones edited by Shen (1976), McBean et al. (1979a.b) and Shen et al. (1986), provide 
a rich variety of papers on time series analysis in water resources. In addition to time series 
models, the international conference on Stochastic and Statistical Methods in Hydrology and 
Environmental Engineering held at the University of Waterloo from June 21 to 23, 1993, had 
many paper presentations regarding the other kinds of stochastic models shown in Table 1.4.1. 
This conference was held in the honour and memory of the late Professor T. E. Unny. 

In addition to time series analysis methods from statistics and stochastic hydrology, this 
book also deals with ideas from statistical water quality modelling. Some of the models 
described in the stochastic hydrology books referred to in the previous paragraph can be applied 
to water quality time series. However, the intervention model of Chapters 19 and 22 in this 
book as well as the TFN model of Part VII, constitute time series models that are especially well 
designed for simultaneously modelling both water quality and quantity series. When the 
environmental data are quite messy and there are a great number of missing values, one may 
have to employ nonparametric tests (Kendall, 1975) in an environmental impact assessment 
study. In his book on statistical methods for environmental pollution monitoring, Gilbert (1987) 
makes extensive use of nonparametric techniques. A monograph edited by Hipel (1988) on non- 
parametric approaches to environmental impact assessment contains papers having applications 
of nonparamemc trend tests to water quality time series. Papers regarding the use of time series 
models and nonparametric tests in water quality modelling appear in many of the water resources 
journals referred to in the above paragraph. In Chapter 23 and Section 24.3 of this book a 
number of useful nonparametric trend tests are presented along with water quality applications. 
Other environmental journals having statistical papers on water quality modelling include 
Environmetrics, Journal of the Environmental Engineering Division of ASCE, Environmental 
Management, and Environmental Monitoring and Assessment. Additionally, a number of 
conference proceedings on statistical water quality modelling are available. For instance. 
El-Shaarawi and Esterby (1982), El-Shaarawi and Kwiatowski (1986) and Chapman and 
El-Shaarawi (1989) have edited conference proceedings on water quality monitoring and assess- 
ment. 
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Given the impressive array of literature available in time series analysis, stochastic hydrol- 
ogy and statistical water quality modelling, one is tempted to ask what are the relative contribu- 
tions of this book. In fact, there are many ways in which this book combines, enhances and 
extends previous research. First, the current book combines the aforementioned three areas in 
a coherent and systematic manner in order to have a comprehensive book on time series 
methods in environmetrics. As a result, stochastic hydrology and statistical water quality 
modelling are no longer considered to be separate fields. Rather, techniques and approaches 
from both areas are used in combination with other statistical methods to confront challenging 
environmental problems. Secondly, this book contains the most recent and useful develop- 
ments in time series modelling. As a matter of fact, virtually all of the time series and other sta- 
tistical methods presented in the book are well developed theoretically and a range of flexible 
model construction algorithms are available to allow them to be immediately applied to real 
world data sets. Thirdly, the book contains many theoretical contributions and applications 
that have been developed by the authors and their colleagues. Although much of the research 
has appeared during the past fifteen years in various water resources and statistical journals, this 
is the first time that it is published in a pedagogical fashion within a single document. 
Fourthly, this book puts great emphasis on the use of both time series analysis and non- 
parametric methods in environmental impact assessment studies. Using challenging real 
world applications, Parts VII, VIII and X in the book clearly explain how this is accomplished in 
practice. Finally, as is explained in Section 1.6.2, the book is designed to be as flexible as possi- 
ble so that it c a ~ ~  satisfy the specific needs of individual readers. It could, for example, be used 
as a one semester course in environmetrics. A person who is solely interested in stochastic 
hydrology or statistical water quality modelling could refer to the appropriate chapters in the 
book, as pointed out in Section 1.6.2. The book could also be used as a main text on time series 
modelling within a statistics department. 

1.7 DECISION SUPPORT SYSTEM FOR TIME SERIES MODELLING 

To cany out a proper data analysis study, one requires the employment of a flexible Deci- 
sion Support System (Sage, 1991). The McLeod-Hipel Time Series (MHTS) Package 
(McLeod and Hipel, 1992) constitutes a comprehensive decision support system for performing 
extensive data analysis investigations in order to obtain easily understandable results upon which 
sound decisions can be made. 

As explained in Section 1.2.4, data analysis consists of both exploratory and confirmatory 
data analyses. A wide variety of informative graphical methods are contained in the MHTS 
package as exploratory data analysis tools to allow a user to clearly visualize the key statistical 
characteristics of the time series that he or she is studying. Some of the many graphical methods 
contained in the MHTS system are described in Section 22.3 as well as elsewhere in the book. 
Figure 1.1.1, for example, is a simple yet informative plot created by the MHTS package that 
clearly shows the step drop in the phosphorous levels in a river due to the introduction of tertiary 
treatment in upstream sewage plants. 

At the confirmatory data analysis stage, the MHTS package can, for instance, fit a model 
to a data set in order to provide a more precise mathematical description of the main statistical 
properties of the data. For example, in Section 19.4. the MHTS package is employed for fitting 
the most appropriate intervention model to the time series displayed in Figure 1.1.1. Besides 
mathematically modelling the stochastic structure of the time series, the intervention model 
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provides an efficient estimate of the magnitude of the drop in the mean level of the phosphorous 
series in Figure 1.1.1 after the intervention of introducing tertiary sewage treatment. 

The MHTS package can be employed for fitting virtually all of the different kinds of time 
series models listed in Table 1.6.2 to time series. For each type of time series model, the three 
stages of model construction depicted in Figure 1.3.1 are adhered to when using the MHTS 
package. Moreover, the most appropriate and up-to-date tools are used by the MHTS package 
for each kind of model during the identification, estimation and diagnostic check stages of the 
model development. 

The MHTS package allows a practitioner or researcher to employ calibrated time series 
models for carrying out applications such as forecasting and simulation experiments Table 
1.6.3, for example, summarizes a wide variety of forecasting and simulation investigations 
described in the book. 

Each data analysis study usually contains unique problems and challenges that require spe- 
cialized attention. The MHTS package furnishes the user with a comprehensive array of t o d s  
from which he or she can select the most appropriate ones in order to discover and build the most 
effective explanations and solutions to the problems being studied. This inherent comprehen- 
sive, yet flexible, design of the MHTS system is especially needed when dealing with the type of 
messy environmental data described in Part X of the book. Table 1.6.4, for instance, lists some 
general kinds of trend assessment studies that can be conviently executed in an iterative, yet 
logical and systematic fashion, using the MHTS package. 

The MHTS package is extremely user-friendly and is designed for use by both novices and 
experts in time series modelling and analysis. Additionally, the MHTS package is menu-driven 
using attractive screen displays, operates on personal computers that use DOS, and can support 
a variety of dot-matrix and laser printers. 

The MHTS package is probably the most advanced decision support system available 
which employs such a rich range of ARMA-type, as well as other kinds of time series 
methods, in statistical decision making. The MHTS package permits data analysis methods to 
be effectively utilized within the scientific method described in Section 1.2 and summarized in 
Figures 1.2.1 to 1.2.3, as well as the overall structure of engineering decision making explained 
in Section 1.5.1 and depicted in Figure 1.5.2. Finally, the MHTS package places a set of valu- 
able statistical tools directly into the hands of decision makers working in environmetrics who 
must make real decisions now about complex environmental problems. 

1.8 CONCLUDING REMARKS 

Tbe d n  purpose of this book is to present the art and craft of environmetrics for 
modelling water resources and environmental systems, The craft consists of a set of useful 
statistical tools while the art is composed of general procedures or methodologies for applying 
these tools to environmental time series. As pointed out in Section 1.6.2, the tods of the trade 
are stressed earlier in the book while general methoddogies are presented after the reader has 
some tools to work with. 

The topics on environmetrics given in this book and summarized in Table 1.6.1 are based 
upon contributions from the fields of statistics, stochastic hydrology and statistical water 
quality modelling. The main set of statistical methods used in the book is a range of families of 
time series models. Other statistical techniques include graphical methods, nonparametric 
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trend tests and regression models. Within the framework of the intervention model, for exam- 
ple, both water quality and water quantity data can be simultaneously considered in an environ- 
mental impact assessment study (see Chapters 19 and 22). 

In Section 1.2, the scientific method is described and it is explained how statistics can 
enhance the scientific method so that good solutions to pressing environmental problems can be 
efficiently and expeditiously found. When carrying out a scientific data analysis study, infor- 
mative exploratory and codmato ry  data analysis tools can be employed. Graphical methods 
can be used as exploratory data analysis methods for discovering general statistical properties 
of a given data set. At the confirmatory data analysis stage, both parametric and non- 
paramemc methods can be employed for rigorously modelling from a mathematical viewpoint 
the main statistical characteristics. For example, the intervention model from Part VIIl can be 
utilized to model the shape and magnitude of the trend in the phosphorous data in Figure 1.1.1. 

As listed in Table 1.6.2, a wide variety of time series models are presented in the book. In 
Section 1.3, it is explained how one should follow the identification, estimation and diagnostic 
check stages of model construction in order to design a parsimonious model that provides a rea- 
sonable statistical fit to the time series. In any statistical study, one should keep in mind the 
physical aspects of the environmental problem. Section 1.4 explains how the hydrological cycle 
forms a sound environmental system model for use in environmetrics. 

In environmental decision making, one should remember how the results of an environ- 
metrics study can influence the overall political decisions which are eventually made when a 
specific alternative solution to a given environmental problem is selected. As explained in Sec- 
tion 1.5, rigorous scientific studies can result in decisions that are environmentally acceptable. 
Moreover, active participation by scientists and engineers in both tactical and strategic decision 
making will allow better solutions to be reached for solving pressing environmental problems. 
An analogy with the success of Japanese industry will help to explain why this should be so. A 
majority of people at all levels of management, including the board of directors of most major 
Japanese corporations, have technical training as engineers and scientists (Reich, 1983). In addi- 
tion, over a time period of a few decades these corporate leaders worked their way from the bot- 
tom of a given company to the top. Because they understand both the technical and social prob- 
lems at all levels in the company, they are properly educated to make sound tactical and stra- 
tegic decisions. The worldwide large sales of high quality Japanese products attest to the success 
of having wise leadership. Likewise, when it comes to solving complex environmental prob- 
lems, properly educated decision makers are sorely needed. The authors of this book feel that 
a good scientific education coupled with many years of solving tough environmental prob- 
lems will produce leaders who will be capable of making optimal tactical and strategic 
decisions. This environmental decision making may be carried out within a framework similar to 
that described in Section 1.5. One should always recall that good science can create imaginative 
solutions to environmental problems which in turn can influence the preferences of the decision 
makers who must eventually make the strategic decisions. Finally, by employing the McLeod- 
Hipel Time Series Package described in Section 1.7, a decision maker can use this flexible 
decision support system to immediately take full advantage of the rich m y  of environmetrics 
methods presented in the book. 

Fertile fields of ideas in environmetrics await the curious reader in the upcoming chapters 
of this book. Depending upon the background and interests of the individual traveller, a variety 
of touring routes are suggested in Section 1.6.2. A reader who would like a review of some 
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basic statistical concepts used in time series modelling may wish to start his or her journey by 
moving on to Chapter 2. Bon voyage! 

PROBLEMS 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

What roles do you think science and statistics should play in developing sound environ- 
mental policies for restoring and preserving the natural environment? 
Some serious types of environmental problems are referred to in Section 1.2.1. Discuss an 
important environmental problem that is of great concern to you. Outline realistic steps 
that could be taken to overcome this problem. Kindly provide the references from which 
you obtained your background information. 
Many governments are deeply concerned with having human rights for each individual 
citizen. How do you think human rights and protection of the natural environment should 
be related? Discuss the situation in your own country. 
The scientific method is explained in Section 1.2.2. Make a list of some of the key histori- 
cal breakthroughs in the development of the scientific method. Wherever possible, point 
out when statistics played a key role in the improvement of the scientific method. Kindly 
provide a list of the references from which you obtained your material. 
Tukey (1977) suggests a wide variety of graphical techniques for use as exploratory data 
analysis tools. Make a list of some of the main graphical procedures put forward by Tukey 
and briefly describe their purposes. 

Explain in your own words why you think human beings like to develop models of natural 
and social systems. What is your opinion of the modelling procedure outlined in Section 
1.3? 

Chatfield (1988) describes a general approach for addressing real-life statistical problems. 
Summarize the main aspects of his approach and comment upon the advantages as well as 
the drawbacks of his methodology. 
In the hydrological cycle displayed in Figure 1.4.1. the throughput to the system is water. 
Explain how energy could be used as the throughput in the hydrological cycle. Which 
throughput do you feel is more informative and easier to understand? 

The Garrison Diversion Unit conflict of Sections 1.5.1 and 1.5.3 constitutes an example of 
an international environmental dispute for which good scientific and economic studies were 
carried out. Describe another planned large-scale project which is causing controversies to 
arise because of possible detrimental environmental effects. Who are the key decision 
makers involved in this environmental conflict and what are the main courses of action that 
each decision maker can follow. Discuss any scientific and/or economic studies that have 
been completed as well as how the results of the studies may influence any of the decision 
makers and the possible resolutions to the dispute. How are statistical methods used in any 
of these studies? If proper scientific or economic studies are not currently being executed, 
suggest how they could be done. Be sure to reference newspapers, magazines, journals and 
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books from which you obtain your background information. 
1.10 In Section 1.6.3, a number of water resources journals are mentioned. Select any two of the 

water resources journals and go to your library to obtain the last two years of publications. 
For each journal, make a list of categories under which the individual papers could be clas- 
sified. What percentage of papers in each journal deal with environmetrics? Discuss the 
main types of environmetrics papers that are published. 

1.11 A number of books on stochastic hydrology are mentioned in Section 1.6.3. Select one of 
these books and make a list of the major types of time series models discussed in the book. 
Compare this list of models to the one given in Table 1.6.2. 

1.12 A decision support system for time series modelling and analysis is described in Section 
1.7. By refemng to appropriate literature, explain the basic design, function and user- 
friendly features of a decision support system in general. You may wish to read articles 
published in journals such as Decision Support Systems and Information and Decision 
Technologies, appropriate textbooks like the one by Sage (1991) and scientific encyclo- 
m a e  such as the one edited by Sage (1990). 

1.13 The McLeod-Hipel Time Series Package mentioned in Section 1.7 contains a wide variety 
of representative time series. Pick out a hydrological series that is of interest to you and 
use the package to produce a graph over time of the series. Write down some of the statist- 
ical characteristics of the time series that you can visually detect in the graph. If you feel 
adventurous, use the package to fit an appropriate time series model to the data and to pro- 
duce forecasts 10 steps into the future. List some of the features that you like about the 
McLeod-Hipel package. 

1.14 Why are education, in general, and science and engineering, in particular, so highly 
respected in Japan? What influence has this reverence for education had upon the economy 
of Japan? Have the Japanese adopted sound environmental policies within their own coun- 
try and how are these policies connected to economic policies? 

1.15 After you finish reading Chapter 1, write down your main reasons or objectives for study- 
ing environmetrics. After you complete taking an envionmetrics course using this book or 
reading the entire book on your own, refer to this list to see if your goals have been met. 
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CHAPTER 2 

BASIC STATISTICAL CONCEPTS 

2.1 INTRODUCTION 

In this chapter, the general properties of time series and stochastic processes are firstly dis- 
cussed. This leads to the problem of deciding upon in which situations it is feasible to assume 
that the statistical characteristics of a time series under consideration are more or less constant 
over time and hence it is permissible to fit a stationary stochastic model to the data. A general 
appraisal is given regarding the controversies surrounding srutionarity and nonsrutionarity. Fol- 
lowing this, some statisricul definitions are presented for examining stationary data in the time 
domain while the usefulness of the cumulative periodogram forfrequency domain analyses is 
pointed out. Finally, the importance of linear stationary models in the environmental sciences is 
demonstrated by explaining the relevant results from the Wold decomposition theorem (Wold. 
1954). 

2.2 TIMESERJES 

A time series is a set of observations that are arranged chronologically. In time series 
analysis, the order of occurrence of the observations is crucial. When a meteorologist wishes to 
forecast the weather conditions for tomorrow, the time sequence in which previous weather con- 
ditions evolved is of utmost importance. If the chronological ordering of the data were ignored, 
much of the information contained in the time series would be lost and the meteorologist would 
have a difficult task when attempting to forecast future weather patterns. 

Data can be collected continuously over time. For example, temperature readings and the 
depth of a river may be recorded on a continuous graph. Data that are measured at every 
moment of time, constitute a continuous time series. Other types of observations may be 
recorded at discrete points in time and the resulting time series is said to be discrete. In certain 
situations. the time interval between sequential observations may vary. When the pollution lev- 
els in a river are being monitored downstream from a sewage treatment plant, readings may be 
taken every half hour during the daytime and once every two hours during the night when the 
pollutant concentrations fluctuate less. This type of data set is often called an unevenly spaced 
time series. However, for many types of environmental time series, observations are available at 
equally spaced discrere time intervals such as hourly, daily, weekly, monthly or yearly time 
separations. Average weekly precipitation records may be convenient for use in forecasting 
short-term weather trends while mean yearly records may be appropriate for studying longer- 
term climatic changes. In Parts I1 to JX of this book, as well as Chapter 22, the time series 
models considered are designed for use with discrete time series that are measured at equally 
spaced time intervals. Additionally, the variable being observed at discrete times is assumed to 
be measured as a continuous variable using the real number scale. Furthermore. the type of 
model to be employed is not only a function of the inherent properties of the phenomenon that is 
being modelled but is also dependent upon the time interval under consideration. For example, 
the stationary nonseasonal models of Chapter 3 are designed for fitting to average yearly river- 
flow series while the seasonal models of Chapters 13 and 14 can be used with average monthly 
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riverflow time series. Finally, the nonparametric trend tests of Chapter 23, the regression 
analysis models of Chapter 24, and many of the graphical methods of Chapter 22 and elsewhere 
in the book, can be employed with both evenly and unevenly spaced measurements. 

The assumption, that the entries in a time series under study are given at discrete time inter- 
vals rhar are evenly spaced, has many inherent advantages. Firstly, natural time series are often 
conveniently available in this type of format. Government agencies frequently list riverflows 
both as average weekly and monthly values. Other types of time series may only be given as one 
measurement during each time interval and, therefore. it is not possible to represent each entry in 
the time series as an average value. Secondly, the equispaced discrete time assumption greatly 
simplifies the mathematical theory underlying the various types of stochastic or time series 
models that can be designed for modelling environmental time series. In fact, little research has 
been successfully completed regarding comprehensive stochastic models that can allow for the 
time interval to vary between observations. Thirdly, if the data are not given in the form of an 
equally spaced discrete time series, the observations can often be conveniently converted to this 
format Continuous time series can be easily transformed to discrete observations by lumping 
data together over a specified time interval. For instance, continuous temperature information 
may be listed as average hourly readings. Other types of data m y  be continuously accumulated 
over a period of time. For a chosen time interval, the amount accumulated over that period can 
form one value in the discrete time series. Rain gauges, for example. may be inspected weekly 
in order to record the amount of precipitation that has  accumulated. In other situations, a 
discrete time series that is recorded using a specified time interval, may be changed to a data 
sequence that is based upon a larger time sepantion between observations. For instance, avenge 
daily rivefflows can readily be converted to mean weekly, monthly or yearly records. In some 
situations, cemin types of time series that do not possess equal time separations between obser- 
vations may in fact be mated as if the time intervals were constant. For example, when the 
values in a time series represent the occurrence of some kind of event such as the successive 
yields from a batch chemical process, the amount of time that elapses between each happening 
may not be important. Consequently, the time series can be analyzed using the techniques that 
have been developed for equally spaced observations. Finally, as explained in Section 19.3 and 
elsewhere in the book, unevenly spaced series can often be converted to evenly spaced series by 
employing appropriate data filling procedures. 

In most time series studies, the interval sepmting observations is time. However, it is pos- 
sible to have other types of separations. The interval may be spatial. The depth of a lake at 
equally spaced intervals along its length may behave according to some probabilistic mechan- 
ism The contours of a mountain range in a fued  direction could perhaps be treated as a time 
series. The values for the direction of flow of a meandering river measured at equispaced points 
along the course of the river, constitute a time series based upon spatial considerations (Speight, 
1965; Ikeda and Parker, 1989). Nevertheless, in the vast majority of practical applications the 
spacing between observations in a series is due to time. Accordingly, even if the spacing 
between eneies is a result of distance, the term “time” series is still usually employed. 

If a polynomial can be fit to a known time series and future entries of the time series can be 
exactly determined, the time series is said to follow a deterministic function. When the future 
values of a time series cannot be calculated exactly and can be described solely in terms of a pro- 
bability distribution, the time series is described by a nondeterministic model which is usually 
some kind of statistical or stochastic model. Chronological observations measured from a given 
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phenomenon form a statistical time series. By knowing the historical values of the widths of the 
tree rings at a specified site, for example, the range of possible growths for the upcoming years 
can only be predicted using appropriate probabilistic statements. This text is involved with 
modelling natural phenomena which evolve with time according to a probabilistic shuccuTp. 

2.3 STOCHASTIC PROCESS 

For natural phenomena it is impossible to predict deterministically what will occur in the 
future. For instance, meteorologists never state that there will be exactly 3.00 mm of rain 
tomorrow. However, once an event, such as tomorrow's rainfall, has occurred, then that value of 
the precipitation time series is known exactly. Nevertheless, it will continue to rain in the future 
and the sequence of all the historical precipitation records is only one realization of what could 
have occurred and also of what could possibly happen. Precipitation is an example of a statisti- 
cal phenomenon that evolves in time according to probabilistic laws. A mathematical expression 
which describes the probability structure of the time series that was observed due to the 
phenomenon, is referred to as a stochastic process. The sequence of historical observations is in 
fact a sample realization of the stochastic process that produced it. 

In Table 1.4.1 within Section 1.4.3, stochastic models are classified according to the cri- 
teria of discrete and continuous time as well as discrete and continuous state space. As pointed 
out in Section 1.4.3, this book deals with time series models which constitute a special class of 
stochastic models for which the time is discrete and the possible values or state space of the vari- 
ables being measured are continuous. Some well known books on stochastic processes include 
contributions by Cox and Miller (1965) referenced in Section 1.4.3, Parzen (1962), Ross (1983) 
and Papoulis (1984). Representative books on time series analysis are referred to in Section 
1.6.3. 

In a practical application, a time series model is fitted to a given series in order to calibrate 
the parameters of the model or stochastic process. The procedure of fitting a time series or sto- 
chastic model to the time series for use in applications is called time series analysis. One objec- 
tive of time series analysis is to make inferences regarding the basic features of the stochastic 
process from the information contained in the historical time series. This can be accomplished 
by developing a mathematical model which possesses the same key statistical properties as the 
generating mechanism of the stochastic process, when the model is fit to the given time series. 
The fitted model can then be used for various applications such as forecasting and simulation. 
The families of stochastic models considered in this text constitute classes of processes that an 
amenable for modelling water resources and other natural time series. 

In Part III, a linear nonseasonal model is designed for modelling the average annual flows 
of the St. Lawrence River at Ogdensburg. New York. U.S.A.. from 1860 to 1957. 'Ihe average 
flows an calculated in m3/s for the water year from October 1 of one year to September 30 of the 
following year and were obtained from a paper by Yevjevich (1963). Figure 2.3.1 shows a plot 
of the 97 observations. As explained in Chapter 9, the model which is fitted to the flows can be 
used to generate or simulate other possible sequences of the flows. For instance, Figures 2.3.2 
and 2.3.3 display two generated sequences from the fitted model. Notice that the synthetic time 
series shown in these two figures differ from each other and are also not the same as the histori- 
cal series in Figure 2.3.1. However, within the confines of the fitted model the generated series 
do possess the same overall statistical characteristics of the historical data. In general, an ensem- 
ble of data sequences could be generated to portray a set of possible realizations from the 
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population of time series that are defined by the generating stochastic process. 
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Figure 2.3.1. Annual flows of the St. Lawrence River at 
Ogdensburg. New York. 
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Figure 2.3.2. First simulated squence of flows for the St. Lawrence River 
at Ogdensburg, New York. 
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Figure 2.3.3. Second simulated sequence of flows for the St. Lawrence River 
at Ogdensburg, New York. 

Because it is conceptually possible for more than one sequence of values to occur over a 
specified time span, a stochastic process can theoretically be represented by a random variable at 
each point in time. Each random variable possesses its own marginal probability distribution 
while joint probability distributions describe the probability characteristics of more than one ran- 
dom variable. In order to simplify the mathematical theory underlying a stochastic process. it is 
often assumed that the stochastic process is stationary. 

2.4 STATIONARITY 

2.4.1 General Discussion 

Srutionariry of a stochastic process can be qualitatively interpreted as a form of statistical 
equilibrium. Therefore, the statistical properties of the process are not a function of time. For 
example, except for inherent stochastic fluctuations, stationary stochastic models are usually 
designed such that the mean level and variance are independent of time. Besides reducing the 
mathematical complexity of a stochastic model, the stationarity assumption may reflect reality. 
For instance, if a natural river basin has not been subjected to any major land use changes such 
as urbanization and cultivation, it may be reasonable to assume that a stationary stochastic model 



68 Chapter 2 

can be fitted to the time series of historical average annual rivefflows. Consequently, this infers 
that the stochastic properties of the complex physical mechanism that produces the observed 
rivefflows, can be represented mathematically by a stationary stochastic process. 

Stationarity is analogous to the concept of isotropy within the field of physics. In order to 
be able to derive physical laws that are deterministic, it is often assumed that the physical pro- 
perties of a substance such as conductivity and elasticity, are the same regardless of the direction 
or location of measurement. For example, when studying the conductive properties of an elecm- 
cal transmission line, it is reasonable to consider the wire to have uniform cross-sectional area 
and constant density of copper along its length. Likewise, in stochastic modelling, the statistical 
properties of a process are invariant with time if the process is stationary. 

In certain situations, the statistical characteristics of a process are a function of time. Water 
demand tends to increase over the years as metropolitan areas grow in size and the affluence of 
the individual citizen expands. The average carbon dioxide content of the atmosphere may 
increase with time due to complex natural processes and industrial activities. To model an 
observed time series that possesses nonstationarity, a common procedure is to first remove the 
nonstationarity by invoking a suitable transformation and then to fit a stationary stochastic 
model to the transformed sequence. For instance, as explained in Section 4.3.1, one method to 
remove nonstationarity is to difference the given data before determining an appropriate station- 
ary model. Therefore, even when modelling nonstationary data, the mathematical results that are 
available for describing stationary processes, are often required. 

The idea of stationarity is a mathematical construct that was created to simplify the theoret- 
ical and practical development of stochastic models. Even the concept of a stochastic process 
was adopted for mathematical convenience. For a particular geophysical or other type of natural 
phenomenon, the only thing that is actually known is one unique historical series. An ensemble 
of possible time series does not exist because the clocks of nature cannot be turned back in order 
to produce more possible time series. Consequently, Klemes (1974, p. 676) maintains that it is 
an exercise in futility to argue on mathematical grounds about the stationarity or nonstationarity 
of a specific geophysical series. Rather. the question of whether or not a process is stationary is 
probably a philosophical one and is based upon an understanding of the system being studied. 

Some researchers believe that natural processes are inherently nonstationary and therefore 
the greater the time span of the historical series, the greater is the probability that the series will 
exhibit statistical characteristics which change with time. However, for relatively short time 
spans it may be feasible to approximately model the given data sequence using a stationary sto- 
chastic model. Nevertheless, the reverse position may seem just as plausible to other scientists. 
Apparent nonstationarity in a given time series may constitute only a local fluctuation of a pro- 
cess that is in fact stationary on a longer time scale. 

Within this textbook, the question of stationary or irs antipode, is based upon practical 
conriderutionr. When dealing with yearly hydrological and other kinds of natural time series of 
moderate time spans, it is often reasonable to assume that the process is approximately stationary 
(Yevjevich, 1972a,b). For example. even though the climate may change slowly over thousands 
of years, within the time span of a few hundred years the changes in hydrologic time series may 
be relatively small and therefore these series can be considered to be more or less stationary. If 
the underlying modelling assumptions are satisfied when a stationary stochastic model is fitted 
to a nonseasonal series, then these facts validate the assumption of stationarity. When 
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considering average monthly riverflows, the individual monthly averages may have constant 
mean values but the means may vary from month to month. Therefore, as explained in Chapters 
13 and 14, rime series models are employed that reflect the stationarity properties within a given 
month but recognize the nonstationarity characteristics across all of the months. In other situa- 
tions, the= may be a physical reason for a process to undergo a change in mean level. For exam- 
ple, in 1961 a forest fire in Newfoundland, Canada, devastated the Pipers Hole River basin. In 
Section 19.5.4, an intervention model is used to model the monthly flows of the Pipers Hole 
River before and after the fire. The intervention model describes the manner in which the river- 
flows return to their former patterns as the natural vegetation slowly reverts, over the years, to its 
condition prior to the fire. 

2.4.2 Types of Stationarity 
As mentioned previously, the historical time series can be thought of as one realization of 

the underlying stochastic process that generated it. Consequently, a stochastic process can be 
represented by a random variable at each point in time. When the joint distribution of any possi- 
ble set of random variables from the process is unaffected by shifting the set backwards or for- 
wards in time (i.e., the joint distribution is time independent), then the stochastic process is said 
to possess strong (or strict) stationarity. 

In practice, the assumption of strong stationarity is not always necessary and a weaker form 
of stationarity can be assumed. When the statistical moments of the given time series up to order 
k depend only on time differences and not upon the time of occurrence of the data being used to 
estimate the moments, the process has weak sfutionarity of order k .  For example, if the stochas- 
tic process can be described by its mean, variance and autocorrelation function (ACF) (see Sec- 
tion 2.5.2 for the definition of the ACF), then it has second-order starionarify. This second-order 
stationarity may also be referred to as covariance stationarity and all of the stationary processes 
discussed in this text are covariance stationary. Some important statistics which are used in con- 
junction with covariance stationary processes, are now defined. 

2.5 STATISTICAL DEFINITIONS 
In this section, some basic definitions are presented that are especially useful in the time 

series analysis. Readers who have forgotten some of the basic ideas in probability and statistics 
are encouraged to refresh their memories by referring to some introductory books such as the 
ones by Ross (1987), Kalbfleisch (1985). Snedecor and Cochran (1980). Kempthome and Folks 
(1971) and Guttman et al. (1971) as well as statistical hydrology books by Writers including 
McCuen and Snyder (1986), Haan (1977) and Yevjevich (1972a). Moreover, a handbook on 
statistics is provided by Sachs (1984) while Kotz and Johnson (1988) are editors of a 
comprehensive encyclopedia on statistics. 

2.5.1 Mean and Variance 
Let z,,zz. * * jN, be a time series of N values that are observed at equispaced time inter- 

vals. The theoretical mean p = E[z,]  of the process can be estimated from the sample realization 
by using the equation 



70 

- l N  
2 = -p, 

1=1 

Chapter 2 

[2.5.1] 

The amount of spread of a process about its mean p is related to its theoretical variance 
0,’ = E [ ( q  - p)*]. This variance can be estimated from the given time series by employing the 
equation 

[2.5.2] 

2.53 Autocovariance and Autocorrelation 

The covariance between zI and a value zl& which is k time lags removed from zI, is 
theoretically defined in terms of the autocovariance at lag k given by 

7k = cov[z~,z,+kl = E [ ( z ,  - p)(zi+k - p)] [2.5.3] 

When k 0 ,  the autocovariance is the variance and consequently yo = a:. 

A normalized quantity that is more convenient to deal with than yk, is the theoretical aufo- 

correlation comcient which is defined at lag k as 

[2.5.4] 

Because of the form of [2.5.4], the autocorrelation coefficient is dimensionless and, therefore, 
independent of the scale of measurement. Furthermore, the possible values of P k  range from -1 
to 1, where pk has a magnitude of unity at lag zero. 

Jenkins and Watts (1968, p. 146) refer to the autocovariance, yk, as the theoretical aufoco- 

variance function while the autocorrelation coefficient, p k ,  is called the theoretical aufocorrelu- 

fionfuncrion (ACF). Although the ACF is also commonly referred to as the autocorrelation coef- 
ficient or serial correlation coeficienf, in this book the terminology ACF is employed. For 
interpretation purposes, it is often useful to plot the ACF against lag k. Because the ACF is sym- 
metric about lag zero, it is only necessary to plot P k  for positive lags from lag one onwards. 

Autocovariance and Autocorrelation Matrices 

Let the N historical observations be contained in the vector 

ZT = ( 2 1 J 2 ,  . . . .ZN) 

r, = E U Z  - P)(Z - P ~ I  

The autocovariance rnafrix for a stationary process of N successive observations is defined by 

where p is a vector of dimension Nxl which contains N identical entries for the theoretical mean 
level p. In expanded form, the autocovariance matrix is a doubly symmetric matrix and is writ- 
ten as 
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The autocorrelation m a r k  is defined by 

[2.5.5] 

[2.5.6] 

For the random variables, Z , J , - ~ ,  . . . J , - ~ + ~ ,  consider any linear function given by 

Li = l l ( z ,  - p) + 12(21-1 - p) + . ' ' + l N ( z i 4 + 1  - 
By letting I be the vector IT = ( l I , l 2 ,  . . * J N ) ,  the linear function can be economically written as 
L, = IT(z - p). For a stationary process, the covariance function is symmetric about lag zero and 
hence cov[zizj] = ylj-iI. Consequently, the variance of L, is 

vor[L,] = cov[L,L,] = E[L,L,T] = E[IT(z - p)p(z - p)]T]=E[lT(z - p)(z - pfl] 
N N  

= ITE[ (~  - p)(z - ~ ) T I I  = lTrNl = c Ciiijylj-il 
i = l j = l  

If the 1 ' s  are not all zero and the series is nondeterministic, then var[L,] is strictly greater than 
zero and hence the quadratic form in the above equation is positive definite. Therefore, it fol- 
lows that the autocovariance and autocorrelation matrices are positive definite for any stationary 
process (Box and Jenkins, 1976, p. 29). Consequently, the determinant and all the principal 
minors of these matrices must be greater than zero. 

When the probability distribution associated with a stochastic process is a multivariate nor- 
mal distribution, then the process is said to be a normal or a Gaussian process. Because the mul- 
tivariate normal distribution is completely characterized in terms of the moments of first and 
second order, the presence of a mean and autocovariance matrix rN for d l  N implies that the 
process possesses strict stationarity. In addition, when the process is Gaussian, the ACF com- 
pletely characterizes all of the dependence in the series. 

2.53 Short and Long Memory Processes 

For a known stochastic process. it is possible to determine the theoretical autocovariance. 
yk, or equivalently the theoretical ACF, P k .  In Chapter 3, for example, theoretical ACF's are 
derived for different kinds of stationary autoregressive-moving average (ARMA) processes. 
while in Section 10.4 the theoretical ACF is presented for a fractional Gaussian noise (FGN) pro- 
cess. When the theoretical ACF is swnmable it must satisfy (Brillinger. 1975) 
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[2.5.7] 

where M stands for memory. Essentially, a covariance stationary process is said to possess a 
short memory or long memory according to whether or not the theoretical ACF is summable. For 
more precise defmitions of short and long memory, the reader can refer to Cox (1991). Exam- 
ples of short memory processes are the stationary ARMA processes in Chapter 3 whereas the 
FGN and fractional ARMA (FARMA) processes of Chapters 10 and 1 1 ,  respectively. possess 
long memory for specified ranges of certain model parameters. The importance of both long and 
shon memory processes for modelling annual hydrological time series is exemplified by the 
study of the “Hurst phenomenon” in Chapter 10. 

2.5.4 The Sample Autocovariance and Autocorrelation Functions 
In practical applications, the autocovariance function and the ACF are estimated from the 

known time series. Jenkins and Watts (1968) have studied various procedures for estimating the 
autocovariance function from the given sample of data. It is concluded that the most appropriate 
sample estimate of yk, the autocovarimce at lag k, is 

1 N - k  

1=1 

ck = - ( Z I  - a ( z , + k  - 8 

The estimated or sample ACF for kth lag autocorrelation P k  is 

[2.5.8] 

(2.5.91 

To obtain the sample outocovariance matrix, one substitutes C k  from [2.5.8] for - f k ,  

k =0,1, . . . ,N- l ,  into [2.5.5]. Using the divisor N in [2.5.8] instead of N-k insures that the 
sample autocovariance matrix is positive definite (McLeod and Jimenez, 1984). Because the 
sample autocovariance matrix is positive definite for a stationary process, this property also 
holds for the sample autocovariance matrix as well as the sample ACF matrix. 

As explained for the case of ARMA models in Chapters 3 and 5 ,  the sample ACF is useful 
for identifying what type of time series model to fit to a given time series of length N. Because 
the ACF is symmetric about lag zero, it is only required to plot the sample ACF for positive lags 
except for lag zero. to a maximum lag of about N14. To determine which values of the estimated 
ACF are significantly different from zero, confidence limits should also be included on the 
graph. This requires a knowledge of the variance of the sample ACF. r,. 

For short-memory processes, the approximare vorionce for rk is given by Bartlen (1946) as 

[ 2.5.101 

The above equation can be greatly simplified if it is known that pi  is zero beyond lag q. In par- 
ticular, the variance of rk after lag q is derived from [ 2.5.101 as 
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for k>9 [2.5.11] 

When a normal process is uncorrelated and P k  = 0 for k > 0, the variance of rk for k > 0 is 
1 
N 

approximately - from [2.5.11]. Using simulation experiments, Cox (1966) demonstrated that 

when rl is calculated for a sequence of uncorrclated samples, the sampling distribution of rl is 
very stable under changes of distribution and the asymptotic normal form of the sampling dism-  
bution is a reasonable approximation even in samples as small as ten. However, for correlated 
data larger samples an required in order for [2.5.11] to be valid. 

When using [2.5.11] in practice, the first step is to substitute rk for pk(k = 12.. * .,q) into 
the equation if p k  is assumed to be zero after lag q. Then, the square root of the estimated vari- 
ance for rk can be calculated to determine the large-lag estimated standard deviation. An 

estimated standard deviation, such as the one just described, is commonly r e f e d  to as a stun- 
durd error (SE). Moreover, because the distribution of rk is approximately normal, appropriate 
confidence limits can be established. For instance, to obtain the 95% confidence interval (or 
equivalently the 5% significance interval) at a given lag, plot 1.96 times the large-lag SE above 
and below the axis. When determining the sample ACF, one has the option of either estimating 
the mean of the input series when employing [2.5.9] to calculate the sample ACF or else assum- 
ing the mean to be zero. If one is examining the sample ACF of the given series, the mean 
should be estimated for use in [2.5.9]. If it is found that the data are not stationary, the nonsta- 
tionary can sometimes be removed by an operation called differencing (see Section 4.3.1). The 
mean of series that remains after differencing is usually zero (refer to [4.3.21) and, consequently, 
when estimating the ACF for such a series the mean can be set equal to zero. If it is suspected 
that there is a deterministic trend component contained in the data, the mean of the differenced 
series should be removed when estimating the ACF for the differenced series (see Section 4.6). 
Finally, the mean is assumed to be zero for the sequence of residuals that can be estimated when 
a linear time series model is fitted to a specified data set. Therefore, when calculating the resi- 
dual ACF, a mean of zero is employed (see Section 7.3). 

Average annual temperature data an available in degrees Celsius for the English Midlands 
from 1813-1912 (Manley, 1953, pp. 225-260). Equations [2.5.8] and [2.5.9] are employed to 
calculate rk while the 95% confidence limits are obtained using [2.5.11] if it is asSUmcd that P k  

is zero after lag 9. Figure 2.5.1 is a plot of the estimated ACF for the temperature data. Notice 
that there are rather large values of the ACF at lags 1 ,  2 and 15. Because the data are nonsea- 
sonal, the magnitude of the sample ACF at lag 15 could be due to chance. When p k  is assumed 
to be zero after lag 2, the 95% confidence limits of the sample ACF for the temperature data are 
as shown in Figure 2.5.2. 

The theoretical ACF can also be plotted for the temperature data. After fitting a proper sta- 
tionary ARMA model to these data (see Section 3.3.2 and Part ID), the known parameter esti- 
mates can be utilized to calculate the theoretical ACF (ste Sections 3.3.2 and 3.4.2. and Appen- 
dix A3.2 for theoretical descriptions). The theoretical ACF for the temperahm data is displayed 
in Figure 2.5.3. Notice that the plots given in Figures 2.5.2 and 2.5.3 an very similar. As is 
explained in Chapter 10, when an appropriate time series model is properly fitted to a given data 
set, the fitted model will preserve the important historical statistics such as the sample ACF at 
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Figure 2.5.3. Theoretical ACF for the model fitted to the temperature 
data from the English Midlands. 
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Figure 2.5.4. Sample ACF and 95% confidence limits for the average 
annual flows of the Rhine River at Basle, Switzerland. 
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different lags. It is crucial that stochastic models that are used in practice possess a theoretical 
ACF that is close to the sample ACF, especially at lower lags. 

The observations in many yearly hydrological data are often uncorrelated. Consider the 
average annual flows of the Rhine River in m3/s at Bask, Switzerland. These flows are given 
from 1837 to 1957 in a paper by Yevjevich (1963). As shown by the sample ACF in Figure 
2.5.4, the Rhine flows appear to be uncorrelated except for a value of lag 11 which could be due 
to chance alone. The 95% confidences limits are calculated using [2.5.11], under the assumption 
that pk is zero for all nonzero lags. 

The plot of the theoretical ACF of the Rhine flows would be exactly zero at all nonzero 
lags. The observations are, therefore, uncorrelated and are called white noise (see discussion on 
spectral analysis in Section 2.6 for a definition of white noise). If the time series values are 
uncomlated and follow a multivariate normal distribution, the white noise property implies 
independence. When the observations are not normal, then lack of correlation does not neces- 
sarily infer independence. However, independence always means that the observations are 
uncorrelated. 

Some care must be taken when interpreting a graph of the sample ACF. Bartlett (1946) has 
derived formulae for approximately calculating the covariances between two estimates of pL at 
different lags. For example, the large lag approximation for the covariance between rk and rk+i 

assuming pi = 0 for j 2 k is 

[ 2.5.121 

An examination of [2.5.12] reveals that large correlations can exist between neighbouring values 
of r, and can cause spurious patterns to appear in the plots of the sample ACF. 

2.55 Ergodicity Conditions 
A desirable property of an estimator is that as the sample size increases the estimator con- 

verges with probability one to the population parameter being estimated. An estimator possess- 
ing this property is called a consistent estimator. To estimate the mean, variance and ACF for a 
single time series, formulae are presented in [2.5.1], [2.5.2] and r2.5.91, respectively. In order 
for these estimators to be consistent, the stochastic process must possess what is called ergodi- 
city. Another way to state this is that an ensemble statistic, such as the mean, across a l l  possible 
realizations of the process at each point in time, is the same as the sample statistic for the single 
time series of observations. For a detailed mathemtical description of ergodicity, the reader 
may wish to refer to advanced books in stochastic processes [see for example Hannan (1970, p. 
201), Parzen (1962, pp. 72-76), and Papoulis (1984, pp. 245-254)]. 

For a process, z,, to be mean-ergodic and the sample mean i in [2.5.1] constitute a con- 
sistent estimator for the theoretical mean p, a necessary and sufficient condition is 

lim var(iN) = 0 
N+ 

[ 2.5.131 

where 5 ,  is the sample mean of a series having N observations. Sufficient conditions for mean- 
ergodocity are: 
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[2.5.14] 

or cov(z,,TN)N)--)o as N -  or yk+o  as k- 

A process represented by z, is said to be Gaussian if any linear combination of the process 
is normally distributed. When the process is Gaussian, a sufficient condition for ergodicity of 
the autocovariance function is the theoretical autocovariances in [2.5.8] satisfy 

l N  
lim - ~ 7 : = 0  
N+ N k = O  

[2.5.15] 

From the above formulae, it can be Seen that ergodicity implies that the autocovariance or auto- 
cornlation structun of the time series must be such that the present does not depend “too 
strongly” on the past. All stationary time series models that are used in practice have ergodic 
properties. 

2.6 SPECTRAL ANALYSIS 

The spechun is the Fourier transform of the autocovariance function (Jenkins and Watts, 
1968) and, therefore, provides no new information about the data that is not alrtady contained in 
the autocovariance function or equivalently the ACF. However, the spectrum does provide a dif- 
ferent interpretation of the statistical properties of the time series since it gives the distribution of 
the variance of the series with frequency. As shown by Jenkins and Watts (1968). the spectrum 
can be plotted against frequency in the range from 0 to 1/2. Therefore, when studying the spec- 
trum one is said to be working in thefrequency domain while investigating the autocovariance 
function or ACF is referred to as studying in the time domain. For the topics covered in this text, 
it is usually most convenient to carry out time series studies in the h e  domain. Nevertheless, 
occasionally a spectral analysis can furnish valuable insight in certain situations. In Section 3.5, 
the theoretical spectra of ARMA processes are presented. The cumulative periodogram, which is 
closely related to the cumulative spectrum, can be utilized at the identification and diagnostic 
check stages of model development (see Part m). Due to its usefulness in forthcoming topics 
within the book, the cumulative periodogram is now described. 

Given a stationary time series 21.22. * .  . JN, the periodogram function, l ( f j ) ,  is 

[2.6.1] 

where f, = is the jth frequency j=1,2, . . . ,N’, N’=[N/2] (take integer portion of N / 2 ) ,  1 . 1  

denotes the magnitude and i = G .  In essence. lvj) measures the strength of the relationship 
between the data sequence zf and a sinusoid with frequency f j  where O ~ f ~ S 0 . 5 .  

N 



78 Chapter 2 

The normalized cumulative periodogram is defined by 

[2.6.2] 

where 6; is the estimated variance defined in [2.5.2]. The normalized cumulative periodogram 

is henceforth simply referred to as the cumulative periodogram. 
When estimating the cumulative periodogram, sine and cosine terms are required in the 

summation components in [2.6.1]. To economize on computer usage, the sum-of-angles method 
can be used to recursively calculate the sine and cosine terms by employing (Robinson, 1967, p. 
64; Otnes and Enochson, 1972. p. 139) 

cos 2nfj(t+l) = acos 2nfjr - bsin 2nfjt 

sin 2nfj(t+1) = bcos 2nfjt + asin 2nfjt 

[2.6.3] 

[2.6.4] 

where 

a = cos 2nfj and b =sin 2nfj 

Utilization of the above relationships does not require any additional computer stonge and is 
much faster than using a standard library function to evaluate repeatedly the sine and cosine 
functions. 

When C(fk) is plotted against f k ,  the ordinate CCr,) ranges from 0 to 1 while the abscissa 
fk goes from 0 to 0.5. Note that 

K 
X I  (f j )=NG: 
j= 1 

Therefore, if the series under consideration were uncorrelated or white noise, then a plot of the 
cumulative periodogram would consist of a straight line joining (0,O) and (0.5,l). The term 
white noise is employed for an uncorrelated series, since the spectrum of such a series would be 
evenly distributed over frequency. This is analogous to white light which consists of electro- 
magnetic contributions from all of the visible light frequencies. 

In order to use the cumulative periodogram to test for white noise, confidence limits for 
white noise must be drawn on the cumulative periodogram plot parallel to the line from (0,O) to 
(0.5.1). For an uncorrelated series. these limits would be crossed a proportion E of the time. The 

limits rn drawn at vertical distances f.- above and below the theoretical white noise 4 

line. where lyl means to take only the integer portion of the number inside the brackets. 

Some approximate values for KE are listed in Table 2.6.1. 
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Table 2.6.1. Parameters for calculating confidence limits 
for the cumulative periodogram 

Unlike spectral estimation, the cumulative periodogram white noise test is useful even 
when only a small sample (at least 50) is used. The cumulative periodogram for the average 
annual flows of the Rhine River at Basle, Switzerland from 1937-1957 is given in Figure 2.6.1. 
As shown in this figure, the values for cumulative periodogram for the Rhine flows do not devi- 
ate significantly from the white noise line and fail to cross the 95% confidence limits. However, 
as illustrated by the cumulative periodogram in Figure 2.6.2, the average annual temperature data 
for the English Midlands from 1813-1912 are not white noise since the cumulative periodogram 
goes outside of the 95% confidence limits. 

Besides being employed to test for whiteness of a given time series or perhaps the residuals 
of a model fitted to a data set, the cumulate periodogram has other uses. It may be used to detect 
hidden periodicities in a data sequence or to confirm the presence of suspected periodicities. For 
instance, annual sunspot numbers are available from 1700 to 1960 (Waldmeier, 1961) and the 
cumulative periodogram for the series is shown in Figure 2.6.3. Granger (1957) found that the 
periodicity of sunspot data follows a uniform dismbution with a mean of about 11 years. This 
fact is confirmed by the dramatic jump in the cumulative periodogram where it cuts through the 

1 
95% confidence limits at a frequency of about - = 0.09. 

11 
Monthly riveflow data follow a seasonal cycle due to the yearly rotation of the earth about 

the sun. Average monthly riverflow data are available in m3/s for the Saugeen River at Walker- 
ton, Ontario, Canada, from January 1915 until December 1976 (Environment Canada, 1977) 
Besides the presence of a sinusoidal or cyclic pattern in a plot of the series against time, the 
behaviour of the cumulative periodogram can also be examined to detect seasonality. Notice in 
Figure 2.6.4 for the cumulative periodogram of the Saugeen River flows, that the cumulative 
periodogram cuts the 95% confidence limits at a frequency of 1/12 and spikes occur at other fre- 
quencies which are integer multiples of 1/12. Thus, seasonality is easily detected by the cumula- 
tive periodogram. In other instances, the cumulative periodogram may reveal that seasonality is 
still present in the residuals of a seasonal model that is fit to the data. This could mean that more 
seasonal parameters should be incorporated into the model to cause the residuals to be white 
noise (see Part VI). 

2.7 LINEAR STOCHASTIC MODELS 

This text is concerned mainly with linear stochastic models for fitting to stationary time 
series (see, for example, Chapter 3). When dealing with nonstationary data, stationary linear sto- 
chastic models can also be employed. By utilizing a suitable transformation, nonstationarity 
(such as trends, seasonality and variances changes over time) is first removed and then a linear 
stochastic model is fitted to the resulting stationary time series (see, for instance, Section 4.3). 
The usefulness and importance of linear stochastic models for modelling stationary time series is 
emphasized by the Wold decomposition theorem. 



80 Chapter 2 

F E Q  U f  N C Y 

Figure 2.6.1. Cumulative penodognm and 95% confidence limits for the 
annual Mine  River flows at Basle, Switzerland. 

FEQUENCY 

Figure 2.6.2. Cumulative pendogram and 95% confidence limits for the 
annual temperature data from the English Midlands. 
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Figure 2.6.3. Cumulative periodognrn and 95% confidence limits for the 
annual sunspot numbers from 1700 to 1960. 

Figure 2.6.4. Cumulative penodognm and 95% confidence limits for the 
average monthly flows of the Saugeen River. 
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Wold (1954) proved that any stationary process, z,, can be represented as the sum of a 
deterministic component and an uncorrelated purely nondeterministic component. The process 
for I, at time t can be written as 

[2.7.1] 

where t is discrete time that occurs at equispaced time intervals, p, is the deterministic com- 
ponent, a, is white noise (also called disturbance, random shock or innovation) at time t, and yfi 

is the ith moving average parameter for which Cv,? < = for stationarity. The white noise, a,. 

has the properties 

.. 
i=O 

E (a,) = 0 

2 var(a,) = 0, 

and 

cov(a, ,us) = 0, t f S  

The deterministic component, p,, can be a function of time or may be a constant such as the 
mean level p of a process. The terms other than p, on the right hand side of [2.7.1] form what is 
called an infinite moving average (MA) process (see Section 3.4.3). 

When a time series represented by z, is Gaussian, the a,’s in [2.7.1] are independent and 
normally distributed with a mean of zero and a variance of a,‘. Consequently, the Wold decom- 
position theorem justifies the use of linear stochastic models for fitting to Gaussian stationary 
time series. In Part III, it is shown that many types of annual geophysical time series appear to 
be approximately Gaussian and stationary, and hence can be readily modelled using linear sto- 
chastic models. Furthermore, when the data are not normally distributed and perhaps also non- 
linear, a Box-Cox transformation (Box and Cox, 1964) can be invoked to cause the transformed 
data to be approximately Gaussian and linear. Following this, a linear stochastic model can be 
fitted to the transformed series (see Section 3.4.5). 

As is discussed in Section 3.4. the ARMA family of linear time series models constitutes a 
parsimonious representation of the infinite MA component that is given in [2.7.1]. The infinite 
number of MA parameters can be economically represented by a finite number (usually not more 
than four) of model parameters. Thus, the ARMA family of linear stochastic models are of 
utmost importance in time series modelling. 

There is a close analogy between the Wold decomposition theorem and an important pro- 
perty from multiple linear regression. In the linear regression of the dependent variable y on the 
m independent variables xIj2, ...jm. the error is uncorrelated with x 1 j 2 ,  ...j,,,. For a stationary 
time series regression of z, on its infinite past Z,-~,Z,-~, . . . , the a, errors are uncorrelated with 
Z , - ~ , Z , - ~  ,... . Additionally. the a,’s are white noise. 

As pointed out by Yule (1927), the a, disturbances are fundamentally different from the 
superimposed type of error in other types of statistical models. This is because the a, sequence 
in [2.7.1] affects not only the current observation, I,, but the future values, Z~+~,Z,+~, . . * , as well. 
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Consequently. the system is driven by the u, innovations. 

2.8 CONCLUSIONS 
A covariance stationary time series can often be usefully described by its mean. variance 

and sample ACF or. equivalently, by its mean, variance and spectrum. For the types of applica- 
tions considered in this book, it is usually most convenient to work in the time domain rather 
than the frequency domain. However, the cumulative periodogram is one of the concepts from 
spectral analysis that is used in some applications presented in the book. 

Historically, the mean, variance and ACF have formed the foundation stones for the con- 
struction of covariance stationary models. The ARMA family of stationary models and other 
related processes that arc discussed in this text possess covariance stationarity. If normality is 
assumed, second-order stationarity implies smct stationarity. 

Because of the Wold decomposition theorem, stationary linear stochastic models possess 
the flexibility to model a wide range of natural time series. Nevertheless, as explained by 
authors such as Tong (1983) and Tong et al. (1985), nonlinear models can be useful in certain 
situations. In addition to linearity, models can also be classified according to properties of the 
theoretical ACF. Accordingly, both short (see Chapter 3) and long (refer to Part V) memory 
models are considered in the text and the relative usefulness of these classes of models is exam- 
ined. 

When employing a specified type of stochastic model to describe a natural time series, 
statistics other than the mean, variance and ACF may be i m p o m t .  For instance, when using a 
riverflow model for simulation studies in the design of a reservoir, statistics related to cumula- 
tive sums are important. This is because the storage in a reservoir is a function of the cumulative 
inflows less the outflows released by the dam. In particular, the importance of the rescaled 
adjusted range and Hurst coefficient in reservoir design, is discussed in Chapter 10. When con- 
sidering situations where droughts or floods are prevalent, extreme value statistics should be 
entertained. Thus, practical engineering requirements necessitate the consideration of statistics 
that are directly related to the physical problem being studied. 

PROBLEMS 

2.1 In Section 2.2, a time series is defined. Based on your own experiences. write down three 
examples of continuous time series, equally spaced discrete time series, and unequally 
spaced discrete time series for which the variables being measured arc continuous random 
variables. 

2.2 A qualitative defmition for a stochastic process is presented in Section 2.3. By referring to 
a book on stochastic processes, such as one of those referenced in Section 1.6.3, Write down 
a formal mathematical definition for a stochastic process. 

2.3 Stochastic processes are discussed in Section 2.3. Additionally, in Table 1.4.1 stochastic 
models are categorized according to the criteria of time (discrete and continuous) and state 
space (discrete and continuous). By utilizing books referenced in Sections 1.4.3 and 1.6.3, 
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write down the names of three different kinds of stochastic models for each of the four clas- 
sifications given in Table 1.4.1. 

2.4 Strong and weak stationarity are discussed in Section 2.4.2. By referring to an appropriate 
book on stochastic processes, Write down precise mathematical definitions for strong sta- 
tionarity, weak stationarity of order k and covariance stationarity. 

2.5 In Section 2.5. some basic statistical definitions arc given. As a review of some other ideas 
for probability and statistics write down the definitions for a random variable, probability 
distribution function and cumulative distribution function. What is the exact definition for 
a Gaussian or normal probability distribution function? What is the central limit theorem 
and the weak law of large numbers? If you have forgotten some of the basic concepts in 
probability and statistics. you may wish to refer to an introductory text on probability and 
statistics to refresh your memory. 

2.6 Ergodicity is briefly explained in Section 2.5.5. By refemng to an appropriate book on sto- 
chastic processes or time series analysis, such as the one by P m e n  (1962) or Hannan 
(1970). give a more detailed explanation of ergodicity than that presented in Section 2.5.5. 
Be sure that all variables used in any equations that you use in your presentation are clearly 
defined and explained. 

2.7 Go to the library and take a look at the book by Wold (1954). Provide further details and 
insights about Wold’s decomposition theorem which go beyond the explanation given in 
Section 2.7. 
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LINEAR NONSEASONAL MODELS 

Envimmetrics is the development and application of statistical methodologies and tech- 
niques in the environmental sciences. As explained in Chapter 1 of Part I, statistical methods 
from the field of environmetrics can enhance scientific investigations of environmental problems 
and improve environmental decision maling. Of primary interest in this book is the presentation 
of useful time series models that can be employed by water resources and environmental 
engineers for studying practical problems arising in hydrology and water quality modelling. 
Chapter 2 of Part I provides definitions and explanations for some important statistical tech- 
niques and concepts that are utilized in time series modelling and environmetrics. 

The objectives of Part II of the book are to define a variety of linear time series models 
that can be applied to nonseasonal time series and to explain some of the key theoretical proper- 
ties of these models which arc required for understanding how to apply the models to actual data 
sets and to interpret the results. Chapters 3 and 4 describe linear nonseasonal models for fitting 
to stationary and nonstationary time series, respectively (see Section 2.4 for an explanation of 
stationarity and nonstationarity). 

Figure II.1 displays a graph of the annual flows of the St. Lawrence River at Ogdensburg, 
New York, from 1860 to 1957. This figure is also given as Figure 2.3.1 in Chapter 2. The plot- 
ted time series appears to be stationary since statistical properties, such as the mean and vari- 
ance, do not change over time. In addition, because there is no seasonal component, which 
would appear as some type of sinusoidal cycle in the graph, the data set is nonseasonal. The pur- 
pose of Chapter 3 is to describe three related families of linear time series models that could be 
considered for fitting to a time series like the one in Figure II. 1. In particular, the thrce sets of 
models are: 
1. AR (autoregressive) (Section 3.2). 

2. 
3. 

The AR and MA models arc in fact subsets of the general ARMA family of models. It tums out 
that the most appropriate model to fit to the yearly riverflow series of Figurc II.1 is a special 
kind of AR model (Section 3.2.2). Indetd, within Section 3.6 it is demonstrated that there is 
sound physical justifications for fitting ARMA models to yearly riverflow time series. 

The values of the annual water usage for New York City from 1898 to 1970 are plotted in 
Figure II.2 as well as Figure 4.3.8 in Chapter 4. Because the level of the series is increasing with 
time, the data are. obviously nonstationary. Moreover, no seasonal cycle is contained in the 
graph. In Chapter 4, the following family of linear nonstationary time series models is described 
for applying to a nonstationary data set like the one in Figure II.2: 

4. 

MA (moving average) (Section 3.3). and 
ARMA (autoregressivemoving average) models (Section 3.4). 

A R M A  (autoregressive integrated moving average) models. 
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Figure II.1. Annual flows in m3/s of the St. Lawrence River at 
Ogdensburg, New Yo&, from 1860 to 1957. 
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Figure n.2. Annual water usc for New York City in liars 
per capita per day from 1898 to 1970. 
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When fitting an ARIMA model to a nonstationary series, the nonstationarity is removed from the 
series using a technique called differencing. Subsequently, appropriate AR and MA parameters 
contained in the ARIMA model are estimated for the resulting stationary series formed by dif- 
ferencing the original nonstationary series. In Section 4.3.3, it is explained how one can decide 
upon the most reasonable kind of ARIMA model to fit to the annual water use series for New 
York City. 

The increasing levels of the water use series in Figure II.2 constitutes a trend in the data 
over time. Deterministic and stochastic trends arc described in Section 4.6 along with 
approaches for modelling these ty-pes of trends. In fact, the AFUMA models of Chapter 4 consti- 
tute a procedure for modelling stochastic trends. The intervention models of Part Vm provide 
an approach for modelling known deterministic trends and estimating their magnitudes. 

In summary, Part II of the book defines some flexible families of linear nonseasonal 
models for fitting to stationary (Chapter 3) and nonstationary (Chapter 4) time series. Addition- 
ally, useful theoretical properties for these models are pointed out so that a practitioner can 
decide upon or identify the most appropriate model to fit to a given time series. Part III 
describes how a user can fit the models of Part II to actual time series by following the identifi- 
cation (Chapter 5). estimation (Chapter 6), and diagnostic check (Chapter 7) stages of model 
construction. In fact, modified versions of the model building methods of Part III are employed 
with all of the kinds of time series models presented later in the book. Finally, techniques for 
forecasting and simulating using the models of Part I1 are given in Chapters 8 and 9, respec- 
tively, of Part IV. 
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STATIONARY NONSEASONAL MODELS 

3.1 INTRODUCTION 

Catain types of enviromntal records are strictly nonseasonal while in other situations it 
may be requid to consider a timc series of average annual values even if seasonal data were 
available. For example, me ring indices and mud varve thicknesses arc usually obtainable only 
in the form of yearly records, whereas mean annual riverflow, temperature and precipitation data 
can be calculated from average weekly records. Whatever the case, it is often necessary to dcal 
with nonseasonal natural time scries. 

The yearly data to be analyzed may be approximately stationary or perhaps may possess 
statistical properties which change over time. As discussed in Section 2.4.2, it is often reason- 
able to assume that hydrologic and geophysical data having a moderate time span (usually a few 
hundred years but perhaps more than lo00 years for certain time series) are more or less station- 
ary. On the other hand, an annual water demand series for a large city or the yearly economic 
growth rate of an irrigated farming region, may constitute tim series which are nonstationary 
even over a very short time interval. The present chapter deals with the theory of stationary 
linear nonseasonal models while Chapter 4 is concerned with nonstationary linear nonseasonal 
models which can be used for modelling certain types of nonstationary time series. 

Nonseasonal models can be fit to yearly records for use in various types of applications. 
For instance, when studying changes in the climate over a specified time span, it may be advan- 
tageous to analyze annual time series. Although average annual hydrological data are rarely 
available for periods greater than two hundred years, longer time series, which reflect past 
climatic conditions, can be obtained. Some time series records of tree ring indices for the 
Bristlecone pine in California are longer than 5000 ycars in length and tree ring data sets for 
Douglas fir, Ponderosa pine, Jeffrey pine and other types of evergreens are available for periods 
of time which are often much longer than 500 years (Stokes et al., 1973). 

Hurst (1951.1956) studied the statistical properties of 690 annual time series when he was 
examining the long-term storage requirements on the Nile River. This rescarch mated the need 
for a stochastic model which could statistically account for what is called the Hurstphenomenon. 
Although the restarch of Hurst and accompanying academic controversies am assessed in derail 
in Chapter 10, it should be pointed out here that the linear stationary models of this chapter do in 
fact statistically explain the Hurst phenomenon (McLeod and Hipel, 1978; Hipel and McLeod, 
1978). Consequently, stationary linear nonseasonal models are of great importance in hydrology 
and as emphasized in Chapter 10. should be employed in preference to fractional Gaussian noise 
(FGN) and other related models. Mortover, within Section 3.6 it is clearly demonstrated that 
them is sound physical justification for fitting the models of this chapter to yearly r ivdow timc 
series. 

The cumnt chapter deals with the mathematical dginirions andproperties of various types 
of stationary linear nonseasonal processes. The processes which are discussed are the AR 
(autoregressive), MA (moving average) and ARMA (autoregressive-moving average) processes. 
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For each of the foregoing pmcesses, a simple process is first considered and this is followed by 
an extension to the general case. Important mathematical properties of the various processes are 
usually explained by examining a specific case. Furthermore, it is clearly pointed out where the 
mathematical properties of the processes can be useful for desigriing a model to fit to a given 
data set. The procedure of constructing a model by following the identification, estimation and 
diagnostic check system of model development, is discussed in Chapters 5 to 7, respectively, of 
Pan m. 

The importance of abiding by &ey modelling principles (see Sections 1.3 and 5.2.4 for gen- 
eral discussions) is addressed at certain locations within this chapter. For example, in order to 
make the model as simple or parsimonious as possible, some of the model parameters can be 
constrained to zero (see Section 3.4.4). To satisfy certain underlying modelling assumptions 
regarding the model residuals, a power transformation such as a Box-Cox trunrfortnution (Box 
and Cox. 1964) can be incorporated into the model (see Section 3.4.5). 

The mathematical foundations of linear nonseasonal models form the basic building blocks 
for the more complex nonstationary, long memory, seasonal, transfer function-noise, interven- 
tion and multivariate models which arc dealt with in Chapters 4 and 11, and Parts VI to IX, 
respectively, later in the book. Consequently, a sound understanding of the models presented in 
this chapter is essential in order to be able to fully appreciate the flexibility and limitations of the 
rich array of ARMA-based models which arc available for use by engineers. In addition, the 
basic notation which is developed for the nonseasonal models is simply extended for use with 
the other classes of models described in the book. 

3.2 AUTOREGRESSIVE PROCESSES 

The AR model of this section describes how an observation directly depends upon one or 
more previous measurements plus a white noise term. This form of a time series model is intui- 
tively appealing and has been widely applied to data sets in many different fields. After describ- 
ing the simplest form of the AR model, the general AR model is defined. Additionally, the 
theoretical ACF (autocorrelation function) of an AR model is derived and the related Yule- 
Walker equations are formulated. These equations can be used for obtaining the partial auto- 
correlation function (PACF) and determining efficient moment estimates for the parameters of 
an AR model. 

3.2.1 Markov Process 

When an observation, 2,. measured at time t depends only upon the time series value at 
time t-1 plus a random shock, u,, the process describing this relationship is called an AR process 
of order 1 and is denoted as AR(1). The AFC(1) process is commonly called a Murkov process 
and is written mathematically as 

ZI - CI = h(2,-1 - P) +a,  [3.2.1] 

where p is the mean level of the process, is the nonseasonal AR parameter, u, is the white 
noise term at time t that is identically independently distributed (IID) with a mean of 0 and vari- 
ance of 0,' [i.e. IIII (0,031. 
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The af sequence is r e f e d  to as random shoe&, disturbances, innovations or white noise 

terms. After a model has been fit to a given time series and estimates have been obtained for the 
innovations, the estimates are called estimated innovations or residuuls. 

The most important assumption for the random shocks is that they arc independently distri- 
buted. This infers that the aI’s arc uncorrelated and must satisfy 

[3.2.2] 

The af’s follow the same distribution and sometimes it is convenient to assume that the random 
shocks are normally distributed. This may be appropriate for estimation purposes, forecasting 
and simulation. In addition, if normal random variables are uncorrelated then they are also 
independent. 

The difference equation in [3.2.1] can be written more economically by introducing the 
backward shifit operator B which is defined by 

Bz, = zI-1 

and 
k B zy = Z1-k 

where k is a positive integer. By using the B operator, the Markov process in [3.2.1] is 

z, - CI = $,(Bz, - ct) +a, 

or 

z, - p - $,(Bz, - P) =‘I, 

By treating B as an algebraic operator and factoring, the above equation becomes 

(1 - $ @ ) ( Z I  - cc) = a, 

where B p  = p since the mean level is a constant at all times. The previous equation can also be 
given as 

$@ )(ZI - p) = a, [3.2.3] 

where $(B)  = 1 - $ lB  is the nonseasonal AR operator or polynomial of order one. 

3.23 Autoregressive Process of Order p 

order p 1i.e. AR(p)l which is given as 
The Markov process with the single AR parameter, $1, is a special case of an AR process of 

2, - CI = $l(ZI-l  - 1) + $2(2,-2 - P) + . * . + $pP(zf-p - I4 + 01 [3.2.4] 

where Qi is the ith nonseasoMl AR pormefer. By introducing the B operator, [3.2.4] can 
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equivalently be written as 

(1 - - +$.I2 - . . * - $p%, - cc) = a, 

or 

$(B)(z,  - P) =a, [ 3.2.51 

where $ ( B )  = 1 - $,B - +$3' - . . . - +,,BP is the nonseusonal AR operator of order p. 

Stationarity 

The equation +(B)  = 0 is referred to as the characteristic equation for the process. It can be 
shown (Box and Jenkins, 1976, Ch. 3; Pagano, 1973) that a necessary and sufficient condition 
for the process to have sratwnurity is that the roots of the characteristic equation must fall out- 
side the unit circle. The unit circle is a circle of unit radius centered on the origin of a complex 
number graph where one axis is the real number component and the other axis forms the ima- 
ginary part of the complex number. 

Based upon the work of Schur (1917). Pagano (1973) presented an algorithm which can be 
used to determine whether or not all the roots of a given operator lie outside the unit circle. Con- 
sider the situation where it is necessary to ascertain if all the roots of the operator, +@), for an 
AR@) process fall outside the unit circle. The first step is to form the Schur matrix A of dimen- 
sion pxp which has (i,j)th element 

nin(i.j) 

c (+i-k-l+j-k-l - +p+l+k-i+p+l+k-j) 
k=O 

where $-k = 0 and $0 = 1. The matrix A is actually the inverse of the covariance matrix of p suc- 
cessive observations for an AR(p) process (Siddiqui, 1958). Schur (1917) demonstrated that a 
necessary and sufficient condition for the roots of + ( B )  = 0 to lie outside the unit circle is for A 
to be positive definite. Because A is positive definite whenever the covariance mamx is positive 
definite (Pagano, 1973). to demonstrate that an AR@) process is stationary it is only necessary to 
show that A is positive definite. A convenient way to do this is to calculate the Cholesky &corn- 
position of A [see Wilkinson (1965) and Healy (1968)] given by 

A = M M ~  

where M is a lower triangular matrix. If all the diagonal entries of M are positive, matrix A is 
positive definite. When there are one or more zero entries on the diagonal of M and all other 
enmes are positive, A is positive semidefinite. If during the calculation of M a diagonal location 
is encountered where a zero or positive entry cannot be calculated, the Cholesky decomposition 
docs not exist. However, when the Cholesky decomposition shows that A is positive definite, 
then the roots of $(B)  = 0 lie outside the unit circle. For the case of the + ( B )  operator, this pro- 
perty means that the process is stationary. 

From r3.2.31 the characteristic equation for the Markov process is 

(1 - +lB) = 0 

By considering B as M algebraic variable, the root of the characteristic equation is B = $[I. In 
order for 4;' to lie outside the unit circle to ens- stationarity, then I < 1. 
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The stationarity condition automatically ensures that a process can be written in terms of 
the q ' s  in what is called a pure MA process. For example, the AR(1) process in [3.2.3] can be 
expnssed as 

Z, - p = (1 - $lB)-'al r3.2.61 

= (1 + $,B + $:B2 + * . . )a, 

Because I$' I < 1 due to the stationarity condition, this infers that the infinite series (1 - $lE)-' 
will converge for IB I 5 1. The beneficial consequences caused by the mtriction upon can 
also be explained by writing [3.2.6] as 

2 3 
2, - CI = a, + $la,-' + $1 01-2 + $1 01-3 + * * . 

If I < 1. the dependence of the deviation (z, - p) upon the white noise terms decreases further 
into the past. Alternatively, if I$, I 2 1, the dependence of (zl - p) upon the white noise would be 
greater for disturbances which happened well before the more recent shocks. Of course, this 
type of interpretation would not be meaningful for stationary processes and can be avoided if the 
stationarity condition is satisfied. 

Autocorrelation Function 
In order to study the properties of the theoretical ACF for a stationary AR@) process, 

firstly multiply [3.2.4] by (Z1-k - p) to obtain 

(z1-1. - ~ ) ( Z I  - p) = $ i ( z 1 4  - p)(Zi-l - p) + h ( z I - k  - p)(zi-2 - + ' ' ' 

+ $pP(z,4 - P)(zl-p - p) + ( T I 4  - p>a, [3.2.7] 

By taking expected values of [3.2.7], the difference equation for the autocovariance function of 
the AR(p) process is 

yk=$l7k-1++2Yk-2+ ." +$p"fk-p* > O  [ 3.2.81 

The term €[(z14 - p)q] is zero for k > 0 because z14 is only a function of the disturbances up 
to time t-k and a, is uncorrelated with these shocks. To determine an expression for the theoret- 
ical ACF for the AR(p) process, divide r3.2.81 by 70 to obtain 

P k = $ I P k - l + $ $ k - 2 +  ' . '  ++ppk-p* > O  

r3.2.91 

when B operates on k instead of t .  The general solution of the difference quation in r3.2.91 is 
(Box and Jenkins, 1976. p. 55) 

P k  = A 1G: + A2G; + . . * + ApG; [3.2.10] 

where Gi',G,', * * * ,Gil, are distinct roots of the characteristic equation $(B) = 0 and the A,'s 

are constants. If a root G;' is real then IG;'I>l due to the stationarity conditions. Hence, 
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IGil<l and A,G: in [3.2.10] forms a damped exponential which geometrically decays to zero as 
k increases. Complex roots contribute a damped sine wave to the theoretical ACF in [3.2.101. 
Consequently, the theoretical ACF for a stationary AR process will consist of a combination of 
damped exponential and sine waves. 
St. Lawrence River Data: As mentioned in Section 2.5.4, when determining a model to fit to a 
given data set, it is desirable to have the theoretical ACF of the process to resemble statistically 
the sample ACF. Consider, for example, the average annual flows of the St. Lawrence River at 
Ogdensburg. New York. These flows are available from 1860 to 1957 in a report by Yevjevich 
(1963). The estimated ACF for these yearly flows is calculated using [2.5.9] and is shown in 
Figurc 3.2.1. The 95% confidence limits arc determined utilizing [2.5.11] by assuming that the 
sample ACF is not significantly different from zero after lag 0. As can be seen in Figurc 3.2.1, 
the estimated ACF has significant non-zero values at lower lags and tends to follow a dam@ 
exponential c w e .  Because the theoretical ACF of an AR process behaves in this fashion, this 
indicates that perhaps some type of model which contains an AR component should be fit to the 
St. Lawrence flows. 
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Figure 3.2.1. Sample ACF and 95% confidence limits for the average annual flows 
of the St. Lawrence River at Ogdensburg, New York. 

YuleWalker Equations 

By substituting k = 1 2 , .  . . , p ,  into [3.2.9], parameters can be expressed in terms of the 
theoretical ACF. The resulting set of linear equations are called the Yule-Walker equtiom [after 
Yule (1927) and Walker (1931)l and are given by 
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PI = 91 + hP1 + . . . +9pPp-l 

P2 = 9IP1 + $2 + . . .  +9ppPp-2 
. . .  
... r3.2.11) 
. . .  

Pp = 91Pp-1+ 92Pp-2 + * * .  + +p 

By writing the Yule-Walker equations in matrix form, the relationship for the AR parameters is 

where 

P1 

P2 

1 Pp = 

PP : I  

r3.2.121 

1 p1 P2 . .. Pp-1 

PI 1 P1 . . .  Pp-2 
. . .  
. . .  
. . .  

Pp-1 Pp-2 Pp-3 * . .  1 

To obtain Yule-Walker estimates for the AR parameters, simply replace the pt's in [3.2.12] by 
their estimates rk, k = 1,2, . . . , p ,  from [2.5.9]. The Yule-Walker estimates possess large sample 
efficiency and hence have minimum possible variances. 

By setting k = 0 in [3.2.7] and taking expectations, the expression for the variance is 

Yo = $ lY1+  $2Y2 + . . * + qPYp + 0: [3.2.13] 

where E[z,u,] = 0,' since z, is only correlated with u, due to the most recent shock a,. Upon 
dividing [3.2.13] by yo = c:, the variance of the process can be expressed as 

-2 
2 "a  

0, = 
1 - PI$l - P2$2 - . . . - Pp9p 

[3.2.14] 

Employing [3.2.13] and [2.5.8], the residual variance can be estimated using 
P ,  6: = c, - cqicj 

i=l 

In addition to the Yule-Walker estimator, other estimators are available for efficiently 
estimating the parameters of an AR model. One approach is to employ the maximum likelihood 
estimator presented in Section 6.2 and Appendix A6.1. A second procedure is to employ the 
Burg (1975) algorithm which is described by Haykin (1990, pp. 187-192). 
Markov Process: As shown earlier in this section, in order for an AR(1) process to be stationary 
- l c ~ $ ~ c l .  By setting h to qP equal to zero, equation [3.2.11] becomes 
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P I  = 91 

P2 = h P 1 =  42 
P3 = h P 2  = 9: 
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[3.2.15] 

Because of the form of [3.2.15], the theoretical ACF attenuates exponentially to zero if is 
positive but decays exponentially to zero and oscillates in sign when is negative. From Figure 
3.2.2, it can be seen that when +1 is assigned a positive value of 0.75, the theoretical ACF only 
possesses positive values which decay exponentially to zero for increasing lag. However, when 

is given a negative value such as -0.75, the theoretical ACF oscillates in sign and decays 
exponentially to zero as shown in Figure 3.2.3. The variance of an AR(1) process is obtained 
from [3.2.14] and [3.2.15] as 

[3.2.16] 

Partial Autocorrelation Function 

Because the ACF of an AR process attenuates and does not truncate at a specified lag, it 
would be advantageous to define a function which does cut off for an AR process. As explained 
in Chapter 5 ,  such a device would be useful to employ in conjunction with the sample ACF and 
other tools for identifying the type of model to fit to a given data set. 

Let $kj be the j t h  coefficient in a stationary AR process of order k so that qfi is the last 
coefficient. The Yule-Walker equations in [3.2.12] can then be equivalently written as 

[ 3.2.171 

The coefficient Qu is a function of the lag k and is called the theoretical pam'al autocorrelation 
f i c t ion  (PACF). Because of the definition of the theoretical PACF. it must be equal to zero after 
lag p for an AR@) process. Furthermore. the possible values of $fi range from - 1 to 1. 

One method for estimating the PACF is to employ the Yule-Walker equations. By replac- 
ing P k  in [3.2.17] by its estimate rk from [2.5.9], the estimates of $u, k = 1,2, ..., using Cramer's 
rule are 
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Figure 3.2.3. Theoretical ACF for a Markov Roccss with = -0.75. 
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i l l  = 

622 = 
r2-r; 

=- 1-r, 2 

etc. In order to make the estimation of the PACF computationally more economical, the recur- 
sive formulac of Durbin (1960) may be employed. However, as noted by Pagano (1972) and 
Box and Jenkins (1976), Durbin’s method is numerically unstable, especially when the process 
approaches nonstationarity (i.e.. the roots of characteristic equation are close to the unit circle). 

An alternative procedure for estimating the PACF is to utilize the algorithm devised by 
Pagano (1972). The Puguno algorirhm is numerically quite stable because it is based upon the 
Cholesky decomposition which is known to be stable (Wilkinson, 1965, pp. 231 and 244). The 
steps xquired in the Pagano algorithm for calculating the PACF up to lag p are given in Appen- 
dix A3.1. Because the algorithm is numerically stable and is also economical with respect to 
computational requirements, it is amenable for programming on the computer. 

When plotting 4, against lag k, approximate confidence limits must be given in order to 

decipher values of the estimated PACF which are significantly different from zero. If the pro- 
cess is AR@), the sample PACF should not be significantly different from zero after lag p. 
Based upon the hypothesis that the process is AR@), the estimated values of the PACF at lags 
greater than p are approximately normally independently distributed with a SE given by 
(Quenouille, 1949; Bamdorff-Nielsen and Schou, 1973) 

[3.2.18] 

where N is the length of the time series. 
St. Lawrence River Data: The graph of the estimated PACF for the average annual flows of the 
St. Lawrence River is shown in Figure 3.2.4. The 95% confidence limits are calculated by sub- 
stituting N = 97 into [3.2.18] and plotting 1.96 times the SE for $, above and below the hor- 
izontal axis. It can be Seen that there are rather large values for the estimated PACF at lags 1 . 3  
and 19. The unexpected big value at lag 19 could be due to chance alone or else the limited size 
of the sample which was used to estimate the PACF at lag 19. Because the estimated PACF cuts 
off after lag 3, this implies that an AR(3) process should perhaps be f i n d  to the data. In addi- 
tion, because the sample PACF at lag 2 is not very large, perhaps the 4 1 ~  pmmeter should be 
constrained to zero in the AR(3) model in order to reduce the number of model parameters. As 
shown in Section 6.4.2, the estimated model for the St. Lawrence data is 

(1 - 0.6198 - O.177B3)(z, - 6818.63) = u, [ 3.2.1 91 

where 6818.63 is the maximum likelihood estimate for the mean. 
By substituting the values of the AR parameters for the model from [3.2.19] into the Yule- 

Walker equations in [3.2.11], the theoretical ACF can be determined. It can be Seen from Figure 
3.2.5 that the theoretical ACF for the St. Lawrence model in [3.2.19] is statistically similar to the 
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Figure 3.2.4. Sample PACF and 95% confidence limits for the average annual flows 
of the St Lawrence River at Ogdensburg, New York. 
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Figure 3.2.5. Theoretical ACF for the AR(3) model without $2 that is fitted to the 
average annual flows of the St. Lawrence River at Ogdensburg. New York. 
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Figure 3.2.6. Theoretical PACF for the AR(3) model without $2 that is fitted to 
the average annual flows of the St. Lawrence River at Ogdensburg, New York. 

sample ACF given in Figure 3.2.1. This information indicates that an AR model is a reasonable 
type of model to fit to the St. Lawrence River flows. 

To further justify the use of the model in r3.2.191 for modelling the St. Lawence River 
flows, the theoretical PACF can be compared to the sample PACF in Figure 3.2.4. In order to 
calculate the theoretical PACF, the values of theoretical ACF which were determined by substi- 
tuting the estimates for the AR parameters in [3.2.19] into [3.2.11], are employed in [3.2.17]. 
The graph of the theoretical PACF for the St. Lawrence River flows is shown in Figure 3.2.6 and 
it can be seen that this plot is similar to the sample PACF in Figure 3.2.4. 

3.3 MOVING AVERAGE PROCESSES 
The MA model describes how an observation depends upon the current white noise term as 

well as one or more previous innovations. After examining the simplest type of MA model, the 
general form of the MA model is defmed and its important theoretical properties are derived. 

3.3.1 First Order Moving Average Process 

current shock, the relationship is written as 

2, - p = U, - ela,-l 

When a time series value, I,, is dependent only upon the white noise at time t-1 plus the 

[3.3.1] 

where 8, is the nonseasonal MA parameter. This process is termed a MA process of order one 
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and is denoted as MA( 1). By introducing the B operator, the MA( 1) process can be equivalently 
written as 

z, - p = 0, - elBa, 

= (1 - elB)a, 

= W)a, [3.3.2] 

where 8 ( B )  = 1 - OIB is the nonseasonal MA operator or polynomial of order one. 

3.33 Moving Average Process of Order q 

ters. The MA process of order q is denoted by MA(@ and is written as 
The MA(1) process can be readily extended to the situation where there are q MA parame- 

z, - p = 0, - ela,-l - e2u,-* - . . . - equ,* [3.3.3] 

where 8, is the jth nonseasonal MA parameter. By employing the B operator, the MA(@ pro- 
cess can be more economically presented as 

Z, - p = U ,  - e,m, - ~,B,u, - e a - eqB%, 

= (1 - e , B  - 8 , ~ ~  - . . . - e,Bq)a, 

= w)o, [ 3.3.41 

where O(B) = 1 - 8 ,B  - 8 9 ,  - . . . - 8,Bq. is the nonreusonul MA operator or polynomial of 
order q . 

Stationarity 

The time series composed of the u,’s is assumed to be stationary. Because z, in [3.3.4] is 
formed by a finite linear combination of the q ’ s .  then z, must be stationary no matter what 
values the MA parameters possess. However, it is advantageous to put certain restrictions upon 
the range of values for the MA parameters. Consider, for example, the MA(1) process in [3.3.2]. 
By invoking the binomial theorem, this process can be equivalently written as an infinite AR 
process given as 

U, = (1 - 81B)-1(z, - p) 
= (1 + 8,B + e;B2 + 8 : ~ ~  + . . . )(z, - p) [3.3.5] 

In order for the infinite series (1 - 8,8)-’ to converge for IB I S 1, the parameter 8, must be res- 
tricted to have an absolute value less than unity. Another way to interpret the restriction upon 8, 
is to write [3.3.5] as 

Z, - p = a, - e,(Z,-, - pi - e;(zl-2 - p) - @<+3 - pi - 1 . [3.3.6] 

If l8,l > 1, it can be seen in [3.3.6] that the current deviation (2, - p) depends more on events 
that happened further in the past because 8; increases as the lag k gets larger. When l8,l = 1, 
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something that took place a long time ago has as much influence as a recent observation upon 
the current measurement. In order to avoid these situations, it is necessary that 10, I < 1.  This is 
equivalent to stipulating that the root B = 0,' of the characteristic equation (1 - 8 , B )  = 0 must 
lie outside the unit circle. Consequently, the stationary MA(1) process can only be meaningfully 
expressed as an infinite AR process if a restriction is placed upon the MA parameter. This res- 
triction is referred to as the invenibility condition and is independent of the stationarity require- 
ments of a process. 

Invertibility 
The characteristic equation for a MA(@ process is 

8 ( B )  = 1 - - w2 - . . * - 8,Bq = 0 [3.3.7] 

In order for a MA(@ process to be invertible, the roots of the characteristic equation must lie 
outside the unit circle. 

An inherent advantage of the invertibility condition is that it does not cause a loss in gen- 
erality of the MA process. As shown by Fuller (1976, pp. 64-66) and discussed by Anderson 
(197 1 ,  p. 204), any finite MA process whose characteristic equation has some roots greater than 
one and some less than one can be given a representation whose characteristic equation has all 
roots greater than one in absolute value. Consequently, the invertibility condition does not limit 
the ability to identify a suitable invertible model to fit to a given series. In addition, if the inver- 
tibility condition is satisfied, a MA process can be expressed as a pure AR process. Finally, 
when the residuals are being established for a model which is being fitted to a specified time 
series, the calculation of the residuals will be illconditioned if the invertibility condition is not 
met. 

Autocorrelation Function 
By using [2.5.3] and [3.3.3], the autocovariance function of a MA(q) process is 

yk = E[(z ,  - p)(z~-k - p)] 

= ~ [ ( a ,  - elal-.l - e2(11-2 - . . . - eq~r-g)(a,-k - elal-k-l - e2~,-k-2 

- * . . - e,a,_c-q)l [3.3.8] 

After multiplication and taking expected values, the autocovariance function is 

( - ek + e,ek+, + e2ek+2 + . . . + eq-keq)c,2 , k = 1.2, . . . , q 

(3.3.91 
0 . k w  

[ 3.3.1 0) 

By dividing the autocovariance function by the variance, the theoretical ACF for a MA(q) pro- 
cess is found to be 

I 7k = 

where 8, = 1 and e-k = 0 fork 2 1.  When k is set equal to zero in [3.3.8], the variance is 

7, ,=( i+ef+ei+  ... +e,2)0,2 
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- 8 k  + e,ek+, + e2eL+2 + . + eq4eq 
, k = 1.2,. . . , q  

1 + e ; + e ; +  ... +e,2 
[3.3.11] 

0 . k > q  

Partial Autocorrelation Function 
It is shown in [3.3.5] that a MA(1) process can be equivalently written as an infinite AR 

process. In general, any finite invertible MA process can be expressed as an infinite AR process. 
Because the PACF is theoretically defined to be zero after lag p for a finite AR@) process. the 
PACF must therefore attenuate at increasing lags for a MA process or equivalently an infinite 
AR process. 
Temperature Data: From [3.3.11], it can be seen that the theoretical ACF for a MA(q) process 
is exactly zero after lag q. If the sample ACF is tabulated for a given time series using [2.5.9], 
then the estimated ACF should not be significantly different from zero after lag q if the underly- 
ing process is MA(q). For instance, the sample ACF for the average annual temperature data 
from the English Midlands is shown in Figures 2.5.1 and 2.5.2 in Section 2.5.4. Because the 
estimated ACF is not significantly different from zero after lag 2, it is reasonable to fit a MA(2) 
model to the data. Using the estimator described in Appendix A6.1, the estimated model for the 
temperature data is found to be 

zf - 9.216 = (1 + 0.11 1B + 0.197B2)af (3.3.121 

By substituting the estimates for the MA parameters from [3.3.12] into [3.3.11] (where P k  = O  
for k > 2), the theoretical ACF can be calculated for the MA(2) model. By comparing the 
theoretical ACF in Figure 2.5.3 to the estimated ACF in Figure 2.5.1, it can be seen that the 
theoretical ACF for the MA(2) model mimics the estimated ACF. 

To calculate the sample PACF for the temperature data from the English Midlands, one 
f i t  must determine the sample ACF using [2.5.9]. Following this, Pagano’s (1972) algorithm, 
outlined in Appendix A3.1, can be used to solve [3.2.17] in order to determine the sample PACF. 
The sample PACF along with the 95% confidence limits for the English temperature data, art 
displayed in Figure 3.3.1. The sample PACF truncates after lag 2 except for a rather large value 
at lag 15 which is probably due to chance. However, the plot of the sample ACF in Figure 2.5.2 
reveals that it also cuts off after lag 2. Hence, either a MA(2) or an AR(2) model may ade- 
quately model the temperature data. As is shown in Section 3.4.3 the two models arc in fact 
shown to be almost the same by expressing the AR(2) model as an infinite MA model in which 
the coefficients after lag 2 are negligible. 

After substituting the values of the theoretical ACF for the MA(2) model in r3.3.121 into 
t3.2.171, one can employ Pagano’s (1972) algorithm outlined in Appendix A3.1 to determine the 
theoretical PACF. It can be seen that the theoretical PACF in Figure 3.3.2 for the estimated 
MA(2) model closely resembles the sample PACF of the temperature data in Figure 3.3.1. 
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P& = 

First Order Moving Average Process 
The MA( 1)  process is given in [3.3.2]. This process is stationary for all values of el but for 

invertibility I8,l < 1.  When the invertibility condition is satisfied, the MA(1) process can be 
equivalently written as an infinite AR process as is shown in [3.3.5]. 

I 

, k = l  4 1  

1 +e: 
[3.3.14] 

0 , k 2 2  
\ 

By utilizing [3.3.10], the variance of the MA(1) process is 

yo = (1 + e:)o,' 

From [3.3.11] the theoretical ACF is 

[3.3.13] 

3.4 AUTOREGRESS WE-MOVING AVERAGE PROCESSES 
As noted in Sections 1.3 and 5.2.4, a key modelling principle is to have as few parameters 

as possible in the model. If, for example, the sample ACF for a given data set possesses a value 
which is sigruficantly different from zero only at lag one, then it may be appropriate to fit a 
MA(1) model to the data. An AR model may require quite a few AR parameters in order to ade- 
quately model the same time series. When the sample PACF for another data set cuts off at lag 
2, then the most parsimonious model to fit the time series may be an AR(2) model. In situations 
where both the sample ACF and PACF attenuate for a certain time series. it may be advanta- 
geous to have a model which contains both AR and MA parameters. In this way, the fitted 
model can be kept as simple as possible by keeping the number of model parameters to a 
minimum. 

3.4.1 First Order Autoregressive-First Order Moving Average Process 
If a process consists of both AR and MA parameters, it is called an ARMA process. When 

there is one AR and one MA parameter the ARMA process is denoted as ARMA(l.1) and the 
equation for this process is 
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(2, - PI - h ( Z 1 - 1  - I4 ="I - el",-I 

(1 - g l ~ ) ( z ,  - p) = (1 - e l m  
By utilizing the B operator, the ARMA(1,l) process can be equivalently written as 

Chapter 3 

(3.4.11 

[3.4.2] 

where I$@) = 1 - $lB and 8 ( B )  = 1 - BIB arc, respectively, the AR and MA operators of order 
one. 

3.4.2 General Autoregressive-Moving Average Process 

a process is denoted by ARMA(p,q) and is written as 
In general, an MMA process may consist of p AR parameters and q MA parameters. Such 

(2, - p) - $1(2,-1 - 1) - W I - 2  - cl) - . . . - $pP(zI-p - P) 

= ul - elo,-l - e2",-2 - . . . - eqa,-q 

By implementing the B operator, [3.4.3] can be presented more conveniendy as 

[3.4.3] 

(1 - $lB - $+* - . . . - $ p B p ) ( ~ l  - p) = (1 - 91B - 9,B2 - . . . - 9,B4)a, 

[3.4.4] 

where $ ( B ) =  1 - $ $  - $ 2 B 2 -  . . .  - q p B P  is the AR operator of order p and 
9(B)  = 1 - 9,B - g2B2 - . . . - 9,Bq is the M A  operator of order q.  

in two ways. It can be considered as a pth order AR process given by 
As mentioned by Box and Jenkins (1976, p. 74), an ARMA@q) process may be interpreted 

$(B)(r ,  - P) = e, 

where e, follows the qth order M A  process 

[3.4.5] 

el = 9(B)o, [3.4.6] 

Alternatively, an ARMA(pq) process can be thought of as a qth order MA process 

(2, - p) = W ) b ,  

where b, follows the pth order AR process 

[3.4.7] 

web, = "I  [3.4.8] 

By substituting either e, from [3.4.6] into [3.4.5] or else b, from [3.4.8] into [3.4.7], it follows 
that 
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The ARMA@,q) process contains both the pun AR and MA processes as subsets. Conse- 
quently, an AR@) process is equivalent to an ARMAQ.0) process while a MA(@ process is the 
same as an ARMA(O,@ process. The ARMA@,q) family of processes are also sometimes 
refemd to as stationary nonseasonal Box-Jenkins processes because of the comprehensive 
presentation of these models in the book by Box and Jenkins (1976). 

Stationarity and Invertibility 
The conditions regarding stationarity and invertibility for AR and MA processes, also hold 

for ARMA processes. In order for an M A @ , @  process to be stationary the roots of the 
characteristic equation $ ( B )  = 0 must fall outside the unit circle. Similarly, the roots of 8 ( B )  = 0 
must fall outside the unit circle if the process is invertible and can be expressed as a pure AR 
process. 

Autocorrelation Function 
The theoretical ACF for an ARMA@,q) process is derived in a fashion which is similar to 

that used for an AR process in Section 3.2.2. Multiply both sides of [3.4.3] by ( q - k  - p) and 
take expectations to obtain 

yk - Qlyk-1 - h y k - 2  - . ' ' - $pyk-p 

= yza(k)  - e,yza(k - 1) - e 2 y z a ( k  - 2) - ' ' * - eqyza(k - 4) [3.4.9] 

where yk = E[(i?,-k - p)(z, - p)] is the theoretical autocovariance function and 
y,(k) = E[(r,+ - p)u,] is the cross covariance function between 2l-k and u,. Since 2l-k is depen- 
dent only upon the shocks which have occurred up to time t-k. it follows that 

y , ( k ) = O  , k > O  

y , (k )+O 9 k50 [3.4.10] 

Because of the yZa(k)  terms in [3.4.9], it is necessary to derive other relationships before it is 
possible to solve for the autocovariances. This can be effected by multiplying [3.4.3] by u , ~  

and taking expectations to get 

(-k) - $1720 (-k + 1 ) - $2720 (-k + 2) - . . ' - $pyza(-k + p 

= -  [ e k ] o :  [3.4.11] 

where 

Ok , k = 1 , 2  , . . . ,  q 

0 , otherwise 
[e,] = -1 , k = o  l 
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Equations [3.4.9] and [3.4.11] can be employed to solve for the theoretical aurocovariance 
function for an ARMA(p.q) process. Fork > q ,  r3.4.91 reduces to 

7 k - $ l Y k - l - h 7 & - 2 -  ". - $ p y k - p = O  

or 

r3.4.121 

If k > r = max@,q), [3.4.12] may be used to calculate the yk k t l y  from the previous values. 
For k = 0.12,. . . , r ,  use [3.4.11] to solve for the cross covariances, 7&), and then substitute 
the 7,(k) into [3.4.9]. By employing the algorithm of McLeod (1975) outlined in Appendix 
A3.2. the resulting equations can be solved to determine the theoretical autocovariance function 
for any ARMA@,q) process where the values of the parameters arc known. The theoretical ACF 
can then be determined by simply dividing by the variance. 

By dividing [3.4.12] by yo, the difference equation for the theoretical ACF for an 
ARMA(p,q) process is 

[3.4.13] 

Except for the fact that [3.4.13] is only valid beyond lag q ,  the equation is identical to [3.2.9] 
which is the theoretical ACF for an AR@) process. Hence, the attenuating behaviour of the ACF 
beyond lag q for an ARMA(pq) process is due to the AR component in the model and the start- 
ing values for the difference equation. If q - p  < 0 the entire theoretical ACF. p,. for 
j =0,1,2, ..., will be composed of a mixture of damped exponential and/or damped sine waves 
which possess characteristics controlled by $ ( B )  and the starting values. When q - p  2 0 the 
q - p  + 1 initial values p0,pI,pz,. . . ,pqT will not follow this pattern. Furthermore, because of 
the structure of [3.4.9], the autocomlations ~ 1 . ~ 2 ,  . . . , pq,  are a function of both the MA and AR 
parame ters . 

Partial Autocorrelation Function 

infinite AR process given by 
As a result of the MA operator, the ARMA@,q) process in [3.4.4] can be written as an 

[ 3.4.1 41 

where 8(B)-' is an infinite series in E. Since the definition of the PACF is based upon an AR 
process, the theoretical PACF is infinite in extent and attenuates with increasing lag. At higher 
lags, the behaviour of the PACF depends upon the MA parameters and is dominated by a mix- 
ture of damped exponentials and/or damped sine waves. 
Douglas Fir Tree Ring Data: Because both the ACF and PACF die off for an ARMA@.q) pro- 
cess, it is sometimes difficult to determine which type of ARMA model to fit to a given data set. 
Often, it is necessary to study two or thne tentative ARMA models. For instance, consider the 
time series of 700 m e  ring indices for Douglas fir at the Navajo National Monument in Arizona. 
This data is available from 1263 to 1962 and is listed in a report by Stokes et al. (1973). The 
plots of the sample ACF and PACF are displayed in Figures 3.4.1 and 3.4.2, respectively, along 
with the 95% confidence limits. Because both plots Seem to attenuate, it may be appropriate to 
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fit some type of ARMA@,q) model to the data. The large values of both the ACF and PACF at 
lag one indicate that perhaps an ARMA(1,l) model may adequately model the data, although 
other ARMA models should perhaps also bc examined. Using the estimator described in Appen- 
dix A6.1. the estimated ARMA(l.1) model is 

(1 - 0.682B)(~, - 99.400) = (1 - 0.4248)~~ [3.4.15] 

This calibrated model satisfies the diagnostic checks described in Chapter 7. 
By using the parameter values for the tree ring model given in (3.4.151 as input to qua-  

dons [3.4.9] and [3.4.11], the theoretical ACF can bc calculated. The theoretical ACF for the 
tree ring model shown in Figure 3.4.3 is statistically similar to the sample ACF in Figure 3.4.1. 
To calculate the theoretical PACF using Pagano's algorithm in Appendix A3.1, the values of the 
theoretical ACF arc substituted for the pk's in [3.2.17]. The theoretical PACF in Figure 3.4.4 has 
the samc form as the sample PACF in Figure 3.4.2. Because the fitted ARMA model appears to 
statistically preserve both the historical ACF and PACF. this fact enhances the desirability of 
ARMA models for use in the natural sciences. Additionally, Section 3.6 explains why ARMA 
models are suitably designed for capturing the physical chracteristics of annual s t r d o w s .  

ARMA(1,l) Process 

The ARMA(l.1) process is given in [3.4.2]. As is the case for the AR(1) process (see Sec- 
tion 3.2.2), in order for the ARMA(1,l) process to bc stationary, I < 1. Similarly, because the 
MA(1) process is invertible if loll < 1 (see Section 3.3.2), the ARMA(l.1) process is invertible 
when the same conditions are placed upon 0,. 

To derive the autocovariance function for an ARMA(1,l) model, first use [3.4.9] to obtain 

yo = + 0,' - 817, (-l) 

Y1 = h Y 0  - e 1 d  

yk = $1yk-1 * 

Next, after setting k = 1, employ [3.4.1 I] to get 

Y,(-1> = (49 - e,>a,' 
where yza(0) = a,' in both [3.4.9] and [3.4.11]. Upon substituting ym(-1) into the previous equa- 
tion for y, the autocovariances for an ARMA(1,l) process are found to be 

1 + e: - a le l  
Yo' 0,' 

(1 - 01e1)(91-w 2 
YI = =a 

1-0: 

y& = $lYk-l 9 

By dividing by 70, the theoretical ACF of an ARMA(l.l) process is 

[3.4.16] 
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Figure 3.4.1. Sample ACF and 95% confidence limits for the Douglas Fir tree ring 
series at Navajo National Monument in Arizona. 

Figure 3.4.2. Sample PACF and 95% confidence limits for the Douglas Fir tree ring 
series at Navajo National Monument in Arizona. 
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Figure 3.4.3. Theoretical ACF for the ARMA(l.1) model fitted to the Douglas Fir 
tree ring series at Navajo National Monument in Arizona. 
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Figure 3.4.4. Theoretical PACF for the ARMA( 1, l )  model fitted to the Douglas Fir 
tree ring series at Navajo National Monument in Arizona. 
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P k  = q l P k - 1  * k2 [3.4.17] 

From [3.4.17], it can be Seen that pI is a function of both the MA and AR parameters. The ACF 
at lag 2 depends only upon and also the starting value p1. Furthermore, the theoretical ACF 
decays exponentially from the starting value pl.  This exponential decay is even when I$, is posi- 
tive and is oscillatory whenever - el) dictates the sign 
of p1 and also from which side of zero the exponential decay commences. 

is negative. In addition, the sign of 

By substituting the theoretical ACF in [3.4.17] into the Yule-Walker equations which are 
given in [3.2.17], the theoretical PACF can be determined for the ARMA(1.1) process. At lag 1, 

= pl. while for lags greater than one the PACF of an ARMA(1,l) process behaves like the 
PACF of a MA(1) process (see Section 3.3.2) and hence follows the form of a damped exponen- 
tial. When el is positive, the PACF consists of an evenly damped exponential which decays 
from pl. where the sign of pI is determined by the sign of (ql - el). If 8, is negative, the PACF 
is dominated by an oscillating exponential which attenuates from q l l  = pl .  where the sign of p1 
is determined by (I$] - el). 

3.43 Three Formulations of the Autoregressive-Moving Average Process 
An ARMA@q) process can be expressed in three explicit forms. One formulation is to use 

the difference equation given in [3.4.4]. A second method is to express the process as a pure MA 
process. This is also referred to as the random shock form of the process. Finally, the third 
option is to formulate the process as a pure AR process which is also called the inverted form of 
the process. 

Random Shock Form 

be written in random shock form as 

(z, - p) = $ @ ) - ' W ) O ,  

Because $(E) and O(B) can be treated as algebraic operators, the ARMA(pq) process can 

= a, + y1CI,-1 + y2q-2 + . . * 

= U, + Y ~ B u ,  + Y - $ ~ * U ~  + . 

= (1 + y l B  +y$2 + ...)uf 

= W(B )a, [3.4.18] 

where y(B) = 1 + y l B  + y@2 + . . . , is the random shock or infinite MA operator and yi is the 
ith parameter, coefficient or weight of y(B). It is often convenient to express an ARMA process 
in the form given in [3.4.18] for both theoretical and application purposes. For instance, the y 
weights are required in Section 8.2.3 to calculate the variance of the forecasts. As explained in 
Section 9.3, one way to simulate data is to fmt express an ARMA model in random shock form 
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and then use this format of the model for simulation purposes. By writing each member of a set 
of ARMA models in random shock form. the models can be conveniently compared by looking 
at the magnitude and sign of the y parameters. Furthermort, nonstationary processcs (see 
Chapter 4) and seasonal processes (see Part VI) can also be written in the general random shock 
fonn of the process. 

As is noted in Section 3.2.2, if an AR@) process is stationary the roots of $(B) = 0 must lie 
outside the unit circle and this insures that the process can also be written as an infmite MA pro- 
cess which will converge for IB I 5 1. Consequently, a necessary condition for stationarity for an 
ARMA@,q) process, is that the weights yl,\y2. ..., in y(B) = $(B)-'e(B),  form a convergent 
series for IB I 5 1 [see Box and Jenkins (1976, Appendix A3.1. pp. 80-82) for a mathematical 
proof]. The stationarity requirement is proven by examining the theoretical autocovariance 
which is given by .. 

7 k  = o , ' ~ ~ j ~ j + k  . k =0,1,2,... [3.4.19] 
i=O 

By substituting k = 0 into [3.4.19], the variance is found to be - 
70 = a: = o,'cv,? 13.4.201 

In order to have a finite variance and hence stationarity. the y weights must decrease in a manner 
which allows the right side of [3.4.20] to converge. 

To develop a relationship for determining the y parameters or weights, fvst multiply 
[3.4.18] by $ ( B )  to obtain 

j=O 

$(B)(z ,  - P) = W)v(B)a, 

From [3.4.4], 8(B)a, can be substituted for $(B)(z ,  - p) in the previous equation to get 

$ ( B ) y ( B )  = W )  
The y weights can be conveniently determined by expressing the above equation as 

$(B ) y k  = a k  [3.4.21] 

where B operates on k, Yo= 1. Y k  = o  fork < 0, and Ok = O  if k > 9 .  When k > 9  then e k  = o  
and Yk in [3.4.21] satisfies the same difference equation as the theoretical ACF of an AR process 
and also an ARMA process in [3.2.9] and 13.4.131. respectively. Consequently, when y k  is plot- 
ted against lag k it will follow the same type of patterns as the theoretical ACF of the process. 
For increasing lags, the graph may follow a smooth exponential decay, an exponential decline 
that alternates in sign, or a damped sinusoidal decay. 

Given the AR and MA parameters, one can employ [3.4.21] to calculate the random shock 
parameters. To decide upon how many y coefficients to estimate, one can calculate enough y 
coefficients to keep the relative error in the variance of the random shock process less than a 
specified error level. When o," is assumed to be one and the y's are only considered up to lag 
9'. from [3.4.20] the variance of the random shock process is approximately given by 
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w e n  it is assumed that a,' = 1, one can calculate the variance. 70, of the given ARMA@,q) p r ~ -  
cess by solving [3.4.9] and [3.4.11]. Consequently, the relative absolute error due to the random 
shock approximation is 

One can choose q' to be just large enough to cause the above expression to have a value less than 
the specified error level. To demonstrate how the y coefficients arc calculated using [3.4.21], 
two examples arc now given. 
Example Using the Temperature Model: In Section 3.3.2 it is noted that it may be appropriate 
to fit either a MA(2) or an AR(2) model to the annual temperature data from the English Mid- 
lands. Because the sample ACF in Figurc 2.5.1 seems to truncate after lag 2, a MA(2) model 
may be needed. However, since the sample PACF in Figure 3.3.1 cuts off after lag 2, an AR(2) 
model may be suitable for modelling the series. In reality. either of these models may be 
employed, since they are quite similar. This can be demonstrated by expanding the AR(2) model 
as an infinite MA model and then comparing the results to the MA(2) model in [3.3.12]. 

The estimated AR(2) model for the temperature data is 

(1 -0.1198 -0.200E2)(2, - 9 . 2 1 6 ) = ~ ,  [ 3.4.221 

where 9.216 is the MLE of the mean level. For the model in the above equation, 13.4.21) 
becomes 

(1-0.1198 -0 .20082)y~=0 

Whenk = 1 

(1 - 0.1 198 - 0.200B2)y1 = 0 or y1 - 0.1 l!Qo - 0.200y-1 = 0 

Since yo = 1 and y-l = 0 the expression reduces to 

y, =0.119 

F o r k = 2  

(1 -0.1198 -O.2OOB2)yZ=O or y2-0.11!hqI -0.200yr0=0 

Therefore, y2 = 0.1 19(0.119) + 0.200 = 0.214. 

W h e n k = 3  

(1 -0.1198 -0.200B2)y3=0 or y 3 - 0 . 1 1 9 w 2 - 0 . 2 ~ 1  = O  

Therefore, ~3 = 0.1 19(0.214) + 0.200(0.119) = 0.049. 
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In general, the expression for vk is 

vk = 0.1 1wk-1 + 0.2ooyk-2, k > 0 

Because of the form of this equation, yfk decays towards zero rather quickly for incrtasing lag 
after lag 2. 

coefficients, the random shock form of the AR(2) model in 
[3.4.22] is 

Using the results for the 

~,-9.216=(1 +y1B+y$I2+W$l3+ .**)a, 

= (1 + 0.1 19B + 0.214B2 + 0.049B3 + * * * )a, [3.4.23] 

The SE of estimation for both MA parameters in [3.3.12] is 0.062 and it can be Seen that each 
MA parameter in [3.4.23] is within one SE of the corresponding MA parameter in [3.3.12]. Con- 
sequently. for practical purposes the AR(2) model in [3.4.22] is actually the same as the MA(2) 
model in [3.3.12]. 
Example Using the Tree Ring Model: The sample ACF and PACF are shown in Figures 3.4.1 
and 3.4.2, respectively, for the Douglas Fir tree ring series at Navajo National Monument in 
Arizona. Because both of these plots attenuate, it may be appropriate to fit an ARMA(1,l) 
model to this series. The fitted model for this data is given in [3.4.15]. 

For the ARMA(1,I) model, [3.4.21] becomes 

(1 - 0.6828)~k = -81. 

whereOk=Ofork>l.  Whenk=l  

(1 - O.682B)y1 = -0.424 or w1 - 0 . 6 8 2 ~ ~  = -0.424 

Therefore, \y1 = 0.682 - 0.424 = 0.258. 

Fo rk=2  

(1 - 0 . 6 8 2 8 ) ~ ~  = 0 or w2 - 0 . 6 8 2 ~ ~  = 0 

Hence, y2 = 0 . 6 8 2 ~ ~  = 0.682(0.258) = 0.176. 

Whenk=3 

(1 - 0 . 6 8 2 8 ) ~ ~  = 0 or y3 - 0 . 6 8 2 ~ ~  = 0 

Therefore. y3 = 0 . 6 8 2 ~ ~  = 0.682(0.176) = 0.120. 

The general expression for vk is 

yk = 0.682Yk-1 = (o.682)k-'y1 , k > 0 

Due to the form of this equation, v k  will decrease in absolute value for increasing lag. When the 
ARMA(l.1) model is expressed using the y/ coefficients, the random shock form of the models is 
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z, -99.400=(1 +0.2588 +0.176B2+0.120B3+...)a, 

Chapter 3 

[3.4.24] 

[3.4.25] 

where x ( B )  = 1 - x l B  - ~ $ 3 ~  - . , is the inverted or infinite AR operator and xi  is the ith 
parameter, coefficient or weight of n(B). Besides ARMA models, it is often convenient to write 
nonstationary processes and also various types of seasonal processes in the above format. Furth- 
ermore, by comparing t3.4.181 and [3.4.25] it is evident that 

I@)-' = x ( B )  [ 3.4.261 

In Section 3.3.2, it is pointed out that in order for a MA(q) process to be expressed as a 
meaningful infinite AR process the roots of 8 ( B )  = 0 must lie outside the unit circle. Invertibil- 
ity is also achieved for an ARMA@.q) process when the roots of 8 ( B )  = 0 lie outside the unit cir- 
cle. This is because the weights x~,?,..., in the inverted operator x ( B )  = e(B)- '$(B)  constitute a 
convergent series for IB I S 1.  The invertibility condition is independent of the stationarity con- 
dition and can also be used with nonstationary processes. 

To determine a relationship for computing the x parameters, multiply [3.4.25] by 8 ( B )  to 
get 

w a ,  = ~ ( B ) R ( B ) ( z ,  -PI 

Using (3.4.41, $(B)(z,  - p) can be substituted for 8(B)a, in the above equation to obtain 

$@ ) = w >x(B ) 

The x weights can be readily ascertained by expressing the above equation as 

e(B)xk = $k [3.4.27] 

where B operates on k. rc, = -1 when using [3.4.27] to calculate ]Tk for k > 0, xk  = 0 for k < 0, 

and $k = 0 if k > p. When k > p, x k  satisfies the same difference equation as the inverse auto- 
correlation function (IACF) that is discussed in Section 5.3.6. Consequently. when xk is plotted 
against lag k it will possess the same behaviour as the IACF. For increasing lags, the graph may 
consist of a smooth exponential dccay, an exponential decline where the values alternate in sign 
or a damped sinusoidal decay. Some examples are now presented to demonstrate how to employ 
[3.4.27] for calculating the x parameters by hand. 
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Example Using the Temperature Model: The MA(2) model in [3.3.12] for the average 
annual temperature data from the English Midlands can be equivalently expressed as an infinite 
AR model. To determine the A weights for the MA(2) model, [3.4.27] becomes 

(1 +O.l11B +0.197B2)%k = O  

W h e n k = l  

(1 + 0.1 11B + 0.197B2)r1 = 0 or f l  + 0.1 11% + 0.197~-1= 0 

Since x, = -1 and hl = 0. the expression reduces to x1 = 0.1 11. 

Fork = 2  

(1 + 0.11 1B + 0.197B2)n2 = 0 or IC, + 0.11 Inl + 0.197% = 0 

Therefore, X, = -0.1 1 l(O.111) + 0.197 = 0.185. 

W h e n k = 3  

(1 + 0.ll lB + 0.197B2)x3 = 0 or + 0.111% + 0 . 1 9 7 ~ ~  = 0 

Hence, x3 = -0.1 1 l(0.185) - 0.197(0.111) = -0.042. 

In general, the expression for is 

Xk =-0.1111(,_,-0.19711k-2, k > 0 

Because of the structure of the above equation, nk attenuates quickly in absolute value after lag 
2. 

[3.3.12] is 
By employing the results for the x: weights, the inverted form of the MA(2) model in 

(1 -0.111B -0.185B2+0.042B3+ ...)( Z, -9 .216)=~,  [3.4.28] 

It can be seen that inverted form of the MA(2) model in [3.4.28] is almost the same as the AR(2) 
model in [3.4.22] for the temperatun data. The SE of estimation for both AR parameters in 
[3.4.22] is 0.062 and each AR parameter in [3.4.28] is within one SE of the corresponding AR 
parameter in [3.4.22]. This confirms that the MA(2) model in [3.3.12] is statistically the same as 
the AR(2) model in [3.4.22]. 

Example Using the Tree Ring Model: The ARMA(l.l) model which is fitted to the 
Douglas Fir me ring series at Navajo National Monument in Arizona is given in r3.4.151. This 
model can be equivalently expressed as an inverted model by using [3.4.27] to obtain the A 

weights. For the case of the ARMA(l.1) model, [3.4.27] becomes 

(1 - 0.424B)~k = & 

whereOk=Ofork > 1 and%=-l.  

W h c n k = l  
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(1 - 0.4248)~~ = 0.682 or n1 - 0.424% = 0.682 

Therefore, x1 = 4.424 + 0.682 = 0.258. 

Fork =2 

(1  - 0.4248)~~ = 0 or x2 - 0.424~~ = 0 

Hence, K~ = 0.424~~ = 0.424(0.258) = 0.109. 

W h e n k = 3  

(1 - 0.4248)~~ = 0 or x3 - 0.424% = 0 

Therefore, 7c3 = 0.424~~ = 0.424(0.109) = 0.046. 

The general expression for Xk is 

Kk = 0.424Kk-1 = (0.424)k-17tl, k > 0 

It can be Seen from this equation that 
the ARMA(l.l) model is written using the IC parameters, the inverted form of the model is 

will decrease in absolute value for increasing lag. When 

(1 - 0.258B - 0.109B2 - 0.046B3 - . . . )(zI - 99.40) = a, [3.4.29] 

Linear Filter Interpretation 

The random shock form of the process in [3.4.18] can be considered in terms of a linear 
filter. As shown in Figure 3.4.5, the white noise input passes through the linear filter y(B) 
which transforms the white noise into the output (2, - p). Because of this, the random shock 
operation y(B) is referred to as the transfer function or the filter. When the sequence formed by 
the y weights is either finite or infinite and convergent. the filter is stable because the process 2, 

is stationary. For stationary processes p is the mean level about which the process varies. How- 
ever, when the filter is unstable and the process is not stationary, by definition the process does 
not fluctuate about any mean level and )I can be considered as a reference point. 

White 
Noise 

u 

Figure 3.4.5. Linear filter interpretation of the random shock model. 
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Linear Difference Equations 
Equation [3.4.4] for an ARMA@,q) process constitutes what is called a linear dfference 

equation because the process is linear with respcct to the AR and MA parameters. Similarly, the 
random shock and inverted forms of the ARMA model in [3.4.18] and [3.4.25], respectively, are 
also linear difference equations. Another example of a linear difference equation is [3.2.9] for 
the theoretical ACF of an AR@) process. Difference equations arise in time series modelling 
because it is necessary to model time series which have values at discrete and evenly spaced time 
intervals. On the other hand, differential equations are employed for modelling systems which 
evolve over continuous time. 

The solution of a linear difference equation is analogous to that for a linear differentid 
equation. The final solution for a linear differential equation consists of an equation which does 
not possess any differentials. Similarly, the solution to a linear difference equation is an equa- 
tion which does not contain entries which can be written in terms of the B operator. As is the 
case for a linear differential equation, the general solution for a linear difference equation con- 
sists of the summation of a complementary function plus a particular integral. For a brief 
description of how to solve linear difference equations, the reader may wish to refer to Box and 
Jenkins (1976, Appendix A4.1, pp. 114-119). Pandit and Wu (1983) make extensive comparis- 
ons between linear stochastic differential and difference equations. In fact, these authors explain 
how to obtain both difference and differential equations from a time series to represent the 
underlying dynamic system and how to employ these equations for prediction, control and other 
applications. 

3.4.4 Constrained Models 
As mentioned earlier, a primary objective in stochastic modelling is to adequately model 

the data using a model which possesses as few parameters as possible. The principle of model 
parsimony can be achieved in practice by using a discrimination procedure such as the Akaike 
information criterion (Akaike, 1974) (see Sections 1.3.3 and 6.3) in conjunction with diagnostic 
checks (see Chapter 7). This can result in selecting an ARMA@q) model where some of the AR 
and MA parameters which are less than order p and q respectively, are omitted from the model. 
For instance, as shown in Section 3.2.2, the most appropriate model to fit to the average annual 
flows of the St. Lawrence River at Ogdensburg, New York is an AR(3) model without the 
parameter. The difference equation for this model is given in [3.2.19]. Models which have some 
of the parameters constrained to zero are referred to as conrtruined models. The option for omit- 
ting model parameters can be done with both nonseasonal and seasonal models. 

An interesting constrained model is the one which is fitted to the yearly Wolfer sunspot 
number series in Section 6.4.3. This sunspot series is available from 1700 to 1960 in the work of 
Waldmeier (1961). If it is deemed appropriate to fit an ARMA model to the sunspot series, it 
turns out that the best ARMA model is an AR(9) model with $3 to left out of the model. In 
addition, as is shown in Section 6.4.3, it is first necessary to take a square root transformation of 
the data before fitting the constrained AR(9) model. 

A constrained AR model is also referred to as a subset AR model. Research on this topic is 
provided by authors such as Haggan and Oyetunji (1984) as well as Yu and Lin (1991). More- 
over, subset autoregression is also discussed in Section 6.3.6. 
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3.45 Box-Cox Transformation 

As noted in Section 3.2.1, the a, series is always assumed to be independently distributed 
and possess a constant variance about a zero mean level. In addition, it is often appropriate to 
invoke the normality assumption for the residuals in order to obtain MLE’s for the model param- 
eters (Chapter 6)  and subsequently to cany out diagnostic checks (Chapter 7). When fitting 
ARMA models to a given data set, the model residuals can be estimated along with the model 
parameters at the estimation stage and model adequacy can be ascertained by checking that the 
residual assumptions arc satisfied. The independence assumption is the most important of all 
and its violation can cause drastic consequences (Box and Tiao. 1973, p. 522). In fact, when the 
independence assumption is violated it is necessary to design another model to fit to the data (see 
Chapter 7). However, if the constant variance and/or normality assumptions are not true, they 
are often reasonably well fulfilled when the observations arc transformed by a Box-Cox msfor -  
mation (Hipel et al., 1977; McLeod et al., 1977). 

A Box-Cox tranrfrmation (Box and Cox, 1964) is defined by 

[3.4.30] 

where c is a constant. The power transformation in [3.4.30] is valid for z, + c > 0. Conse- 
quently, if all of the values in the time series are greater than zero usually the constant is set 
equal to zero. When negative and/or zero values of z, are present it is usually most convenient to 
select the constant to be slightly larger than the absolute value of the largest non-positive entry in 
the time series. 

Because the parameter values of an A R M  model fitted to a given time series an 
unchanged by a linear transformation. the transformation in [3.4.30] is equivalent to 

Inz, , X = O  
z,@) = [3.4.31] 

where the enmes of the z, series arc all greater than zero. The form of the Box-Cox transforma- 
tion in [3.4.30] is preferable theoretically to that in [3.4.31] because the transformation in 
13.4.301 is continuous at X = 0. By invoking L’Hopital’s rule, it can be shown that the msfor -  
mation for # 0 in [3.4.30] reduces to h ( z ,  + c) in the limit as X approaches zero. When 1 = 1, 
this means that there is no power transformation. 

After the enmes in a time series have been changed by a transformation such as that given 
in [3.4.30], or others discussed by Jain and Singh (1986), an appropriate ARMA model can be 
fitted to the transformed data. The equation for an ARMA@,q) model for the zl(l) series is 

+(B)(ZP) - I4 = Wm, [ 3.4.321 

where p is the mean level of the z/’) sequence. Box-Cox transformations are useful when deal- 
ing with both nonseasonal and seasonal time series. For notational convenience in later chapters 
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often z’) is simply written as z, where it is assumed that the series to which the model is fitted is 
transformed using [3.4.30] whenever necessary. Finally, data transformations that can be con- 
sidered when dealing with extreme values m referred to in Section 5.3.3. 

3.5 THEORETICAL SPECTRUM 

As noted in Section 2.6, most of the time series modelling and analysis methods presented 
in this book are defined and used within the time domain. For example, the thearetical ACF and 
PACF for an ARMA model constitute time domain properties which arc nceded for model iden- 
tification in Chapter 5. Based upon a knowledge of the general properties of the theoretical ACF 
and PACF. one can examine the characteristics of the sample ACF and PACF for deciding upon 
which parameters to include in 811 ARMA model to fit to a given data set. 

The objective of this section is to define the theoretical spectrum for ARMA models and 
present some graphs of the spectrum for specific kinds of ARMA models. As explained below, 
the spectral density is simply the Fourier transform of the theoretical autocovariance function. 
Consequently, the spectral density is simply the representation of the autocovariance function 
within the frequency domain. 

3.5.1 Definitions 

Any stationary time series, z,, can be viewed as being composed of a limiting sum of 
sinusoids of the form 

Ajcos(21cfjr + ai) 

where fi is the frequency, Ai  is the amplitude and ai is the phase. The frequency varies from 
-1n to ln in cycles per unit time. The amplitude and phase components at frequency f; are 
uncorrelated random variables with a mean of zero in each different realization of the time 
series. The variance of the amplitude is determined by the spectrum which is defined in the next 
paragraph. Those frequencies for which the spectrum, S(f), is large will contribute sinusoids 
with greater amplitudes and thus represent more important sources of variation in the time series. 

The Cramer spectral representation expresses the aforesaid facts in a more precise fashion. 
Every covariance stationary time series with a mean of zero has the Cramer spectral representa- 
tion [see for example, Kleiner et al. (1979, p. 319)] 

1R 

-112 
z, = j ei2nfi d ~ ( f )  [3.5.1] 

where Z(f) for I f 1  < 112 is a continuous stochastic process with orthogonal increments (so that 
Z(fd - Z(fl) and Z(f4) - Z(f3) are uncornlated whenever f l  < f2 S f 3  < fd. The process Z(f) 
defines the cumulative spectral density function F ( f ) ,  by 
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F(-1/2) = 0 

F(1/2) = wr(z , )  =yo [3.5.2] 

For most types of time series, the derivative of F ( f )  exists and the spectrum may be defined as 

S(f)=W'(f), 0 s  f s 1R [ 3.5.31 

The factor of 2 on the right hand side of [3.5.3] allows for the fact that the spectrum is symmetric 
about zero and hence only the spectrum in the range 0 Sf 5 112 needs to be considered. In addi- 
tion to spectrum, other commonly used names for S(f) are spectral density, power spectral den- 
sity, spectral density function, power spectral density function and power spectrum 

It follows from [3.5.1] and the orthogonal increment property of A ( f )  that 
112 

y k  = 1/2 j eiafi SU) 
-112 

112 

= 112 j (cos 2 n ~ +  i sin 271fi) SU) 
-112 

= ' f o s  2 x f l  Scf) df 
0 

For k = 0. 
1R 

Yo = I S c f )  df 
0 

[ 3.5.41 

[3.5.5] 

Because of [3.5.5], the spectrum gives the distribution of the variance of the process over fre- 
quency and the area under the spectral curve is the variance. 

By taking the inverse transformation of [3.5.4], it follows that the spectral density function 
is given by 

[ 3.5.61 

The above equation shows that the spectrum is simply the Fourier transform of the autocovari- 
ance function. 

The spectrum can conveniently be written in terms of the autocovariance generating func- 
tion. When an ARMA process is expressed as the random shock form of the process in [3.4.18], 
the autocovariance generating function is given as (Box and Jenkins, 1976, p. 8 1) 

* B )  = 0,2W(B)w(B-l) [3.5.7] 

where E-' is the forward shift operator defined by 
1 B- 2, = Z,+i and B4Z, = ZI+k 

Because the spectrum is the Fourier transform of the autocovariance function, it can be written in 
terms of the autocovariance generating function in [3.5.4] as 
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= ~ O , Z I W ( ~ - ' ~ ~ ) I ~  [ 3.5.81 

When utilizing the AR and MA operators. (3.5.81 for an ARMA process is given as 

[3.5.9] 

To calculate the theoretical specbum for an ARMA process. the sum of angles method (Robin- 
son, 1967, p. 64; Omes and Enochson, 1972, p. 139) can be used to recursively calculate the 
sine and cosine terms (see i2.6.31 and [2.6.4]). 

The normalized spectral densityfunction is given by 

s(f) = s(f) 
Yo 

[3.5.10] 

Because scf) is not a function of 02, it is often used instead of Scf).  For the applications in this 
section, the normalized spectral density is employed. 
Examples: Consider obtaining the autocovariance function and the normalized specbum for a 
MA(1) process by employing [3.5.7] and [3.5.10], respectively. When using the autocovariance 
generating function to ascertain yk, the coefficient of either B' or B4 are examined in (3.5.71. 
For a MA(1) process, y(B) = 1 - O1B and the autocovariance generating function is 

%B) = - elB)(i - elB-') 

= ( T & ~ , B - ~  + (1 + e:) - BIB) 

From the coefficients of the backward shift operator, the autocovariances are found to be 

yo = (1 + e:).: 
2 

~ 1 = -  01Oa 

y k = o  k 2 2  

By utilizing I3.5.91, the spectrum for a MA(1) process is 

SU) = 203 1 - el(e-i2xf)i2 
= 2O,2[(1 - elcos2Kf)2 + (e,sin2Kf)2] 

= 2031 - 2e1c0s2~j  + e:) 
From [3.3.10], the variance of a MA(1) process is ( I  + 9:)~: and. consequently, the normalized 
spectrum is calculated using [3.5.10] as 

[3.5.11] 



126 Chapter 3 

3.53 Plots of the Log Normalized Spectrum 

For a white noise process, the normalized spectrum in [3.5.10] reduces to 

S(f) = 2 [ 3.5.12) 

Consequently, all frequencies arc qually important for explaining the process and a graph of 
S(f) against frequency would simply be a straight line. 

When considering an AR(1) process the variance of the process is given in [3.2.16] as 
a;/(l- 4;). The normalized spectrum is calculated from [3.5.10] as 

[3.5.13] 

For > 0, the normalized spectrum in 13.5.131 is easily Seen to be a steadily decreasing func- 
tion for increasing frequency. This means that most of the variance of the time series can be 
represented as low frequency sinusoids. When the natural logarithms of the normalized spec- 
trum are ploaed against frequency, this may improve the ability to distinguish important features 
of the graph. The log normalized spectrums for AR(1) processes with = 0.8 are 
displayed in Figures 3.5.1 and 3.5.2, respectively. The spectrums are calculated at enough points 
to cause the curves to appear to be smooth. As can be seen, low frequencies are dominant in 
both of these figures and consequently the spectrums are said to be “red” (this is because red is 
on the low frrquency end of visible light in the electromagnetic spectrum). Furthermore. 
because the process with = 0.8, the log 
normalized spectrum in Figure 3.5.1 is “flatter” than the plot in Figure 3.5.2. 

for an AR( 1)  process is negative, the spectrum is dominated by high frequencies. 
Figures 3.5.3 and 3.5.4 are plots of the log normalized spectrum for = -0.3 and 8, = -0.8. 
respectively. As shown in these graphs, most of the variance is explained by high fraquencies 
terms in the “blue” end of the frequency scale. In addition, the upswing in the log normalized 
spectrum in the high frequencies is more pronounced for the process with =-0.80 as com- 
pared to the case when 

Other thwrctical spectrums can be readily examined by employing [3.5.10]. Of particular 
interest are the spectrums of the models that have been fitted to various geophysical time series. 
This is because a plot of the spectral density of a fitted ARMA model can be useful in obtaining 
insight into important properties of the original time series. 

Figure 3.5.5 shows a plot of the log normalized spectrum for the constrained AR(3) model 
without $2 that is fitted to the average annual flows of the St. Lawrence River at Ogdensburg. 
New Yo&. The difference equation for this model is given in [3.2.19]. As can be observed in 
Figure 3.5.5, the low frequencies are most important for explaining the variance. From a 

= 0.3 and 

= 0.3 is closer to white noise than the process with 

When 

= -0.30. 
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Figure 3.5.1. Log normalized spectrum for an AR(1) process with = 0.3. 
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figure 3.5.2. Log normalized spectrum for an AR(1) process with 9, = 0.8. 
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Figure 3.5.3. Log normalized spectrum for an AR(1) process with 9, = -0.3. 
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Figure 3.5.4. Log normalized spectrum for an AR(1) process with 9, = -0.8. 
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physical point of view, this makes sense because the Great Lakes, that are located upstream from 
Ogdensburg, have a dampening effect upon extreme weather conditions that may occur in a 
given year. The enormous storage capacity of the Great Lakes produces a long term influence 
upon the flows of the St. Lawrence River and, hence, low frequency terms are dominant in the 
SpectruIlL 

The MA(2) model that is fitted to the average annual tempemture data in the English Mid- 
lands is given in 13.3.121. The plot of the log normalized spectrum for this model is presented in 
Figure 3.5.6. The low frequency end of the spectrum is most important but the high frequency 
terms also assist in explaining the variability in the series. Since the fitted model is in fact close 
to white noise, the high points in the log normalized spectrum are spread over a wide range of 
frequencies. 

Figure 3.5.7 is a graph of the log normalized spectrum for the ARMA(1.1) model fitted to 
the annual tree ring indices for Douglas Fir at the Navajo National Monument in Arizona. The 
difference equation for the fitted model is given in r3.4.15). As shown in Figure 3.5.7 the spec- 
trum is red. This could be due to the fact that the growth of a tree for a given year may be highly 
dependent upon the weather conditions over a long time span. For example, if the climate is 
favourable for healthy growth over a rather long period of time, the tree may be hardy enough to 
withstand severe weather paacms when they do arise without having its growth seriously 
retarded. 

A series of 5405 tree ring widths for Bristlecone Pine at Campito Mountain in Eastern Cali- 
fornia from 3435 B.C. to 1969 A.D., is listed in units of 0.01 mm. The most appropriate ARMA 
model to fit to the first 500 years of this series is an ARMA(4,3) model. As can be seen  for the 
log normalized specbum for this model in Figure 3.5.8, there is a smng  low frequency com- 
ponent. The peak at 0.275 cycledyear corresponds to a period of 1B.275 = 3.6 years. When a 
plot of the first 500 years of the series is examined, it appears that a weak periodic component 
may be present in the data. 

After transforming the data using a square root transformation, the most appropriate model 
to fit to the annual sunspot numbers is a constrained AR(9) model with $3 to left out of the 
model. This model is given in [6.4.3]. The log normalized spectrum in Figure 3.5.9 for the sun- 
spot model shows that the low frequencies are the most crucial for explaining the variance in the 
series. As noted by Granger (1957). the periodicity of the sunspot data follows a uniform dism- 
bution with a mean of about 1 1  years. This is confined by the peak in Figure 3.5.9 at a fre- 
quency of slightly less than 0.1. The cumulative periodogram for the sunspot data in Figure 
2.6.3 also possesses a dramatic jump at a frequency of about 1/11. 
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3 .5q 

that 

Figure 3.5.5. Log normalized spectrum for the consmined AR(3) model without 

is fitted to the average annual flows of the St. Lawrence River at Ogdensburg, New York. 

1 
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Figure 3.5.6. Log normalized spectrum for the MA(2) model fitted to the average 
yearly temperature data in the English Midlands. 
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Figure 3.5.7. Log normalized spectrum for the ARMA(1.1) model fitted to the annual 
tree ring indices for Douglas Fir at Navajo National Monument in Arizona. 
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Figure 3.5.8. Log normalized spectrum for the ARMA(4.3) model fitted to the first 
500 years of the Bristlecone Pine tree ring series at Campito Mountain, California. 
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Figure 3.5.9. Log normalized spectrum for the constrained AR(9) model without q3 to 

that is fitted to the sunspot numbers series transformed using square roots. 

3.6 PHYSICAL JUSTIFICATION OF ARMA MODELS 

3.6.1 Environmental Systems Model of a Watershed 
The main physical components of the hydrological cycle are shown in Figure 1.4.1. As 

explained in Section 1.4.2. the hydrological cycle is the environmental system describing the dis- 
tribution and circulation of water in all its forms on the surface of the land, underground and in 
the atmosphere. When modelling any pan of the hydrological cycle, one would like to employ 
models that encapsulate the key physical characteristics of the subsystem being modelled. In 
other words, one would desire to use models that are physically founded and thereby properly 
describe the essential elements of the physical system. 

For a substantial period of time, hydrologists as well as other environmental scientists have 
been concerned with developing a physical basis for stochastic modelling. In 1963, for example, 
Yevjevich examined the physical justification for using the AR(1) model in [3.2.3]. Moss and 
Bryson (1974) looked at the physical basis of seasonal stochastic models, which are described in 
Part VI of this book. Klemes (1978) as well as Salas and Smith (1981) provided a review of 
research on the physical foundations of stochastic models used in hydrology. Moreover, Par- 
lange et d. (1992) explained how an AR( 1) model can be formulated on the basis of the hydrolo- 
gic budget and soil water transport equation, and demonstrate that the model predictions com- 
pare well with experimental results. 
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Fiering (1967) entertained a watershed in which the annual precipitation is decomposed 
into evaporation, infiltration and surface runoff. By employing the mass balance equation for 
the groundwater storage, he found the correlation structure of annual sueamflow as a function of 
the correlation structure of precipitation which was assumed to be independent or else AR(1). 
Salas and Smith (1981) demonstrated that the conceptual watershed model of Thomas and Fier- 
ing leads to ARMA strcamflows and ARMA groundwater storage. The objective of this section 
is to point out some of the main findings of Salas and Smith (1981) so that the reader can fully 
appreciate the physical jusrifcurion for employing ARMA models in hydrology. 

Figure 3.6.1 displays the environmental systems model for a watershed that Salas and 
Smith (1981) utilize in their research. This systems model is, of course, a component of the 
overall hydrological cycle depicted in Figure 1.4.1. In essence, the physical systems model in 
Figure 3.6.1 shows how precipitation is transformed into runoff or annual riverflow. 

Following the notation provided by Salas and Smith (1981) for the environmental model of 
the watershed shown in Figure 3.6.1, let x, represent the precipitation in year 1. Assume that an 
amount bx, of the precipitation evaporates and an amount ux, infiltrates through the soil into 
groundwater storage. Therefore, (1 - a - b)x, = dr, represents the surface runoff that flows into 
the rivers and streams. Moreover, let be the groundwater storage at the start of year t and 
assume that is the groundwater contribution to runoff. In the above algebraic description of 
the watershed model, it is necessary that 0 5 ab.c,d S 1 and 0 5 u + b S 1. 

x t = Precipitation 

b x ,  - Evaporotion 

( l -a -b )x ,  r- 
Surface of Land 

a x t  = Infi ltration 

2 ,  = 1 Runoff 1 
S t - ,  = Groundwa 

Figure 3.6.1. Environmental systems model of a watershed. 
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As shown in Figure 3.6.1. the total nmoff or riverflow z, is composed of the direct surface 
runoff dr, plus the groundwater contribution cS,-l. Accordingly, 

2, = CS,-I + dr, [3.6.1] 

Furthermore, the mass balance equation for the groundwater storage is 

s, = (1 - c)s,-1+ a, [3.6.2] 

The above two equations can be combined to obtain (Salas and Smith. 1981) 

2, = (1 - C)Z,-l + dr, - [d(l - c )  - UCb,-I [3.6.3] 

When writing down the difference equations for the AR. MA, and ARMA models in Sec- 
tions 3.2 to 3.4, respectively, the mean level p is subtracted fiom the variable z, being modelled. 
Because of this, the theoretical mean of the u, innovations in these models is zero. In order to 
compare the results of this section to the ARMA models, it is convenient to write equations 
(3.6.11 to [3.6.3] in a similar fashion. More specifically, let p, p x  and p, be the theoretical 
means for the variables I,, x, and S,. respectively. By replacing z,, x, and S, by (2, - p), (x, - p x )  
and (S, - pJ), respectively, equations [3.6.1] to [3.6.3] can be equivalently rewritten as 

2, - CI = C(SI-1 - p,) + 4 x 1  - CC,) [3.6.4] 

Sl - PJ = (l - c)(Sl-l - + - pX) [3.6.5] 

2, - CI = (1 - c)(z,-l- I4 + 4 x 1  - P x )  - Id(1-c) - acl(x,-l - ccx) [3.6.6] 

Based upon three different models for the precipitation, Salas and Smith (1981) derive the 
models for the corresponding groundwater storage and riverflows. Below, the results of their 
research are summarized for the three cases of independent, AR(1) and ARMA(1,l) precipita- 
tion. 

3.63 Independent Precipitation 
If the precipitation is independent, it can be written as 

(XI - Px) = a, [3.6.7] 

where px is the mean of the total amount of precipitation x, falling in year f and a, is IID(0.o:) 
as in [3.2.2]. Substituting Cr, - px) from i3.6.71 into [3.6.5] produces 

s, - PJ = ( l  - c)(S,-l - PJ) + a(u,) [3.6.8] 

In terms of the groundwater storage variable S,, the above relationship is simply an AR(1) 

model. When the AR(1) model in [3.6.8] is cornpad to the one in [3.2.1] notice that S, replaces 
z,, (1 - c) = $ I  and a constant a instead of uNty is in front of the innovation term. 

To find the relationship for riverflow, replace (x, - p x )  by a, in [3.6.6] to obtain 
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2, - p = (1 - C)(Z,_l - p) +&, - [d(l - c )  - aclu,-l [3.6.9] 

The above expression for total yearly flow z, is simply an ARMA(l.1) model defined in I3.4.11. 
One can employ [3.4.17] to write the theoretical ACF for the ARMA(1.1) model as 

p& = (1 - c)p,-1 for k > 1 [3.6.10] 

where pL is the theoretical ACF at lag k. 

tionally, this kind of precipitation causes the ARMA(1.1) flow given in [3.6.9]. 
In summary, independent precipitation produces AR(1) storage as shown in [3.6.8]. Addi- 

3.63 AR( 1) Precipitation 

As is demonstrated below for the watershed model in Figurc 3.6.1. AR(1) precipitation 
causes AR(2) groundwater storage and ARMA(2.1) runoff. From [3.2.1]. an AR(1) model for 
the precipitation x, is written as 

(4 - Px) = $l(XI-l - Px) +a, i3.6.111 

To determine the type of groundwater storage that this precipitation creates, substitute [3.6.1 I] 
into i3.6.51 to get 

s, - pS = (1 - c + $I)(sI-l - P S I  - (1 - C)$I(S,-2 - P S I  + @>a, [3.6.12] 

In terms of storage, [3.6.12] is an ARMA(l.1) model. 
By combining [3.6.11] and [3.6.6]. the rivefflow generated by AR(1) precipitation is 

Z l  - p = (1 - c + $l)(Z,-I - P) - (1 - C)$l(Z,-Z - cl) 

+ ( d b ,  - [d( 1 - c)  - ac]a,-1 [3.6.13] 

Hence, AR(1) precipitation causes ARMA(2,l) riverflows. From [3.4.13], the theoretical ACF 
for this ARMA(2,l) model is 

pk = (1 - c + $I)pk-l - (1 - c)$lpk-z fork > 1 [3.6.14] 

3.6.4 ARMA(1,l) Precipitation 

The ARMA(1,l) model for the precipitation x, in Figure 3.6.1 is written as 

(4 - cl,) = 91cr,-l - Px) + 01 - e1a1-1 [3.6.15] 

By substituting [3.6.15] into [3.6.5], the resulting groundwater storage is found to be 

S, - ps = (1 - + a~l)(s,-l - ps) + (1 - C)O+,(S,_~ - ps) + m a ,  - aela,-l [3.6.161 

which is an ARMA(2.1) model. When I3.6.151 is combined with [3.6.6], the model for rivefflow 
is 
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Types of 
Models for 

Precipitation 
Independent 

ARMA(1.1) 

Chapter 3 

[3.6.17] 

Resulting Models 

Groundwater Storage Saamflow Runoff 
AR(1) ARMA(1.1) 
AR(2) ARMA(2,l) 

ARMA(2,l) ARMA(2,2) 

which cornsponds to an ARMA(23) model. The theoretical ACF for the m a 4  in [3.6.17] is 
obtained from [ 3.4.131 as 

p k  = (1 - c + [3.6.18] 

Table 3.6.1 summarizes the kinds of groundwater storage and smamflow models that are 
created by the three different types of precipitation investigated in Sections 3.6.2 to 3.6.4. As 
noted earlier, these results were originally derived by Salas and Smith (1981) for the environ- 
mental systems model of the watershed displayed in Figure 3.6.1. The findings clearly demon- 
strate that ARMA models possess a valid physical basis for modelling this kind of hydrologic 
system. Consequently, in Parts XII, IV and V of the book, ARMA models are fitted directly to 
annual riverflow and other types of yearly environmental time series. 

- (1 - C M ~ ~ C - ~  fork > 2 

3.7 CONCLUSIONS 

The AR and MA classes of models of Sections 3.2 and 3.3, respectively, are members of 
the general family of ARMA models defined in Section 3.4. These models possess sound 
theoretical designs and their important theoretical properties are known. For example, the 
theoretical ACF’s for AR, MA, and ARMA models arc derived in this chapter and a simple algo- 
rithm for calculating the theoretical ACF of any ARMA model is given in Appendix A3.2. 
Knowledge of the theoretical ACF stTucturc of ARMA models is required for identifying the 
most appropriate type of ARMA model to fit to a given data set. As explained in Part III, well 
developed model construction tools are available for fitting ARMA models to stationary nonsea- 
sonal time series by following the identification, estimation and diagnostic check stages of 
model building. Practical applications in Part XII clearly demonstrate that ARMA models are 
ideally suited for describing stationary annual riverflow series as well as other kinds of environ- 
mental data sets. 

In addition to having a rigorous theoretical design and possessing comprehensive model 
building tools, ARMA models possess other inherent assets for ensuring their successful applica- 
tion in the environmental sciences. Firstly, the results of Section 3.6 confm that there is valid 
physical justification for employing ARMA models for fitting to yearly hydrologic time series. 
For example, from Table 3.6.1 one can see that if the annual precipitation is ARMA(l,l), then 
the groundwater storage must be ARMA(2.1) and the yearly streamflow runoff is ARMA(22). 
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Secondly, in Chapter 10 it is clearly demonstrated using annual hydrologic data and simulation 
experiments that ARMA models provide a logical explanation for the famous Hurst 
phenomenon. More specifically, ARMA models arc shown to preserve statistically what arc 
called the Hurst statistics, which an statistics that reflect the long term storage capacity of reser- 
voirs. Thirdly, forecasting experiments using yearly hydrologic and other kinds of time series in 
Chapter 8, show that ARMA models forecast at least as well and usually better than their com- 
petitors. Finally, the basic ARMA model of Chapter 3 provides the solid foundations for 
developing the long memory, seasonal, hansfer function-noise, intervention and multivariate 
models of Chapter 10, and Parts VI to IX, respectively. In fact. by introducing what is called the 
differencing operator to remove nonstationarity, the ARMA model is extended in Chapter 4 so 
that it can handle nonstationary annual time series. 

APPENDIX A3.1 

ALGORITHM FOR ESTIMATING 

THE PARTIAL AUTOCORRELATION FUNCTION 

The P agano algorirhm (1 972) uses the following steps to estimate the PACF up to lag p for 
a specified time series. 
1. Determine the modified Cholesky decomposition (Wilkinson, 1965, p. 229) of the 

estimated autocorrelation matrix Rp given by 

Rp = [A3.1.1] 

where r, is estimated using [2.5.9] and the theoretical ACF is defined in [2.5.4]. The modi- 
fied Cholesky decomposition of Rp is 

R~ = L,D,L,T [A3.1.2] 

where Lp is a unit lower miangular matrix defined by 
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Lp = 
... 

Dp is a diagonal matrix whexe du is the kth typical diagonal entry which is obtained from 
I 

diilG = rk-i - z bkj/,j = bk , i = 1.2, . . . , k-1 
j=  1 

k-1 

j = l  
du = 1 - 1 bulkj 

and 

d l l =  1 

where the sequence bki is defined by the algorithm. 

Solve the triangular system of equations given by 2. 

L p a p  = r,, 

where the unknown vector is 
T ap = (al,%, . . . ,ap)  

rpT= (rl,r2,. . . ,rp) 
and 

3. Calculate the estimates 4kk of the PACF using 

[A3.1.3] 

&p-- , k = 1.2,. . . , p  fA3.1.41 

If the 6& = 1.2, . . . , k) are required for some k S p ,  they can be determined by solving 
the hiangular system of equations 

dkk 

4. 

[A3.1.5] 

From [3.2.13], the estimate for the variance of the white noise sequence for an AR model of 
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[A3.1.6] 

Alternatively, the white noise variance for an AR(k) model may be estimated recursively 
by employing 

[A3.1.7] Oj(k) = Gj(k - 1)(1 - 4&) 

where 

aj(0) = co 

which is the sample variance calculated using [2.5.2] for the given series. 

APPENDIX A3.2 

THEORETICAL ACF FOR AN ARMA PROCESS 

When the panmeters of either a nonseasonal or seasonal ARMA process are known, the 
following algorithm of McLeod (1975) can be employed to determine the theoretical autocovari- 
ance, yk, and also the theoretical ACF, P k .  For the case of a nonseasonal ARMA(p,q) model, the 
algorithm is as follows: 
1.  

2. Then calculate 

Set r = mux(p,q) and = €Io = -1 ,  co = 1 .  

m'n@.k) 

i= I 
ck = -8, + $irk-; for k = 1.2, . . . , q . 

Q 

id 

3' Set bk = -ce,C;d fork = 0.1, . . . , q ,  and Set bk = 0 if k > q.  

up = o then set yk = bko,2 fork = 0,1, . . . , q ;  otherwise 4. 

where A is the (r + 1) by (r + 1) matrix with (ij) entry: 
$i-j, j = 1 ,  i = 1,2, . . . ,r+l 

I$~-~  + 1$~+~-2, j = 2,3, . . . ,r+l ,  i = 1,2, . . . , r+l A,j = 
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PROBLEMS 

3.1 Two stochastic processes, zlr and z 2 ,  have theoretical autocovariance functions at lag k of 
y1k and y2, respectively, where 71k = 0 for k > 2 and y2 = 0 fork > 3. Derive the theoreti- 
cal autocorrelation function (ACF) for the process z31 = zI1 + bza in terms of the theoretical 
autocovariance functions for zl, and z2 where b is a constant. Assume that z lr  and z2 are 

independent of one another. 
3.2 Using equations, clearly explain how Cholesky decomposition works. 
3.3 For an AR(2) process given by 

( 1  - 1.1B + O.24B2)z, = uI 

a) calculate pl.  

b) using p,  as starting values for the difference equation in [3.2.9], determine pk, 
k =2,3. .  . . ,12, 

plot the ACF for this model and comment about its behaviour. c) 
3.4 A constrained AR(3) model without the second AR parameter, h, is written as 

(1 - + 1 ~  - - cl) = 0, 

From basic principles, derive the Yule-Walker equations for this specific AR model. 
35 Compare the advantages and disadvantages of using the following three methods for 

estimating the PACF. Briefly explain how each method works. 

a) Cramer’s rule, 

b) 
c) Pagano’s (1972) technique. 

3.6 Using equations, explain how the Burg algorithm works for estimating the parameters of an 
AR@) model. As an example, show how the Burg algorithm is employed for estimating 
the parameters of an AR(2) model. 

Durbm’s method [see Box and Jenkins (1976) and also Durbin (1960)], 
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3.7 From first principles, derive the theoretical ACF for a MA(2) process. Using the Yule- 
Walker equations, determine the theoretical PACF for this process. 

3.8 For the ARMA(l.1) process in [3.4.2], derive the two main equations that arc quired to 
solve for yk, the theoretical autocovariance function of this process. Use these equations to 
solve for 7k. k = 0,1*29... . 

3.9 An ARIUA model is written as 

(1 -0.8B +O.12B2)5, =(1 - O . ~ B ) U ,  

Rove whether or not this model is stationary. 

lie outside the unit circle. 
3.10 Using the hints given with [3.4.20], prove that for stationarity, the roots of $(B) = 0 must 

3.11 An M A @ , @  model is given as 

(1 - 0 . 7 8 ) ~ ~  = (1 - 0.48 - 0.21B2)al 

Rove whether or not this model is invertible. 
3.12 The constrained AR(3) model for the annual flows of the St. Lawrence River at 

Ogdensburg, New York, is given in [3.2.19] as 

(1 -0.6198 -O.177B3)(z, -6818.63)=~, 

Write this model in inverted form. 
3.13 For the ARMA(1,l) model in [3.4.2], determine 

a) 

b) 

the parameters y, y12 and y3 in the random shock operator, and 

the parameters q. x, and 7c3 in the inverted operator. 

3.14 Express the model given by 

( 1  -0.68)(~,  - 15) = (1 -0.88)~~ 

in 
a) random shock form, and 
b) invertcdform. 

3.15 Rove that the Box-Cox power transformation in [3.4.30] is continuous at k = 0. 
3.16 One method for causing non-normal data to become n o d  is to invoke the Box-Cox 

transformation in [3.4.30]. Subsequent to this, an A M @ , @  model can be fitted to the 
data that now approximately follow a normal distribution. Other approaches are also avail- 
able for modelling non-normal data. Describe other transformations suggested by Jain and 
Singh (1986) for applying to non-normal data sets. Briefly explain how Lewis (1985) and 
other authors cited in his paper handle the problem of modelling data that do not follow a 
normal distribution. 

3.17 By employing [3.5.7] and [3.5.10], obtain the autocovariance function and normalized 
spectrum for an 
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a) AR(1) model. and 
b) ARMA(1,l) model. 

3.18 An environmental systems model of a watershed is depicted in Figure 3.6.1. Suppose that 
the precipitation input to this system is ARMA(2,l). Derive the types of models that this 
pmipitation causes for groundwater storage and strcamflow runoff. Write down the 
theontical ACF's for the precipitation. groundwater storage and runoff models. 

3.19 Section 3.6 explains how ARh4A models can realistically describe the watershed system 
displayed in Figurc 3.6.1. Investigate the validity of ARMA models for describing another 
environmental system such as a system of nscrvoirs or a sewage Qcatmnt facility. 
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NONSTATIONARY NONSEASONAL MODELS 

4.1 INTRODUCTION 

When considering annual hydrological and other natural time series of moderate lengths 
(perhaps a few hundred years), it is often reasonable to assume that a stationary model can ade- 
quately model the data. For example, in Section 10.6.2, stationary ARMA models arc fitted to 
23 time series which arc measured from six different types of natural phenomena that vary in 
length from % to 1164 years. The ability to detect statistical characteristics of a time series 
which change sigruficantly over timt may only become possible when the yearly records cover a 
sufficiently long time horizon. For example, if past climatic records were available or could be 
constructed for a given location in North America, the results would probably support the 
hypothesis of climatic nonstationarity over a long time span. Certainly, as the ice sheets 
advanced and retreated over the North American continent during the past one hundred thousand 
years, average annual temperatures and other climatic factors changed significantly over time. 

Some types of annual time series which are studied in water resources engineering, could 
be nomturionary even over a short time interval. For instance, the average annual cost of 
hydroelectric power and the annual consumption of water of an expanding metropolis constitute 
two time series which increase in magnitude over time. In general, time series that reflect the 
socio - economic aspects of water resources planning may be nonstationary over any time inter- 
val being considered. 

When modelling nonstationary data, a common procedure is to first remove the nonsta- 
tionarity by using a suitable technique. Following this, a stationary model can be fit to the 
resulting stationary time series. This general approach is used in this chapter for nonseasonal 
models and also in Chapter 12 for a certain class of seasonal models. 

4.2 EXPLOSIVE NONSTATIONARlTY 

If an ARMA@,q) process is srurionary. all  of the roots of the characteristic equation 
$(B)  = 0 must lie outside the unit circle (see Section 3.2.2). Consequently, when a process is 
nomrurionary at least one of the roots of $(B) = 0 must lie on or within the unit circle. If at least 
one root is inside the unit circle, the process is said to possess explosive nonsrutionarity. When 
none of the roots arc within the unit circle but at least one of the roots lies on the unit circle, this 
is referred to as homogeneous nonrrurionarity. 

For the case of an ARMA(l.1) process in [3.4.1]. it is necessary that the root $;' of 
(1 -Ole) = 0 possess an absolute magnitude which is grater than unity or, equivalently, 
I $1 I < 1 in order to have stationarity. On the other hand, when a process with one AR and one 
M A  parameter is nonstationary. the root $i' must lie either on or inside the unit circle and hence 
I el I 2 1. Suppose, for example, a model is given as 
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ZI - $lZf-l = 01 - 0.7k1-1 

or, equivalently, 

(1 - $~B)z, = (1 - O.7OB)Ul [4.2.1] 

where a, is normally independently distributed with a mean of zero and a variance of one [i.e.. 
NID(O,l)]. If = 1.1, the root of 1 - l.lB = O  is U1.1 and hence the process possesses explo- 
sive nonstationarity. When zI is assigned a value of, say, 100, I, can be simulated using 

52- 1.121 = ~ 2 - 0 . 7 0 a l  [4.2.2] 

where the (1,’s arc randomly generated on a computer (set Section 9.2). By substituting 
r =3,4,. . .,20, into [4.2.1], a sequence of 20 synthetic data points can be obtained where 
zl = 100. A plot of 20 simulated values for z, is shown in Figure 4.2.1. Notice how the series 
increases greatly over time due to the fact that the mot of the characteristic equation lies just 
inside the unit circle. If is given a value of 1.5, a simulated series can be even more explosive 
than that presented in Figure 4.2.1. The simulated sequence of 20 values in Figure 4.2.2 was 
obtained using [4.2.1] with = 1.5 and a starting value of z1 = 100. In that figure, the series 
incrrases exponentially with time and the last synthetic data point has a magnitude which is 
close to 24,000. 

4.3 HOMOGENEOUS NONSTATIONARITY 

The ARIMA (autoregressive integrated moving average) model is defmed in the next sub- 
section for modelling an annual time series possessing homogeneous nonstationarity. As 
explained in Section 4.3.2, the theoretical ACF for an ARIMA model containing nonstationarity 
dies off slowly. Consequently, if the sample ACF of a given annual time series attenuates, this 
may indicate the presence of nonstationarity and the need to fit an ARMA model to the series. 
Three kinds of time series are employed in Section 4.3.3 to demonstrate how the sample ACF 
dies off slowly for a nonstationary series and how to fit an ARIMA model to each series. 
Finally, Section 4.3.4 describes thne equivalent formulations of the ARIMA model. 

4.3.1 Autoregressive Integrated Moving Average Model 
When at least one of the roots of the characteristic equation lies on the unit circle but none 

of the roots ~ l t  inside the unit circle. this produces a milder type of nonstationarity than the 
explosive case. This is referred to as homogeneous nonrrariomrity because, except for a local 
level and slope, often portions of a simulated series will be similar to other sections. For exam- 
ple, when $1 is set equal to unity in [4.2.1] the model becomes 

2, - Z1-l = a, - 0.7k1-1 

[4.3.1] 

where a, is NID(O.1). Notice that the single root of (1 - B) =.O is of course unity and hence the 
model possesses homogeneous nonstationarity. By choosing a starting value of zl = 100 and 
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Figure 4.2.1. Simulated data for the model in [4.2.1] with 
$1 = 1 . 1  and 21 = 100. 
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Figure 4.2.2. Simulated data for the model in [4.2.1] with 
$1 = 1.5 and 21 = 100. 



148 Chapter 4 

having the computer generate the q ' s ,  a sequence of 20 simulated values can be obtained as 
shown in Figure 4.3.1. It can be seen that this realization behaves in a much more restrained 
fashion than those shown in Figures 4.2.1 and 4.2.2. This kind of behaviour is typical of many 
types of socio - economic series which are encountered in practical applications and therefore the 
modelling of homogeneous nonstationarity has received widespread attention (Box and Jenkins, 
1976). 

I 1 

5 10 15 20 
97' 

0 
SEQUENCE NUMBER 

Figure 4.3.1. Simulated data for the model in r4.3.11 that 
possesses homogeneous nonstationarity. 

The operator V = (1 -B)  in [4.3.1] is referred to as the differencing operotor because the 
root of (1 - B) = 0 lies on the unit circle. When V operates on (z, - p) the level p disappears due 
to the nonstationarity as is shown by 

(1 - BMz, - p) = (2, - p) - (z,-, - Cc.1 = 2, - 21-1 = (1 - BIZ, [4.3.2] 

When a time series of length N is differenced using [4.3.2], adjacent time series values are sub- 
tracted from each other to obtain a sequence of length N - 1. This differencing procedure can be 
repeated just enough times to produce a stationary series labelled w,. In general, a time series 
may be differenced d times to produce a stationary series of length n = N - d given by 

w, = (1 - B)dz,  = Vdz,  

If the original z, time series is transformed by a Box-Cox transformation as explained in Section 
3.4.5, the stationary w, series is formed by differencing the transformed series and is calculated 
using 
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w, = (1 -E)dz ,@)  [4.3.3] 

When homogeneous nonstationarity is present, it is reasonable to assume that the w, series 
in [4.3.3] can be modelled by the stationary ARMA@,q) model in [3.4.3] such that 

W ) W ,  = W)o, [4.3.4] 

where the roots of $(B) = 0 lie outside the unit circle for stationarity of the w, sequence, the d 
roots of (1 - E ) d  arc on the unit circle due to the homogeneous nonstationarity of the z,@) series 
in [4.3.3], and the roots of 8 ( E )  = 0 lie outside the unit circle for invertibility. The process 
defined by [4.3.3] and [4.3.4] is r e f e d  to as an autoregressive inregrared moving average 
(ARlMA) process. The reason for the term "integrated" can be found by rewriting [4.3.3] for 
d = l a s  

[4.3.5] 

It can bc Seen that the z,@) series can be obtained by summing or "integrating" the stationary w, 
process. When the order of differencing is d then zyc) is calculated by "integrating" the w, pro- 
cess d times. To obtain the original z, series from the z/') sequence, the inverse of the Box-Cox 

transformation in [3.4.30] is taken. 
The ARlMA @,d.q) notation is used to indicate the orders of the AR, differencing and MA 

operators, respectively, which are contained in the ARXMA process given by 14.3.31 and [4.3.41. 
When there is no differencing (ix., d = 0), the set of ARIMA@.O,q) processes is the same as the 
family of stationary ARMA@,q) processes defined in Section 3.4. However, when dealing with 
stationary processes it has become common practice to use the term ARMA@,q), whereas 
ARIMA@,d,q) is employed whenever there is a differencing operator (it. ,  d > 0). 

To demonstrate the effects of the differencing operator consider the set of ARIMA(Od,O) 
models given by 

(I  - B)d(z ,  - 100) = u, [4.3.6] 

where 100 is the mean level of the series for d = 0 and this level disappears due to differencing 
when d > 0. When d = 0. the model is white noise. In Chapter 9, general procedures are 
described for simulating with white noise, M A ,  and ARIMA models. Figure 4.3.2 is a plot of 
100 simulated terms from the model where the a,'s are randomly generated on a computer as 
being NID(O.1). It can be seen that the entries in the series appear to be uncornlated and fluctu- 
ate about an overall mean level of 100. The same 100 a, terms that are used for generating the 
sequence in Figure 4.3.2 are also employed to simulate series of length 100 for d = 12 and 3. In 
Figure 4.3.3, a simulated sequence is shown for an ARIMA(O,l,O) model where a starting value 
of zl = 100 is utilized. Notice how the series does not fluctuate about any overall mean level and 
generally tends to incrcase in value over time. Using initial values of zI = 100 and z2 = 102, a 
synthetic series for an ARIMA(O.2,O) model is generated in Figure 4.3.4. In that figure, the local 
fluctuations have largely disappeared and the sequence increases dramatically in value with 
increasing time. Figurc 4.3.5 is a simulated @ace from an ARIMA(O.3,O) model where starting 
values of z1 = 100, z 2 =  102, and z3= 104 are employed. The simulated data increases 
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exponentially over time and the right hand portion of the graph seems to mimic a missile trajec- 
tory. 

4.32 Autocorrelation Function 

satisfies the difference equation 
As explained in [3.4.13] in Section 3.4.2, the theoretical ACF for an ARMA@,q) process 

r4.3.71 

where pk is the theoretical ACF at lag k, and $(B)  is the AR operator of order p. Assuming dis- 
tinct roots, the general solution for this difference equation is 

+ ApGi r4.3.81 

where Gil,G;l, . . . , Gi' ,  are the roots of the characteristic equation $(B)  = 0 and the Ai's are 

constants. Due to stationarity conditions, IGi '  I > 1 for a real root G i l .  Therefore, for increas- 
ing lag k. the term AiG; damps out because lGil c 1. When all of the roots lie outside the unit 
circle, the theoretical ACF in [4.3.8] attenuates quickly for moderate and large lags. However, 
suppose that homogeneous nonstationarity is approached and at least one of the roots GT1 
approaches the unit circle. This, in turn, will cause lGil to go towards unity, AiG; will not die 
out quickly for larger lags and, hence, pL in [4.3.8] will not damp out fast for moderate and large 
lags. 

The behaviour of the theoretical ACF for a process which is approaching homogeneous 
nonstationarity has some important practical implications. When the sample ACF in [2.5.9] for 
a given data set does not die out quickly for larger lags, this may indicate that the data should be 
differenced to remove homogeneous nonstationarity. For example, the sample ACF along with 
the 95% confidence limits is displayed in Figure 4.3.6 for the 100 simulated data points in Figure 
4.3.3 which were generated by an ARIMA(O,l,O) model. Because the sample ACF attenuates 
slowly, this indicates the need for differencing. When the simulated sequence from Figure 4.3.3 
is differenced to remove nonstationarity. the resulting sample ACF and 95% confidence limits 
for the differenced data are as shown in Figure 4.3.7. As expected, after differencing only white 
noise residuals remain. This c o n f m s  that the data were originally generated by an 
ARIMA(O.1,O) model. 

In Figure 4.3.6, the sample ACF possesses large values at lower lags that slowly attenuate 
for increasing lag. However, as noted by Wichern (1973) and Roy (1977), it is not necessary 
that the sample ACF at the first few lags be rather large if nonstationarity is present. In certain 
situations, the sample ACF at low lags may in fact be relatively quite small. However, no matter 
how large the sample ACF values are at the first few lags, when a given data set possesses homo- 
geneous nonstationarity the sample ACF must slowly attenuate for increasing lags. 

When it is suspected that a given data set is nonstationary, the time series should be differ- 
enced just enough times to cause the sample ACF to attenuate fast for the differenced series. 
Following this an ARMA(p.q) model can be fitted to the differenced series which is assumed to 
be stationary. In practice, usually d = 0. 1, or 2 for ARIMA models that are fitted to many types 
of measured series that arise in the natural and social sciences. Furthermore, if the original data 
set is transformed by a Box-Cox transformation this does not eliminate the need for differencing. 
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Figure 4.3.2. Simulated sequence for a white noise model. 
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F i p e  4.3.3. Simulated sequence for an ARIMA(O,l,O) model. 
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Figure 4.3.4. Simulated sequence for an ARIMA(O.2.0) model. 
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Figure 4.3.5. Simulated sequence for an ARIMA(0,3,0) model. 
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Figure 4.3.6. Sample ACF and 95% confidence limits for 
simulated data from an ARIMA(O,l,O) model. 
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Figure 4.3.7. Sample ACF and 95% confidence limits for the differenced data 
generated from an ARIMA(0,l.O) model. 
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Rather, the transformed time series should be differenced as many times as are required to cause 
the sample ACF of the differenced transformed series to damp out quickly for moderate and 
large lags. 

In certain situations, it may be difficult to ascertain whether or not a given series is nonsta- 
tionary. This is because there is often no sharp distinction between stationarity and nonstationar- 
ity when the nonstationary boundary is nearby. As one or more of the roots of the characteristic 
equation approaches the unit circle, an ARMA process gradually changes to a nonstationary pro- 
cess and at the same time the corresponding theoretical ACF attenuates less quickly for increas- 
ing lags. Consequently, when examining the sample ACF for a specified data set, it is not 
always obvious whether or not differencing is required. If the fitted model is to be used for 
simulation, it may be advantageous to choose a model that does not require differencing so that 
the simulated data will fluctuate around an overall mean level. On the other hand, a model with 
a differencing operator may perform better than a stationary model when the model is used for 
forecasting. If employed judiciously, the Akaike information criterion (AIC) (Akaike, 1974) 
may be used as a guide to determine if differencing is required (see Sections 1.3.3 and 6.3). 

4.33 Examples of Nonstationary Time Series 
Annual Water Use for New York City 

The annual water use for New York City is available from 1898 to 1968 in litrcs per capita 
per day (Salas and Yevjevich, 1972) and a graph of the series is portrayed in Figure 4.3.8. 
Because water use has tended to increase over time, the series is obviously nonstationary. The 
general patterns in Figure 4.3.8 are quite similar to those in Figure 4.3.3 for data that were simu- 
lated from an ARIMA(O,l,O) model. The inherent nonstationarity is also confirmed by the graph 
in Figure 4.3.9 of the sample ACF and 95% confidence limits of the New York water use data. 
The estimated ACF in Figure 4.3.9 dies off rather slowly and closely mimics the sample ACF in 
Figure 4.3.6 for the data that were generated from an ARIMA(O,l,O) model. When the water use 
data are differenced, the resulting series is white noise since all of the values of the sample ACF 
for the differenced data fall within the 95% confidence limits. Consequently, the annual New 
York water use series can be modelled by an ARIMA(O.1.0) model. 
Electricity Consumption 

The total annual electricity consumption for the U.S. is available from 1920 to 1970 in mil- 
lions of kilowatt - hours (United States Bureau of the Census, 1976) and a plot of the series is 
given in Figure 4.3.10. Due to the increase in electricity demand over time, the series is nonsta- 
tionary. The behaviour of the electricity consumption series in Figure 4.3.10 closely resembles 
that in Figure 4.3.4 for data that were simulated from an ARIMA(O,2,0) model. As shown in 
Figures 4.3.1 1 and 4.3.12, the sample ACF’s attenuate slowly for the given electricity consump- 
tion series and also the differenced series, respectively. When the series is differenced twice the 
nonstationarity is removed as demonstrated by the sample ACF in Figure 4.3.13. The large 
value at lag one indicates the necd for a MA parameter in the model. At lag 9, the sample ACF 
just crosses the 95% confidence limits and this behaviour may be due to chance alone or could 
indicate the need for another parameter in the model. The sample PACF in Figure 4.3.14 for the 
electricity consumption data may be interpreted as attenuating quickly at the first few lags due to 
the need for a MA component. Based upon this identification information, the most appropriate 
model to the electricity consumption data is an ARIMA(0,2,1) model. Moreover, when one 
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Figure 4.3.8. Annual water use for New York City. 
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Figure 4.3.9. Sample ACF and 95% confidence limits for the annual water 
use of New York City. 
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obtains a maximum likelihood estimate (see Section 6.2) of the Box-Cox parameter X in 
(3.4.301, the estimated value is X = 0.533, which is essentially a square root bmsformation (i.e. 
li = 0.5). The need for a data transformation can be visually detected by examining the graphs of 
a smoothing procedure which divides the original graph of the electricity demand series into 
smooth and rough plots (see Section 22.3). 

Beveridge Wheat Price Index 
The annual Beveridge wheat price index series which is available from 1500 to 1869 

(Beveridge, 1921) is shown in Figure 4.3.15. This series could be closely related to climatic 
conditions and, therefore, may be of interest to hydrologists and climatologists. For example, 
during years when the weather is not suitable for abundant grain production, the price of wheat 
may greatly escalate. If a model can be developed that relates a given hydrologic time series to 
the Beveridge wheat price indices, this model could be employed to extend the hydrologic record 
if it were shorter than the other data set (see Sections 17.5.4, 18.5.2 and 19.3.2). 

From a plot of the Beveridge wheat price indices in Figure 4.3.15 for the period from 1500 
to 1869. it can be seen that the series is nonstationary. Both the level and variance of the time 
series are increasing over time. A change in variance over time of the original data would even- 
tually be mirrored by variance that is not constant in the residuals of the model fitted to the data. 
To rectify the situation from the start, natural logarithms are taken of the series so that the vari- 
ance changes are not as drastic as those shown in Figure 4.3.15. The sample ACF is given for 
the logarithmic series from 1500 to 1869 in Figure 4.3.16. Because the sample ACF attenuates 
very slowly for increasing lag, the logarithmic data set should be differenced to remove the 
inherent nonstationarity. Figure 4.3.17 is a plot of the sample ACF for the differenced loga- 
rithmic data along with the 95% confidence limits where it is assumed that the estimated ACF is 
not significantly different from zero after lag 3. In addition to the large values at low lags, the 
sample ACF just touches the 95% confidence limits at lag 8. The graph of the sample PACF and 
95% confidence limits for the differenced logarithmic series is presented in Figure 4.3.18. A 
rather large value of the estimated PACF exists at lag 2 while there is a value that crosses the 
95% confidence limits at lag 8. Therefore, an AR operator that includes panmeters at low lags 
and also lag 8, may be required in a model that is fitted to the data. After considering a number 
of possible models, it is found that the most appropriate model to fit to the logarithmic series is a 
constrained ARIMA(8.1.1) model where $3 to $7 are not included in the AR operator. 

4.3.4 Three Formulations of the ARIMA Process 
In Section 3.4.3, it is shown how the difference equation for the ARMA@,q) process in 

[3.4.4] can also be written in the random shock form as an infinite MA process in [3.4.18] or else 
in the inverted form as an infinite AR process in [3.4.25]. The results in Section 3.4.3 also hold 
for the stationary w, process in [4.3.4] which is made stationary by differencing the nonstation- 
ary z/’) process in [4.3.3]. By using similar procedures, the ARIMA difference equation for the 
nonstationary z/’) process can also be conveniently expressed in either the random shock or 
inverted forms. 

Treating $ ( B ) ,  8(B), and (1 - B)d  as algebraic operators, the random shock fonn of the 
ARIMA process is 
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Figure 4.3.10. Total annual electricity consumption in the U.S.A. 
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Figure 4.3.12. Sample ACF and 95% confidence limits for the differenced 
annual American electricity consumption series. 
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Figure 4.3.13. Sample ACF and 95% confidence limits for the annual American 
electricity consumption series that is differenced twice. 
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Figure 4.3.14. Sample PACF and 95% confidence limits for the annual American 
electricity consumption series that is differenced twice. 
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Figure 4.3.16. Sample ACF and 95% confidence limits for the logarithmic 
Beveridge wheat price index series. 
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Figure 4.3.17. Sample ACF and 95% confidence limits for the differenced logarithmic 
Beveridge wheat price index series when pk is zero after lag 3. 
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Figure 4.3.18. Sample PACF and 95% confidence limits for the differenced 
logarithmic Beveridge wheat price index series. 

z,@) = [$(B)(l - B ) d ] - * e ( B ) ~ f  

= ( I t  + WlU,-l  + y l 2 q - 2  + . . . 

= (1 + wIB + y2B2  + . . . )a, 

= W(B )Of [4.3.9] 

where I@) is the random shock or infinire MA operufor and wi is the ith parameter or weight of 
y(B). To develop a relationship for ascertaining the y parameters, first multiply [4.3.9] by 
$(B)(l - B)d to obtain 

$(B)( 1 - B)dZ,(k) = $(B)(l - B ) d W ( B ) U ,  

From [4.3.3] and [4.3.4]. B(B)a, can be exchanged for $(B)(l -B)dz,(’) in the previous equation 
to get 

W B )  = $@)(1 -B)dW(B) [4.3.10] 

The yr weights can be readily determined by expressing (4.3.101 as 

$(B)(1 -BldWk = - e k  [4.3.11] 

where B operates on k, yo = 1 ,  v k  = 0 for k < 0 and 81, = 0 if k > q.  As is done for the examples 
in Section 3.4.3, the w weights can be recursively calculated by solving [4.3.11] for 
k = 12, . . . , q’, where q’ is the number of w parameters that are required. 
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In order to write the invertedfonn of the process, the ARIMA process is reformulated as 

(I, = e(B)-+(B)(i - B ) ~ z / * )  

= ( I  - x , B  - * 2 -  . . 

= x(B)z,“) [4.3.12] 

where a(B) is the inverted or infinite AR operuror and xi is the ith parameter or weight of x ( B ) .  
To determine a relationship for calculating the x parameters, multiply [4.3.12] by 8 ( B )  to get 

e(B)o, = e(B)x(B)$)  

By employing [4.3.3] and (4.3.41, $(B)(l - B ) d z / i )  can be substituted for €@)a, in the above 
equation to obtain 

- B ) ~  = e ( B ) x ( B )  [4.3.13] 

The x coefficients can be easily ascertained by expressing the above equation as 

e ( B ) x k  = (1 - B ) ~ $ ~  [ 4.3.141 

where q, = - 1  and Q0= -1 when using [4.3.14] to calculate xk  for k > 0, nk = O  for k < 0, and 
= 0 if k > p or k < 0. By solving [4.3.14] for k = 1.2, . . . , p ‘ ,  where p’ is the number of x 

parameters that are needed, the x weights can be recursively calculated in the same fashion as the 
examples in Section 3.4.3. 

An interesting property of the x weights is when d 2 1 the parameters in the inverted opera- 
tor sum to unity. This fact can be proven by substituting B = 1 into r4.3.131. In that equation, 
$(1) and e(1) are not zero since the roots of the characteristic equations for the AR and MA 
operators lie outside the unit circle. However, (1 - B ) d  = O  for B = 1 and therefore [4.3.13] 
reduces to 

x(1) = 0 

or 
Q 

cxj = 1 
j =  1 

Consequently, ford 2 1 equation [4.3.12] can be written as - 
z p  = z x j z / ! )  + 0, 

j=l 

[4.3.15] 

[4.3.16] 

where the summation term on the right hand side constitutes a weighted average of the previous 
values of the process. 
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4.4 INTEGRATED MOVING AVERAGE PROCESSES 

In Section 4.3.3. it was found that the most appropriate model to fit to the total annual elec- 
tricity consumption in the U.S.A. is an ARIMA(02,l) model. When modelling time series from 
economics and other fields of study, it often turns out that ARIMA models are needed where 
p = O  and both d and q arc greater than zero. Because no AR operator is present, an 
ARIMA(O,d,q) process is often referred to as an integrated moving average ( M A )  process and is 
denoted by IMA(O,d,q). For a derailed description of IMA processes, the reader may wish to 
refer to the book of Box and Jenkins (1976, Ch. 4, pp. 103-114). 

A special case of the IMA(O,d,q) family of processes is the IMA(O,1,1) process given by 

(1 - B ) Z p  = (1 - 9,B)a, 

or 

z p  = z p j  + a, - 9,0,-, 

Keeping in mind that the data, z,, may require a Box-Cox transformation, the above equation can 
be more conveniently written by dropping the h superscript and writing it as 

z, = z I - ,  + 0, - e,a,-, [4.4.1] 

The minimum mean square error forecasts (see Section 8.2) obtained from an IMA(0.1.1) pro- 
cess, are the same forecasts that are produced when using single exponential smoofhing [see, for 
example, Gilchrist (1976, p. 108)l. Because exponential smoothing has been used extensively 
for forecasting economic time series [see, for instance, Makridakis and Wheelwright (1978) and 
Gilchrist (1976)], the IMA(O,l,l) process has received widespread attention. Important original 
research regarding the optimal properties of exponentially weighted forecasts is given by Muth 
( 1960). 

To appreciate the inherent structure of the IMA(O,l,l) process in [4.4.1], the random shock 
form of the process in [4.3.9] is useful. The w coefficients can be obtained by employing 
[4.3.11] for positive values of k .  Fork = 1 

( 1 - B ) v I  = -9, or w1 - wo = -9, 

But yo = 1 and, therefore, w1 = 1 - el. 
W h e n k = 2  

(1 -B)v2=Oorv2-v1  = O  

Therefore, w2 = w1 = (1 - 9,). 

F o r k = 3  

(1 -B)v3 = O  or y3 - v2 = O  
Therefore, y3 = w2 = (1 - 9,). 

In general, 
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[4.4.2] 

From (4.4.21 it can be Sten that the present value of the process depends upon the current random 
shock, at, plus the summation of an equal weighting of all prcvious disturbances. Consequently, 
part of the random shock in any period has a permanent effect due to the weight, (1 - el), while 
the ns t  affects the system only in the c m n t  time period. 

The inverted form of the process can be employed for understanding the properties of an 
IMA(0, l . l )  process. By examining [4.3.14] for positive values of k ,  the x coefficient can be 
ascertained. Fork = 1 

(1 - elB)n, = (1 - B ) $ ~  or X, - el% = - $o 

But q, = 
Whenk=2  

= -1 when determining the x weights and $I  = 0 since p = 0. Therefore, x1 = 1 - el. 

(1-CI,B)x2=(1 - B ) $ 2 ~ r % - 0 1 x 1 = $ 2 - $ I  

Because no AR parameters are present in the IMA(O,l,l)  process, $I  = $2 = 0 and, therefore, 
x2 = o1x, = e,(i  -el). Fork = 3 

(1 -B1B)x3  = (1 -B)$3  or x3 - el% = $3 -q2=0 

Hence, 1c3 = e1x2 = e;(i - el). 
In general, the x coefficient at lag k is determined by 

(1 - 8,B)nk = (1 -BNk or xk - e1xk-l = e;-'(i - 61) 

By substituting for the x parameters into [4.3.16], the inverted form of the process is 
" .  

zI = (1 - e l )py - l z , - j  + U, 
j=l 

[4.4.3] 

The summation term on the right hand side of [4.4.3] constitutes an exponentially weighted mov- 
ing average (EWMA J of the previous values of the process and is denoted as 

" 
:,-l(el) = (1 - el)ce/-lz,-i [4.4.4] 

The weights in [4.4.4] an formed by the sequence of x parameters given by 
( 1  - e , ) , ( l  -el)€ll.(l - Ol)ef,(l - el)$, ... . When 8, has a value of zero, the IMA(0,l.l) pro- 
cess in [4.4.2] reduces to an IMA(O,l,O) process where x1 = 1 and = 0 for k> 1. As the value 
of 8, approaches unity, the II weights attenuate more slowly and the E W M A  in [4.4.4] stretches 
further into he  past of the process. When 8 ,  is equal to one, the M A  and differencing operators 

j=l  
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cancel in [4.4.1] and the process is a white noise IMA(O,O,O) process. 
From its definition in [4.4.4], the recursion formula for the EWMA can be written as 

m) = (1 - e,)zl + el~,-l(el) [ 4.4.5) 

This expression is what is employed for obtaining forecasts using single exponential smoothing 
[see, for example, Makridakis and Wheelwright (1978, Ch. S)]. Although the IMA(O.1,l) P'O- 
cess possesses no mean due to the fact that it is nonstationary, the EWMA in [4.4.4] can be 
regarded as being the location or level of the process. From 14.4.51 it can be Seen that each new 
level is calculated by interpolating between the new observation and the previous level. When 
8, is equal to zero, the process is actually an IMA(0,l.O) process and the current level in [4.4.51 

would be solely due to the present observation. If 8, were close to unity, the c m n t  level, 
Z;(e,), in [4.4.5] would depend heavily upon the previous level, T I - , ( ~ , ) ,  while the current obser- 
vation, zt, would be given a small weight of (1 - 0,). 

Muth (1960) suggests an intuitive approach for interpreting the generation of the single 
exponential smoothing procedure or equivalently the IMA(O.1 , l )  process. From [4.4.3] and 
[4.4.4] 

Z, = ?/-,(el) + U /  

By substituting [4.4.3] into [4.4.5] it  turns out that 

q e , )  = q- , (e , )  + (1 - el)a, [4.4.6] 

The first of the previous two equations demonstrates how the cun-ent value zI is produced by the 
level of the system at time 1-1 plus a random shock added at time t .  However, [4.4.6] shows 
that only a proportion, ( 1  - el), of the innovation has a lasting influence by being absorbed into 
the current level of the process. 

4.5 DIFFERENCING ANALOGIES 

When dealing with discrete data, the differencing operator Vd = (1 - B ) d  can be employed 
to remove homogeneous nonstationarity. It turns out that the differencing operator is analogous 
to differentiation when continuous functions are being studied. Consider, for example, a discrete 
process which is defined by 

fort < T 

c+uI for t 2 T 
z / =  [ [4.5.1] 

where c is a constant which reflects a local level for f 2 T. When uI is assumed to be tID(0.o~). 
the mean level of the zl process before time T is zero while the mean of the process is c for 
t 2 T. The effect of differencing the data once is to remove the local level due to the constant c 
in [4.5.1]. For t>T the differenced series is calculated as 



166 

vz ,  = (1 - B ) q  = 2, - q-1  = (c +a,) - (c +u,-1) 

Chapter 4 

= u, - 111-1 

The above operation is analogous to taking the first derivative of a continuous function of time 
which is given as 

0 for t  < T 

c for t  2T 

The derivative 4 is of course zero for t >T and the local level drops out due to differentiation. 
dt 

Next, consider the analogous effects of differencing operators of order two for the discrete 
case and second order derivatives for a continuous function. Suppose that a discrete process is 
given as 

zI = c + br + u, [4.5.2] 

where b and c are constants. The term, (c + bt), forms a linear deterministic trend while the 
white noise, u,, constitutes the probabilistic component of the process, z,. By ushg a differenc- 
ing operator of order one, the constant c in [4.5.2] can be removed as is shown by 

vz,  = ( 1  - B ) z ,  =z, -z,-1 

= (C + bf + 0,) - (C + b ( f  - 1) + ~ ( - 1 )  

= b + U,  - a,-1 

By employing a differencing operator of order two, the entire deterministic trend can be elim- 
inated. 

v22, = V(V2,) 

= (b + uI - ~ ~ - 1 )  - (b + ~ l - 1  - ~ 1 - z )  

= 01 - k,-, + u,-2 

For the continuous case, a function off may be given as 

y = c + b t  
2 

The value of the fust derivative is = b while d-Y = 0. Hence, the fust order derivative 
dt dt2 

removes the intercept, c ,  while the second order derivative completely eliminates the Linear func- 
tion. 
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4.6 DETERMINISTIC AND flOCHASTIC TRENDS 

The component c + br in [4.5.2] is an example of a deterministic linear trend component 
In general, the &feministic trend component could be any function f ( t )  and after the trend com- 
ponent is removed from the time series being studied, the residual could be modelled by an 
appropriate stochastic model. For example, suppose that the scries is transformed by a Box-Cox 
transformation and following this a trend component f ( t )  and perhaps also an overall mean level 
p are subtracted from the transformed series. If the resulting series were modelled by an 
ARMA@,q) model, the model would be written as 

[4.6.1] 

This type of procedure is similar to what is used with the deseasonalizcd models in Chapter 13. 
Due to the annual rotation of the earth around the sun, there is a physical justification for includ- 
ing a sinusoidal deterministic component when modelling certain kinds of natural seasonal time 
series. Consequently, the data are deseasonalized by removing a deterministic sinusoidal com- 
ponent and following this the resulting nonseasonal series is modelled using an ARMA@,q) 
model. 

The model in [4.6.1] possesses a deterministic trend component. In certain types of series 
with linear trends, the trends may not be restricted to occur at a specified time nor have approxi- 
mately the same slope or duration. Rather, the trends may occur stochastically and there may be 
no physical basis for justifying the use of a deterministic trend. As was demonstrated in the pre- 
vious section, a differencing operator of order two could account for linear trends if they were 
known or expected to be present. Consequently. to allow for stochastic linear trends, the series 
which may have first been changed by a Box-Cox transformation could be differenced twice 
before an ARMA(p,q) model is fitted. In general, srochasric rrendr of order d - 1 are automati- 
cally incorporated into the ARIMA(p.d,q) model 

[4.6.2] 

In certain instances, it may not be clear as to whether or not one should include a deter- 
ministic trend component in the model. Recall that the w, sequence in [4.3.3] is assumed to have 
a mean of p,,, = 0 after the zI(’) series is differenced d times. However, if the estimated mean of 
H, were significantly different from zero this may indicate that differencing cannot remove all 
of the nonstationarity in the data and perhaps a deterministic trend is present. When estimating 
the parameters of an ARIMA model which is fit to a given data set, the MLE (maximum likeli- 
hood estimate) $ of CL, can be obtained (see Chapter 6). Because a MLE possesses a limiting 
normal distribution, by using the estimated SE (standard error) and subjectively choosing a level 
of significance, significance testing can be done for the estimated model parameter. For 
instance, if the absolute value of 3 is less than twice its SE. it can be argued that 3 is not sigmfL 
cantly different from zero and should be omitted from the model. Likewise, when estimating the 
sample ACF, the mean of the differenced series can be set equal to zero when it is thought that a 
deterministic trend component is not present. For the sample ACF’s of differenced series that 
are examined in this chapter (see, for instance, Figure 4.3.13). it is assumed that the mean of the 
differenced series is zero. On the other hand, when a deterministic trend is contained in the data, 
the mean of the differenced series should be removed when estimating the sample ACF. This 
will preclude the masking of information in the plot of the sample ACF that can assist in 
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identifying the AR and MA parameters that arc required in a model which is fitted to the series. 

4.7 CONCLUSIONS 

As demonstrated by the interesting applications of Section 4.3.3, the ARIMA@,d,q) model 
in [4.3.4] is capable of modelling a variety of timc series containing stochastic a n d s .  The first 
step in modelling a given time series is to ascertain if the data are nonstationary. If, for example, 
the sample ACF attenuates slowly, this may indicate the presence of nonstationarity and the need 
for differencing to remove it. Subsequent to obtaining a stationary series, an ARMA@,q) model 
can be fitted to the differenced data. If the model residuals are not homoscedastic (i.e., have 
constant variance) and/or normally distributed, the original time series can be transformed using 
the Box-Cox transformation in [3.4.30] in order to rectify the situation. Following this, an 
ARIMA@d,q) model can be fitted to the transformed time series by using the procedure just 
described for the untransformed one. 

For the ARIMA@,d.q) model in [4.3.4], it is assumed that d can only have values that arc 
non-negative integers. A generalization of the ARIMA model is to allow d to be a real number. 
For a specified range of the parameter d ,  the resulting process will possess long memory (see 
Section 2.5.3 for a definition of long and short memory processes) and, consequently, this pro- 
cess is discussed in more detail with other long memory processes in Part V. As explained in 
Chapter 11 in Part V, when d is allowed to take on real values, the resulting model is referred to 
as a fractional ARMA or FARMA process. However, before presenting some long memory 
processes in Part V, the identification estimation, and diagnostic check stages of model construc- 
tion are described in Part III for use with the stationary and nonstationary linear time series 
models of Part II. Many of the model building tools of part III are modified and extended for 
employment with the FARMA models of Chapter 11 as well as the many other types of models 
presented in the book and listed in Table 1.6.2. 

PROBLEMS 

4.1 

4.2 

4.3 

List the names of five types of yearly time series which you expect would be nonstationary. 
Give reasons for your suspicions. Refer to a journal such as Water Resources Bulletin, Sto- 
chastic Hydrology and Hydraulics, Journal of Hydrology, Environmetrics or Water 
Resources Research and find three examples of yearly nonstationary series. How did the 
authors of the paper, in which a given series appeared, model the nonstationarity? 
In Section 4.3.1, it is pointed out that a time series should be differenced just enough times 
to remove homogeneous nonstationarity. What happens if you do not difference the series 
enough times before fitting an ARMA model to it? What problems can arise if the series is 
differenced too many times? 
By referring to the paper of Roy (1977), explain why the values of the sample ACF at the 
first few lags do not have to be large if nonstationarity is present. 
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4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

An ARIMA(1,2,1) model is written as 

(1 -B)*(l - 0 . m ) ~ ~  =(1  -0.5B)o1 

Write this model in the random shock and inverted forms. Determine at least Seven ran- 
dom shock and inverted parameters. 
For the model in question 4.4, simulate a sequence of 20 values assuming that the innova- 
tions arc NID(0,l). Simulate another sequence of 20 values using innovations that ax 
NID(0.25). Plot the two simulated sequences and compm the results. To obtain each syn- 
thetic data set, you can use a computer programming package such as the McLeod-Hipel 
Time Series package referred to in Section 1.7. Moreover, you may wish to examine syn- 
thetic data generated from other types of ARIMA models. 
Write down the definition of a single exponential smoothing model. Show why the fore- 
casts from this model are the same as the minimum mean square error forecasts obtained 
fiom an IMA(0.1,l) model. 
Give the definition of a random walk process. What is the relationship between a random 
walk process and an IMA(O,l,l) process? 
For each of the series found in question 4.1, explain what type of trend do you think is con- 
tained in the data? How would you model each series? 
Outline the approaches that Pandit and Wu (1983) suggest for modelling stochastic and 
deterministic trends in Chapters 9 and 10, respectively, in their book. Compare these to the 
procedures described in Section 4.6 and elsewhere in this book. 

4.10 Describe the procedure of Abraham and Wu (1978) for detecting the need for a determinis- 
tic component when modelling a given time series. Discuss the advantages and drawbacks 
of their approach. 
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In Part II, a range of flexible types of nonseasonal models are defined and some useful 
theoretical properties of these models are presented. More specifically, Chapter 3 describes 
AR, MA, and ARMA models, which can be applied to stationary nonseasonal time series. 
Chapter 4 deals with ARIMA models which can be fitted to nonstationary nonseasonal time 
series. Within Chapters 3 and 4, it is pointed out that one can decide upon which particular kind 
of model to fit to a given data set by selecting a model whose theoretical properties are compati- 
ble with the statistical properties of the time series. For example, if the sample ACF of the data 
only has values which are significantly different from zero at lags one and two, one may wish to 
f i t  a MA(2) model to the time series because it is known that the theoretical ACF of a MA(2) 
model is exactly equal to zero after lag 2 (see Section 3.3.2). Although the foregoing and other 
aspects of how to fit models to data are described in Part II, there are many other valuable tools 
that are required in order to use the theoretical models of Part I1 in practical applications. Conse- 
quently, the major objectives of Part III are to present a comprehensive methodology for 
applying theoretical models to actual time series and to describe a wide range of useful 
tools for implementing this methodology in practice. 

The overall methodology to fitting models to data is referred to as model construction. As 
portrayed in Figure 1II.l and also Figure 1.3.1, model construction consists of identification, esti- 
mation and diagnostic checking. Before starting these three model development stages, one 
must decide upon which families of models should be considered for fitting to a time series. If, 
for example, one wishes to determine the most appropriate model to fit to a stationary nonsea- 
sonal time series, then the ARMA(p,q) models defined in Chapter 3 can be entertained. At the 
identification stage the most suitable models to fit to the data can be selected by examining 
various types of graphs. Although sometimes it is possible to choose the best model based 
solely upon identification results, in practice often it is not obvious which model is most 
appropriate, and hence two or three models must be tentatively entertained. For the case of 
ARMA@q) models, one must determine the number of AR and MA parameters which may be 
needed in the model. Efficient estimates of the model parameters can be obtained at the estima- 
tion stage by employing the method of maximum likelihood. Following this, the fitted models 
can be checked for possible inadequacies. If the diagnostic tests reveal serious model anomo- 
lies for the fitted model which appears to be most appropriate. then the necessary model modifi- 
cations can be made by repeating the three stages of model development. As shown in Figure 
IU.1, the model which is ultimately selected can then be used for application purposes. 
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Figure 111.1. Model construction. 

Specific model construction tools that can be used with the theoretical models of Part II 
are described in Part III. In particular, useful identification, estimation and diagnostic check 
techniques are presented in Chapters 5 to 7, respectively. When applying the many other 
kinds of models described later in this book in Parts V to M, one can follow the Same basic 
methodology given in Figure 1II.l. As a matter of fact, many of the methods and algorithms 
presented in Part HI, or appropriate variations thereof, can be used as part of the model building 
for the other kinds of models in this book. 

Adherence to the three phases of model development is analogous to a client obtaining a 
tailor-made suit from a merchant. When the customer enters the tailor’s shop, he must decide 
upon the style and colour of the suit that he wants and the tailor then “identifies” the pattern for 
the suit by taking appropriate measurements of his client. At the next stage, the tailor cuts out 
his pattern on a bolt of cloth and sews the suit together. Finally, the customer determines if the 
suit fits properly by trying on the new clothing and viewing himself in front of a mirror. If 
alterations are required, the tailor can take suitable measurements and then make the necessary 
adjustments to the suit. This procedure can be repeated until the client is satisfied with his new 
attire. The details of the tailor’s three step approach to doing business are now described in the 
next three chapters. 
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CHAPTER 5 

MODEL IDENTIFICATION 

5.1 INTRODUCTION 

Because observations mcasurtd from natural phenomena possess an inherent probabilistic 
structure. time series models are employed for modelling water resources and environmental sys- 
tems. The purpose of this chapter is to present informative graphical methods for identifying the 
most appropriate type of ARMA (Chapter 3) or ARLMA (Chapter 4) model to fit to a specified 
nonseasonal sequence of observations. Following a discussion of modelling philosophies in the 
next section, some useful graphical techniques are described in Section 5.3. Applications 
presented in Section 5.4, as well as identification examples introduced in Part 11, clearly demon- 
strate that the identification methods can be conveniently applied in practice to natural time 
series. Prior to the conclusions, other identification methods for designing ARMA and ARIMA 
models are discussed in Section 5.5. 

As shown in Rgun III.1, the next step after model identification is parameter estimation. 
In Chapter 6 procedures are given to obtain efficient estimates for the parameters of a nonsea- 
sonal ARMA or ARIMA model and it is explained how an information criterion can be 
employed for model selection after the value of the maximized likelihood is known. Chapter 7 
then deals with methods for checking the adequacy of the fitted models to ensure that relevant 
modelling assumptions have not been violated. Although only nonseasonal models are con- 
sidered in Chapters 5 to 7, the three stage approach to model construction is also utilized for the 
other types of stochastic models which are discussed in this book. Furthermore, numerous prac- 
tical applications demonstrate the flexibility and usefulness of the procedures which are 
presented. 

5.2 MODELLING PHILOSOPHIES 

53.1 Overview 

Hydrologists are aware of certain types of problems which arise when modelling natural 
time series and these issues are outlined in Section 5.2.2. Since the practitioner is usually con- 
fronted with selecting the most suitable model from a large set of possible models for fitting to a 
given time series, the general topic of model discrimination is addressed in Section 5.2.3. When 
choosing the most appropriate model, the fundamental modelling principles of Section 5.2.4 can 
be satisfied by following the three stages of model building described in the general introduction 
to Part III as well as Section 5.2.5. Other issues related to the philosophy of model building are 
discussed in Section 1.3. Finally, for an overview on the philosophy of model building as well 
as an earlier version of the ideas expressed in this section, readers can refer to a paper presented 
by Hipel (1993) at a stochastic hydrology conference held in Peniscola, Spain, in 1989. 
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5.23 Hydrological Uncertainties 
Engineers are concerned with the role that uncertainty plays in the design, analysis, opera- 

tion and control of water resource and environmental systems. When a stochastic or time series 
model which is fitted to a hydrological time series is to be employed in various water resources 
applications, three types of uncertainties have been delineated (Kisiel and Duckstein, 1972; 
Wood and Rodriguez-Iturbe, 1975; Vicens et al., 1975; Wood, 1978). Firstly, there is nafural 
uncertainty which is the uncertainty inherent in the natural phenomenon itself. By fitting a suit- 
able time series model to the time series measured from the phenomenon under consideration, it 
is hoped that this natural uncertainty will be reflected in the mathematical structure of the model. 
Because the parameters of the model must be estimated statistically from a finite amount of his- 
torical data, the second kind of uncertainty is labelled parameter uncertainty. Finally, due to the 
fact that a particular model of the phenomenon may not be the "true" or best model, this creates a 
third category of uncertainty which is model uncertainty. Since the latter two types of uncer- 
tainty are dependent upon the available data, these have been jointly referred to as information 
uncertainfies (Vicens et al., 1975). 

Traditionally, the field of stochastic hydrology has been mainly concerned with the prob- 
lem of natural uncertainty. A host of stochastic models have been developed to model natural 
time series and many of these models are discussed throughout this book. For instance, in addi- 
tion to ARMA models, fractional Gaussian noise models and approximations to FGN have been 
suggested for modelling annual geophysical data sequences (see Part V). Parameter uncertainty 
can be measured by the standard errors for the parameter estimates and a procedure for incor- 
porating parameter uncertainty into simulation studies is presented in Section 9.7. As reported 
by hydrological researchers (Vicens et al., 1975; Wood, 1978). little work has  b e e n  done regard- 
ing the issue of model uncertainty. Consequently, within this chapter as well as other parts of 
the book, methods are described for alleviating the problem of model uncertainty. Finally, Beck 
(1987) provides a comprehensive review of the analysis of uncertainty in water quality model- 
ling. 

5.23 Model Discrimination 
Model uncertainty arises because the practitioner must select the most appropriate model 

from the total array of models which are available for fitting to a given time series. Hence, 
discrimination procedures are required for choosing the most suitable model. The basic idea 
behind model selection is to choose a model from the set of models under consideration such 
that the selected model describes the data best according to some criterion. Ljung (1978) 
presents a unified description of model discrimination methodr and other comprehensive articles 
can be found in the available literature (see for example Caines (1976. 1978) and Kashyap and 
Rao (1976)). Criteria for choosing the most suitable model include the capability of a model to 
satisfy the identification standards in Sections 5.3.2 to 5.3.7, the requirement that the model resi- 
duals pass sensitive diagnostic checks (see Chapter 7), the ability of a model to forecast accu- 
rately (see Table 1.6.3 for a summary of the forecasting work in the book), the capability of a 
model to preserve important historical staristics (see Sections 10.6 and 14.8 for nonseasonal and 
seasonal models, respectively), and other methods which are discussed in Section 6.3. A particu- 
larly flexible approach to model discrimination is the Akaike information criterion (AIC) 
(Akaike, 1974) which is described in Section 6.3 and initially referred to in Section 1.3.3. 
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5.2.4 Modelling Principles 

An attractive feature of the AIC is that it automatically accounts for the certain fundamen- 
tal modelling principles. As expressed by the principle of Occam's razor described in Section 
1.3.1, one precept of stochastic model building is to keep the model as simple as possible. This 
can be effected by developing a model which incorporates a minimum number of parameters in 
order to adequately describe the data. Box and Jenkins (1976) recommend adhering to the prin- 
ciple of model parsimony (i.e. keeping the number of model parameters to a minimum) and this 
rule has also been of concem to hydrologists (see, for example, Jackson (1975), Tao and Delleur 
(1976), Hipel et al. (1977) and McLeod et al. (1977)). Besides designing a parsimonious model, 
a second modelling tenet is to develop a model that imparts a good sfulisficul fit to the data. To 
achieve a good statistical fit, efficient estimates must be obtained for the model parameters 
(Chapter 6) and the fitted model must pass rigorous diagnostic checks to insure that the underly- 
ing modelling assumptions are satisfied (Chapter 7). 

5.25 Model Building 
In practice the key modelling dochines of parsimony and good statistical fit can be satisfied 

by following the identification, estimation and diagnostic check stages of model construction. 
This common sense approach to model development has been advocated by both statisticians 
and engineers (see for example Box and Jenkins (1976), Box and Tiao (1973), Kempthorne and 
Folks (1971), Tao and Delleur (1976). and Hipel et al. (1977)). A flow chart for carrying out 
model construction is displayed in Figure III.1. As is explained in Section 6.3, an informuh'on 
criterion can be used in conjunction with the three modpl building stages in order to arrive at a 
simple model which fits the data well. 

5.3 IDENTIFICATION METHODS 

5.3.1 Introduction 

When modelling a given data set a large number of models are often available for con- 
sideration. The purpose of the identification stage is to ascertain the subset of models that 
appear to hold more promise for adequately modelling the time series. For the case of nonsea- 
sonal ARIMA models it is necessary to determine the order of differencing if homogeneous non- 
stationarity is present, to ascertain the approximate number of AR and MA parameters that arc 
required, and possibly to decide if a Box-Cox transformation is needed (see Section 3.4.5 for a 
discussion of the Box-Cox transformation). When the observations are stationary, differencing 
is, of course, not required and one must only decide upon the ARMA model parameters that are 
needed for adequately describing the time series that may be transformed using a Box-Cox 
transformation. By employing the simple graphical identification tools described in this section, 
usually the number of models which are worthwhile entertaining can be reduced to just a few 
models. In many applications, the best ARMA or AIUMA model is readily evident from the 
identification studies. Although each identification technique is discussed separately, in practi- 
cal applications the output from all the techniques is interpreted and compared together in order 
to design the type of model to be estimated. 



176 Chapter 5 

5.33 Background Information 

Important ingredients to the identification stage are a sound understanding of the 
phenomenon being modelled and also an appreciation of the mathematical attributes and limita- 
tions of the stochastic models that a . ~  being considered to model the observations from that 
phenomenon. For example, as noted in Section 2.4.1 it is often reasonable to assume that sta- 
tionary models can be fit to many kinds of annual hydrological and geophysical series of up to a 
few hundred years in length if the series have not been sigruficantly influenced by external 
interactions. When there arc external interventions such as certain types of land use changes, the 
effects of the interventions upon the mean level of the time series being modelled can be readily 
handled by employing the intervention model of Part VIIL However. when no interventions are 
present, it is argued in Chapter 10 that the inherent mathematical properties of the ARMA 
models make these models more attractive for modelling annual data than the less flexible frac- 
tional Gaussian noise models. This fact is further substantiated by using rigorous discrimination 
procedures to determine which type of model is more suitable according to criteria such as the 
Akaike information criterion (see Section 6.3) and also forecasting ability (see Chapter 8). 

No matter what class of models is being entertained for modelling a given time series, the 
success of any modelling study is of course highly dependent upon the quantity and quality of 
the data (see Sections 1.2.3 and 19.7). With regard to the minimum amount of information that 
should be available when fitting a model to a time series various "rules of thumb" have been  sug- 
gested. In a typical ARIMA modelling application of nonseasonal data it is usually preferable 
that there be a minimum of about 50 data points to get reasonably accurate MLE's (maximum 
likelihood estimates) for the model parameters (Box and Jenkins, 1976). For a fixed number of 
model parameters, the smaller the number of observations the larger the SE's (standard errors) of 
the parameter estimates will be and, hence, the relative magnitude of the SE's and parameter 
estimates can be examined when there are not many data points. If the SE's are quite large, the 
fitted model should be used with caution in certain kinds of applications and for simulation stu- 
dies it may be advisable to consider parameter uncertainty as is discussed in Section 9.7. 
Another means to check roughly if there are sufficient data is to consider the ratio of the number 
of observations to the number of model parameters. If this ratio is less than three or four to one, 
some researchers have recommended either a more parsimonious model should be employed or 
else the model should not be utilized until more information becomes available. Consequently, 
because seasonal models (see Part VI) almost always require more parameters than nonseasonal 
models the minimum number of data points needed is lower for nonseasonal models. 

Nonseasonal models are fitted to data such as annual riverflows and precipitation series 
which must be collected over quite a few years. Accordingly, for present day purposes the 
design of a data collection procedure may not be of immediate concern to the modeller since 
only the information which is currently available can be used when fitting stochastic models to 
observed time series. Nonetheless. the quality of data can be greatly enhanced by collecting the 
information properly and, consequently, network design is of great import to engineers (see Sec- 
tion 1.2.3). Knowing the mathematical properties of the model which may be eventually used to 
analyze the collected data may aid in the design of the data collection scheme. For example, 
Lettenmaier et al. (1978) suggest how data should be collected based upon the power of the 
intervention model (see the discussion in Section 19.7). 
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After a data collection scheme has btcn implemented, various factors can affect the quality 
of a data set. If there are errors in the measurement of the time series, this may influence the 
form of the model which is fitted to the data sequences. When the measurement errors arc 
known, they should be removed before fitting a model to the timc series. Systematic errors may 
adversely affect the estimates for the AR and M A  parameters whereas random measurcment 
errors may inflate the size of the estimated variance for the model residuals. 

Often there arc one or more missing values in a given time series. This is especially true 
for an environmental time series such as water quality measurements where data are sometims 
not collected on a regular basis. When measuring rivefflows, the measuring gauge may break 
down occasionally or perhaps may become inaccessible during severe climatic conditions and 
hence methods are n d e d  to estimate the missing information. In Section 19.3, a number of 
useful approaches are described for estimating missing observations. For example, when there 
arc only a few missing values, a special type of intervention model can be u s e d  

When there is a known intervention, this can be accounted for by properly designing an 
intervention model (see Part vm). For example, in Section 19.2.4, the effect of the Aswan dam 
upon the average annual flows of the Nile River is conveniently modelled using the method of 
intervention analysis. However, in certain situations the time of occurrence of an intervention or 
the fact that there was an intervention may not be known. For instance, the date when a precipi- 
tation gauge was replaced by a new type of gauge may not have been recorded and eventually 
the changing of the gauge may have been completely forgotten. Likewise, the relocation of a 
precipitation gauge may not have been written down in the book where the historical data are 
listed. Potter (1976) maintains that some precipitation time series in the United States may be 
"non-homogeneous" due to unknown interventions such as those just mentioned. Whatever the 
reason, unknown interventions sometimes occur and should be watched for when analyzing data 
sequences so that the series can be properly modelled 

To check for the presence of unknown interventions and also other statistical characteristics 
of a given time series, simple graphical procedures can be employed. Tukey (1977) refers to the 
numerical detective work required to discover important properties of the data as exploratory 
doru unulysis. A wide variety of simple graphical and numerical methods are available for use in 
exploratory data analysis. These methods are especially useful for dealing with messy environ- 
mental data, which may, for example, have many missing observations, be nonnormally distri- 
buted and possess outliers. A detailed discussion of exploratory data analysis is presented in 
Part X along with extensive water quality applications while introductory comments are put for- 
ward in Section 1.2.4. The exploratory data analysis methods described in Section 22.3 are: 

1. 

2. box-and-whisker graphs (Section 22.3.3); 

3. cross-comlation function (Section 22.3.4); 

4. Tukey smoothing (Section 23.3.5); 

5. autocornlation function (Section 23.3.6 and [2.5.4]). 

In this section, exploratory techniques which an specifically well designed for identifymg 
ARMA or ARIMA models are discussed. Section 5.3.3 and also Section 22.3.2 explain how a 
plot of the time series under consideration can reveal many of the essential mathematical 
features of the data. After surveying the general properties of the series using a plot of the series 

time series plots (Section 22.3.2); 
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or other exploratory data analysis tools, the identification techniques described in Sections 5.3.4 
to 5.3.7 are employed for determining the approximate orders of the operators of an ARMA or 
ARIMA model which could be fitted to the time series. 

After a model has been fitted to the sample data, confirmatory duta analysis techniques can 
bc employed to investigate the capabilities or characteristics of the fitted model (Tukey, 1977) 
and, hence, the data set it describes. For example, in Section 10.6 it is shown how significance 
testing can tx used to determine whether or not important historical statistics arc preserved by 
the fitted model. In Section 8.3 the relative forecasting performance of the different kinds of 
nonseasonal models are examined. A general description of both exploratory and confirmatory 
data analysis is presented in Sections 1.2.4 and 22.1 as well as the overview to Part X. 

5.33 Plot of the Data 

A visual inspection of a graph of the given observations against time can often reveal both 
obvious and also less apparent statistical characteristics of the data. Identification information 
which may be gleaned from a perusal of a graph include: 

1) Autocorrelation - Linear dependence existing among observations may cause certain types 
of loose patterns in the data. For instance, at certain sections of the time series the observa- 
tions may be consistently above an overall mean level whereas at other locations values 
below the mean level may be grouped together. Hydrologists refer to this property as per- 
sistence and from a statistical viewpoint this means that the data are probably autocom- 
hted. The form of the data set displayed in Figure 2.3.1 shows that the historical observa- 
tions of the annual flows of the St. Lawrence River at Ogdensburg, New York are corre- 
lated. The same conclusion holds for the simulation sequences in Figures 2.3.2 and 2.3.3 
which were generated by the AR model in [3.2.19] fitted to the St. Lawrence flows. A 
situation where the data do not seem to follow any kind of pattern may indicate that the 
time series is white noise. The behaviour of a white noise sequence is exemplified by the 
simulated white noise series in Figure 4.3.2. 

Seasonality - Usually it is known in advance whether or not a data set is seasonal and a 
graphical display will simply c o n f m  what is already obvious. For geophysical data 
seasonality is of course caused by the annual rotation of the earth about the sun and hence 
usually only annual data are nonseasonal. Figure VI. 1 at the start of the part of the book on 
seasonal models displays a graph of the average monthly flows in m3/s of the Saugeen 
River at Walkerton, Ontario, Canada, from January 1915 until December 1976. The cyclic 
behaviour of the graph demonstrates that the series is indeed seasonal. Three types of sea- 
sonal models for fitting to rime series are described in Chapters 12 to 14 in Part VI. 
In certain situations it may not be obvious before examining a plot of the data whether or 
not a given series is seasonal. This may be the case for a socio-economic time series such 
as monthly water demand for a highly industrialized city located in a temperate climate. 
Some types of monthly or weekly pollution time series may also exhibit nonseasonality. 
For example, in Section 19.4.5 a nonseasonal intervention model is fitted to the series of 
monthly phosphorous levels in a river shown in Figure 1.1.1. 

Nonstationarity - The presence of nonstationarity is usually suspected or known before 
plotting the time series. The explosive type of nonstationarity which is discussed in Sec- 
tion 4.2 may be indicated by plots similar to those given in Figures 4.2.1 and 4.2.2. 

3) 
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Examples of homogeneous nonstationarity described in Section 4.3 are shown in Figure 
4.3.1 and also Figures 4.3.3 to 4.3.5. Other illustrations of homogeneous nonstationarity 
a~ displayed by the annual water use series in Figure 4.3.8, the yearly electricity consump- 
tion in Figure 4.3.10, and also the Beveridge wheat price indices in Figure 4.3.15. These 
figures clearly indicate various manners in which data may not follow an overall mean 
level. 
Trends - The presence of trends in the data is a form of nonstationarity. As discussed in 
Section 4.6, trends can be classed as either deterministic or stochastic. Deterministic trends 
can be expressed as a function of time as shown in (4.6.11 whereas stochastic trends can 
often be accounted for by using the differencing operator of sufficiently high order in 
[4.3.3]. If trends are present in the plot of a data that do not appear to follow the path of a 
deterministic function but rather evolve in a stochastic fashion, then differencing may 
account for these trends. Trends may not only affect the level of a series but they may also 
be associated with changes in variance in the series. Consider, for example, the average 
monthly water useage in millions of litres per day depicted in Figure VI.2 for the city of 
London, Ontario, Canada. from January, 1966, until the end of December, 1988. This fig- 
ure reveals that the water demand data fluctuates in a cyclic pattern due to the seasonality 
and contains a linear trend component coupled with an increase in variance in later years as 
the data spreads further apart around the linear trend for increasing time. An appropriate 
Box-Cox transformation from [3.4.30] has the effect of pulling the data together and reduc- 
ing the change in variance over time for the time series given in Figure VI.2 and modelled 
in Section 12.4.2. 

Needfor u rrunsformurion - Figure VI.2 is an example of a data plot where it appears from 
a graph of the original data that a Box-Cox trurqformution is needed. If a transformation is 
required but this fact is not discovered at the identification stage, the need for a data 
transformation will probably be detected at the diagnostic check stage of model develop- 
ment  when the properties of the residuals are examined (see Chapter 7). In practice, it has 
been found that a transformation of the data usually does not affect the form of the model 
to fit to the data (i.e. the orders of p ,  d and q in an ARIMA(p,d,q) model). However, this is 
not true for all situations and as pointed out by Granger and Newbold (1976). certain 
transformations can change the type of model to estimate. Consequently, when a specific 
form of transformation is decided upon at the identification stage, it is preferable to com- 
plete all three stages of model construction using the transformed data. On the other hand, 
if the requirement for a Box-Cox transformation is not determined until the diagnostic 
check stage, it is usually not necessary to repeat the identification stage for the transformed 
data. Instead, the parameters of the model can be estimated for the transformed data and 
only if diagnostic checks reveal the model is unsatisfactory would it be necessary to return 
to the identification stage to ascertain the proper orders of p .  d and q. 

Extreme values - The presence of extreme values or outliers is easily detected in a graphical 
display of the data. When dealing with riverflow time series, large values could be due to 
excessive precipitation while extremely low flows occur during times of drought. If inves- 
tigation into the collection and processing of the data indicates that the extreme values 
appear to be correct, various courses of action are available to ensure that the outliers are 
properly handled. When an outlier is caused by a known external intervention, an interven- 
tion component can be introduced into the model to allow for this (see Chapter 19). 

4) 

5 )  

6 )  
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Sometimes a transformation such as a Box-Cox aansformation (see Section 3.4.5) may 
reduce undesirable consequences that outliers may have in stochastic model building. For 
example. taking natural logarithms of the data may pull the observations together so that 
the outliers do not have a significant detrimental effect upon the residuals of the fitted 
model. Other types of data transformations arc also discussed by Granger and Orr (1972). 
Of particular interest is the method of data clipping which was also used for various types 
of applications by Tukey (1962). Rothenberg et al. (1964). Fama and Roll (1968,1971) and 
Rosenfeld (1976). To clip the time series. the data are firstly ranked from smallest to larg- 
est. If it is desired to clip only the larger observations, the last k percent of values arc 
replaced by the mean of the remaining (100-k) percent of data. When it is required to clip 
both the smaller and larger outliers, the last k/2 percent and also the first kR  percent of 
values can be removed and then replaced by the mean of the remaining (100-k) percent of 
data. If the clipped and unclipped time series produce similar results at the three stages of 
model construction, then the outliers do not hinder the stochastic model building procedure. 
However, if the results differ, appropriate action may be taken. For instance, after 
transforming the data using a Box-Cox transformation, the models which are selected to fit 
to both the clipped and unclipped data of the transformed time series, may be the same. 
Rosenfeld (1976) discusses the use of data clipping in model identification. If, for exam- 
ple, an important identification feature such as a large value of the sample ACF at a given 
lag appears for both the clipped and unclipped data, it is likely to be a m e  feature of the 
model. On the other hand, Rosenfeld (1976) claims that if a significant identification 
characteristic in the original time series is lost by clipping, it is probably the result of coin- 
cidentally placed extreme outliers. In situations where clipping results in an identifying 
feature which does not appear in the original identifying function such as the sample ACF, 
it is probably caused by the clipping and is not a m e  feature of an underlying model. 
Long term cycles - Often natural data sets are too short to detect any long term cycles 
which, for instance, may be due to gradual changes in climate. However, tree ring index 
series are available for time spans of thousands of years (Stokes et al.. 1973) and hence for 
certain data sets it may be possible to graphically detect long term cycles. 
Known or unknown interventions - The effects of a known intervention can often be 
detected by an examination of the plot of the time series. For example, Figure 19.2.1 
clearly portrays the drop in the mean level of the annual flow of the Nile River at Aswan, 
Egypt, due to the construction of the Aswan dam in 1902. The yearly flows arc calculated 
for the water year from October 1st to September 30th of the following year and are avail- 
able from October 1, 1870 to October 1, 1945. An intervention model for the Nile River 
data is designed in Section 19.2.4. 
When a data plot indicates that there may be a significant change in the mean level due to 
an unknown intervention, an investigation should be carried out to see if a physical reason 
can be found. For instance, as discussed in Section 5.3.2 precipitation rccords may be sig- 
nificantly affected by changing the type gauge. If it is ascertained that there is a physical 
cause for the mean level change, an intervention model can be developed (see Part WID. 
Alternatively, the apparent change in the mean of the series may only be due to inherent 
natural fluctuations in the series and a regular ARMA model may adequately model the 
data. 
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5.3.4 Sample Autocorrelation Function 

By utilizing [2.5.9], the sample autocorrelationfunction (ACF) of a time series can be cal- 
culated and then plotted against lag k up to a maximum lag of approximately N/4 where N is the 
length of the series. If the theoretical ACF is assumed to be zero after lag q,  [2.5.11] can be used 
to calculate confidence limits. When it is not certain beyond which lag pk is zero, it is often con- 
venient to start out by plotting the confidence limits for white noise (i.e. P k  is assumed to be zero 
after lag zero). 

As noted in Section 5.3.3, it is often known in advance whether or not the series under con- 
sideration is nonstationarity. A plot of the series will usually reveal nonstationarity, although 
when the data are only marginally nonstationary it may not be certain as to whether differencing 
is required to account for homogeneous nonstationarity. In Section 4.3.2 it was explained why 
the ACF of a process which possesses homogeneous nonstationarity attenuates slowly. Conse- 
quently, when the sample ACF of the given nonseasonal data set dies off slowly it may be advis- 
able to difference the data once. If the sample ACF of the differenced series still does not damp 
out quickly, the series should be differenced again. The data should be differenced just enough 
times to remove the homogeneous nonstationarity which in turn will cause the sample ACF to 
die off rather quickly. When differencing is required, usually it is not greater than 2 for nonsta- 
tionary series which arise in practice. 

Following differencing, the resulting stationary w, series of length n = N - d in [4.3.3] is 
examined to determine the orders of p and q. If the given data is approximately stationary, then 
the w, series is in fact the zI(') data set and, hence, the properties of the zI()') series are investi- 
gated to determine how many AR and MA terms may be needed in the model. When the sample 
ACF of the stationary w, series is plotted along with the appropriate confidence limits up to a lag 
of about n/4, the following general rules may be invoked to help to determine the orders of p and 
4. 

1) If the series can be modelled by a white noise model, then rk in [2.5.9] is not significantly 
different from zero after lag zero. From Section 2.5.4, rk is approximately NID(O,l/n). 

For a pure MA model, rk cuts off and is not significantly different from zero after lag q. 

When rk damps out and does not appear to truncate, this suggests that AR terms are needed 
to model the time series. 

2) 

3) 

5.35 Sample Partial Autocorrelation Function 

The theoretical definition for the partial autocorrelation function (PACF) is given by the 
Yule-Walker equations in (3.2.171 while the algorithm of Pagano (1972) for estimating the 
values of the PACF is outlined in Appendix A3.1. Assuming that the process is AR@), the 
estimated values of the PACF at lags greater than p are asymptotically normally independently 
dismbuted with a mean of zero and standard error of l/& in r3.2.181. Because the asymptotic 
distribution is known, one can plot 95% confidence limits. When differencing is required, the 
sample PACF is only plotted for the stationary w, series in [4.3.3] up to a lag of about n14. 
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When used in conjunction with an identification aid such as a plot of the sample ACF, the 
estimated PACF is useful for determining the numbcr of AR and MA parameters. The following 
general characteristics of the PACF may be of assistance in model identification. 

1) When the series is white noise, the estimated values of the PACF arc not significantly dif- 
ferent from zero for all lags. 

2) For a pure AR model, the sample PACF truncates and is not significantly different from 
x r o  after lag p .  

3) If the sample PACF attenuates and does not appear to cut off, this may indicate that MA 
parameters arc needed in the model. 

5.3.6 Sample Inverse Autocorrelation Function 

Cleveland (1972) defines the inverse autocorrelation function (IACF) of a time series as 
the ACF associated with the reciprocal of the spectral density function of the series. The theoret- 
ical IACF, ti,, can also be specified in an alternative equivalent fashion within the time domain. 
When considering the ARIMA@,d,q) process in (4.3.41, the theoretical IACF of w, in [4.3.3] is 
defined to be the ACF of the (q.d,p) process which is written as 

ww, = WW, [5.3.1] 

A similar definition for the theoretical IACF also holds for the seasonal case. The theoretical 
IACF is the ACF of the process where not only the nonseasonal AR and MA operators have been 
interchanged but the seasonal AR and MA operators have also been switched (see Section 12.3.2 
for a description of identification tools for seasonal ARIMA models). 

Besides the original paper of Cleveland (1972), applications and theoretical developments 
regarding the IACF are given in papers by Hipel et al. (1977), McLeod et al. (1977). Chatfield 
(1979), Hosking (1980), Bhansali (1980,1983a.b). Abraham and Mol t e r  (1984), and Battaglia 
(1988). The IACF is also mentioned briefly by Panen (1974), McClave (1975, p. 213). Granger 
and Newbold (1977, p. 109) and also Shaman (1975). As noted by Cleveland (1972). one reason 
why the IACF was not a popular identification tool may be due to the fact that the reciprocal of 
the spectrum is not an intuitively meaningful quantity. Certainly, the time domain definition of 
the theoretical IACF which is employed by Hipel et al. (1977) and Chattield (1979) is much 
more appealing. 

Another explanation why the IACF was not used extensively in the past may be caused by 
the lack of a good estimation procedure for determining the sample IACF for a given time series 
(Hipcl et al.. 1977, p. 569). However, progress has been made on developing estimation tech- 
niques for calculating the sample IACF (Bhansali, 1983a.b Battaglia. 1988). To obtain an esti- 
mate rik for tik at lag k ,  Cleveland (1972) suggests using either an AR or smoothed periodogram 
estimation procedure. If the AR approach is adopted, the first step is to model the w, series by 
an AR model of order r .  The estimates I& where i = 1 2 , .  . . , r ,  for the AR parameters, can be 
determined from the Yule-Walker equations in [3.2.12] or from the maximum likelihood esti- 
mates of an AR(r) model which is fi t  to the time series under consideration. The estimate ri, for 
the theoretical IACF at lag k can then be obtained from 
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[5.3.2] 

If the w, series is white noise, rik is approximately NID(O,l/n). 

To utilize the IACF for model identification calculate and plot rik versus lag k, where r i k  

can go from -1 to +l. A recommended procedure is to choose about four values of r between 10 
and 40 (where r < n14) and then to select the most representative graph from the set for use in 
identification. One of the reasons why Hipel et al. (1977) suggest that an improved estimation 
procedure should be developed for the IACF is because a selection procedure is needed to 
choose an appropriate plot of the sample IACF. From a knowledge of the distribution of rik, 
confidence lim.its can be drawn on the graph of the sample IACF. For white noise. r i k  is approx- 
imately NID(O,l/n) while for a correlatd series r i k  is normally distributed with a mean of zero 
and the variance of rik after lag p is given by 

[5.3.3] 

When using the sample IACF for model identification to ascertain the orders of p and q. 

If the series can be modelled by a white noise model, r i k  is not significantly different from 
zero after lag zero. 
For a pure AR model, Tik truncates and is not significantly different from zero after lag p. 
In practice, it has been found that the IACF is useful for identifying AR models where 
some of the AR parameters should be constrained to be zero (see Section 3.4.4 for a discus- 
sion of constrained models). At the same lags at which the AR parameters are zero, the 
sample IACF often possesses values that an not significantly different from zero (Cleve- 
land, 1972; Hipel et al., 1977; McLeod et al.. 1977). 
When rik attenuates and does not appear to cut off, this indicates that MA terms are needed 
to model the time series. 
As can be seen, the foregoing general properties of the sample IACF are similar to those 

listed for the sample PACF in Section 5.3.5. Due to this fact and also the estimation problems 
with the IACF, the sample IACF is not used extensively by practitioners. However, as shown by 
the applications in Section 5.4, the sample IACF along with other identification graphs an very 
helpful when employed together for identifying ARMA models. Furthermore. Cleveland (1972) 
has shown how the sample IACF can be utilized for identifying the components in transfer 
function-noise models (see Part W for a presentation of these models). In fact, Cleveland 
(1972) recommends using the sample ACF and IACF for model identification rather than the 
sample ACF and PACF. 

the following rules may be utilized: 

1) 

2) 

3) 
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53.7 Sample Inverse Partial Autocorrelation Function 

Hipel et al. (1977) provide the original definition of the inverse pam'al aurocorrelarion 
function (1PACF) as the PACF of an ARMA(qg) process. To define mathematically the thcoret- 
ical IPACF. consider the inverse Yule-Walker equations given by 

[ 5.3.41 

where pik is the theoretical IACF at lag k and 8k, is the jth coefficient in a MA process of order 
k such that 8, is the last coefficient. 

The coefficient 8, is called the theoretical IPACF. To obtain an estimate 6, for 8, 
replace pik by the sample IACF rik and solve the inverse Yule-W&er equations for 6,. 
Because of the problems encountered when estimating pik,  another approach would be to first 
estimate 8, as the kth coefficient in a MA model of order k .  Based upon results in the inverse 
Yule-Walker equations, appropriate methods could then be used to estimate pi,. Bhansali 
(1983~) presents another procedure for estimating the IPACF. 

For model identification, plot 6, against lag k for the same number of lags as were chosen 
for the sample IACF. The values of the sample IPACF can range from -1 to + l .  Furthermore, 
when the theoretical IPACF is known to be zero after lag q ,  the sample IPACF is approximately 
NID(O,l/n) after lag q (McLeod, 1984). Consequently, the 95% confidence limits can be plotted 
on the graph of the sample IPACF. When employing the plot of the sample IPACF for model 
identification, the following properties can be kept in mind. 

1) When the time series is white noise, the sample IPACF is not significantly different from 
zero after lag zero. 
For a pure MA model, 6, cuts off and is not significantly different from zero after lag q. 

When the sample IPACF damps out and does not appear to truncate, this suggests that AR 
terms are needed in order to suitably model the series. 
The inherent characteristics of the sample IPACF are similar to those of the sample ACF in 

Section 5.3.4. Even though this pair of functions possesses the same general properties for iden- 
tifying an ARMA model to fit to a series, the two functions are defined differently. In a given 
situation, for instance, one identification function may more clearly reveal a characteristic of the 
data than the other. Consequently, both the IPACF and ACF are recommended for application to 
the series under consideration. Likewise, as noted earlier, common relationships also exist 
between the PACF and IACF, and both of these functions should also be used in the application. 
The general attributes of all these useful identification functions are summarized in Table 5.3.1. 

2) 

3) 
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MA(@ 
Truncates 
after lag q 
Attenuates 

Attenuates 

Truncates 
after lag q 
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ARMNPvq) 
Attenuates 

Attenuates 

Attenuates 

Attenuates 

Table 5.3.1. Properties of four identification methods. 
Identification 

Method 

ACF 

PACF 

IACF 

IPACF 

AR@) 
Attenuates 

Truncates 
after@P 
Truncates 
after lag P 
Attenuates 

5.4 APPLICATIONS 

5.4.1 Introduction 

After examining a plot of a time series to pick out basic statistical properties of the data set, 
the sample ACF, PACF, IACF and IPACF, described in Sections 5.3.4 to 5.3.7, respectively. can 
be used to identify the AR and MA parameters needed in an ARMA or ARIMA model to fit to 
the series. Table 5.3.1 describes the main characteristics to look for when using these functions 
for model identification. 

In Chapters 2 to 4, a variety of nonseasonal time series are examined for explaining con- 
cepts presented in those chapters. Tables 5.4.1 and 5.4.2 summarize the identification results for 
the stationary and nonstationary series, respectively. Notice that wherever an identification 
graph for a series appears in the book, the figure number is given in the tables. For illustration 
purposes, the manner in which the ARMA models are identified for the annual St Lawrence 
rivemows and also the Wolfer sunspot numbers in Table 5.4.1 are explained in detail in this sec- 
tion following the modelling of these two series carried out by McLeod et al. (1977). 

In Section 4.3.3, nonstationary ARIMA@,d,q) models are identified for fitting to the fol- 
lowing three series: 
1. annual water use for New York City, 
2. annual electricity consumption in the U.S.. 
3. Beveridge wheat price index. 
As explained in that section, sometimes a graph of the original series indicates whether or not a 
data transformation is needed. The next step is to ascertain the order of differencing that is 
required. The need for differencing can be determined from a graph of the series or the fact that 
the sample ACF dies off very slowly. After the data are differenced just enough times to remove 
nonstationarity, the sample ACF, PACF, IACF and IPACF are employed to determine the AR 
and MA parameters required in the ARh4AQ.q) model in [4.3.4] to fit to the w, series in [4.3.3]. 

Table 5.4.2 summarizes the identification results for the three aforementioned nonstationary 
series. 
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5.43 Yearly St. Lawrence Riverflows 
Average annual riverflows for the St Lawrence River at Ogdensburg, New York, are avail- 

able from 1860 to 1957 (Yevjevich, 1963) and are plotted in Figure 2.3.1. For convenience, 
these flows are also displayed in this section in Figure 5.4.1. The sample ACF and PACF, and 
their accompanying 95% confidence limits, for the St. Lawrtnce riverflows are displayed in Fig- 
ures 3.2.1 and 3.2.4, respectively, as well as Figures 5.4.2 and 5.4.3, respectively, in this section. 
In addition, the sample IACF and IPACF, along with the 95% confidence limits, for the SL 
Lawrence flows arc drawn in Figures 5.4.4 and 5.4.5. respectively. In practice, one can quickly 
peruse these graphs as they am displayed on a computer Scrcen in order to idenhfy the type of 
ARMA model to fit to the series. 

Because the St Lawrence riverflows appear to fluctuate around an overall m a n  level and 
not follow a trend in Figure 5.4.1, one can argue that the flows are stationary. This fact is also 
confirmed by the behaviour of the sample ACF in Figure 5.4.2, which dies off fairly quickly. 
Since the sample ACF does not truncate but rather damps out, this suggests that AR parameters 
arc n d e d  in the ARMA model to fit to the series. The 95% confidence limits for the graph of 
the sample PACF in Figure 5.4.3 are for values of the PACF at lags greater than p if the process 
werc ARMA(p.0). Notice that the sample PACF possesses a significantly large value at lag 1 



Identification 

lx- 
u 

133 

187 

SMIpk b F J e  h p *  h p *  ARIMA 

Bccwu vmplc Diffucocsd Difffsrmd Diffemad ARIMA(O.I.0) 

Ilowwly. dif- 
ferencba il 
m-edd. Differ- 
eaad vriu il 
while miu. 

Sunpk ACP io h @ c  PACP s.mplc LAG Sunpk IPACF ARIMA(O2.I) 
Fig. 43.11 fa fa 6-2 m Fu. fa ca*1 vitb for uriu with 
given Vriu .od 43.14 a bc d-Zdiadf. d-2 a~(l d a f t e r  
.Lo umpleiaaprrcod u L g  1. 
ACP m Fig. aamuuiog. 
4.3.12 for di8er- 
u r c d  tcriet die 
df tlowly. 
H e m .  ordsr of 
differencing 
d c d  it 6-2 
Sunple ACF in 

&La diffclrnccd 
t w i a  hu Lrge 
value u L g  1. 

Sina umFJc h p k  PACT Sunpk LACF Sunple IPACF Cmtorined 
ACF in Fig. in Fig. 4.3.18 for logarithmic for logarithmic ARIMA(8.I.I) mode 
4.3.16 for loga- fa loguihnic data with d-2 data w i t h d - Z h  withaJt+,to+, 
n h K  dua &u with d-2 h u  Lrge d u e t  h ~ e  d u e s  u 
atlcnuucs hu hrge vdwt U kw 1.81 and low Lgr md lag 
tlowly dif- at Lgt 2 and 8. lag 8. 8. 
ferencing it 
d c d .  Sample 
ACF in Fig. 
4.3.17 for differ- 
o n a d  log.. 
rirhmic data ht 

L n c  vducs u 

ACP PACP LACP IPACP Model 
16Cnlifisd 

ACP in Fig. vria u whitcurio u rbiccvriu is rhik 
4.3.9 dia df miu. 0rit.Z miu. 

Fig. 4.3.13 fOr 

Table 5.4.2. Identification of ARIMA models to fit to nonseasonal 
nonstationary series (sec Section 4.3.3). 
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and has a value at lag 3 that just touches the upper 95% confidence limit. This effect is more 
clearly illustrated by the sample IACF in Figure 5.4.4 which has definite large values at lags 1 
and 3. It may, therefore, be appropriate to entertain an ARMA(3,O) model with constrained to 

zero as a possible process to fit to the St Lawrence River data. Although then an rather large 
values of the estimated PACF at lag 19 and of the sample IACF at lag 18, these could be due to 
chance alone. The sample IPACF in Figure 5.4.5 appears to be attenuating rather than truncat- 
ing. However, for this particular example the sample ACF definitely damps out, and therefore 
one would suspect that the sample IPACF is behaving likewise, thereby indicating the need for 
AR ems. On the graph for the sample IPACF, the 95% confidence intervals are for values of 
the IPACF at lags greater than q if the process were ARMA(0,q). 

For the case of the Saint Lawrence River data, the sample IACF in Figure 5.4.4 most 
vividly defines the type of model to estimate. However, the remaining three identification 
graphs reinforce the conclusions drawn from the IACF. 
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Figure 5.4.3. Sample PACF and 95% confidence limits for the average yearly 
flows of the St. Lawrence River at Ogdensburg, New York. 

0.5 'OI 

a 

0 I0 20 30 40 
LAG 

Figure 5.4.4. Sample IACF and 95% confidence limits for the average 
annual flows of the St. Lawrence River at Ogdensburg, New York. 
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5.43 Annual Sunspot Numbers 

Annual sunspot numbers are examined here because of the historical controversies regard- 
ing the selection of a suitable model to fit to yearly sunspot numbers and also because sunspot 
data are of practical importance to geophysicists and environmental scientists. Climatolo@sts 
have discovered that sunspot activity may be important for studying climatic change because of 
its effect upon global temperature variations (Schneider and Mass, 1975). However. in Chapter 
16, it is shown statistically that sunspot numbers do not affect the yearly flows of the Volga 
River in the Soviet Union. Nonetheless, sunspots have long been known to affect the transmis- 
sion of electromagnetic signals. 

The Wolfer sunspot number series is available from 1700 to 1960 in the work of Wald- 
meier (1961). while Box and Jenkins (1976) list the average annual sunspot series from 1770 to 
1869 as series E in their textbook. Granger (1957) found that the periodicity of sunspot data fol- 
lows a uniform distribution with a mean of about 1 1  years, and for this and other reasons 
researchers have had difficulties in modeling sunspot numbers. Indeed. the graph of the annual 
sunspot numbers from 1770 to 1869 displayed in Figure 5.4.6 clearly shows this periodicity. 
Yule (1 927) employed an AR model of order 2 to model yearly sunspot numbers. M o m  (1954) 
examined various types of models for predicting annual sunspot numbers and expressed the need 
for a better model than an ARMA(2.0) model. Box and Jenkins (1976) fitted ARMA(2,O) and 
ARMA(3,O) models to yearly sunspot data, Bailey (1965) entertained an ARMA(6,O) model. 
Davis (1979) employed ARMA(2.0) and ARMA(9,O) models, and Craddock (1967) and Moms 
(1977) considered AR models up to lag 30 for forecasting annual sunspot numbers. Phadke and 
Wu (1974) modelled yearly sunspot numbers using an ARMA(1,l) model while Woodward and 
Gray (1978) utilized an ARMA(8,l) model. 

Other researchers have determined stochastic sunspot models when the basic time interval 
is smaller than one year. For example, Whittle (1954) considered a unit of time of six months 
and developed a bivariate AR scheme to fit to the observed sunspot intensities in the northern 
and southern solar hemispheres. Granger (1957) proposed a special two-parameter curve for the 
monthly sunspot numbers, but unfortunately, this curve is not useful for forecasting. 

Even though the annual sunspot numbers are difficult to model, the identification graphs 
defined in Sections 5.3.4 to 5.3.7 can be used to design a reasonable ARMA model to fit to the 
annual sunspot series. In Section 6.3, it is explained how the Akaike information criterion 
(Akaike, 1974) can be used in conjunction with these graphs to come up with the same model. 
The sample ACF, PACF, IACF and IPACF graphs, along with their 95% confidence limits, an 
displayed in Figures 5.4.7 to 5.4.10, respectively, for the annual sunspot numbers. As can be 
seen in Figure 5.4.7, the sample ACF follows an attenuating sine wave pattern that reflects the 
random periodicity of the data and possibly indicates the need for nonseasonal and/or seasonal 
AR terms in the model. The behaviour of the sample PACF shown in Figure 5.4.8 could also 
signify the need for some type of AR model. In addition to possessing significant values at lags 
1 and 2. the PACF also has rather large values at lags 6 to 9. The sample IACF in Figure 5.4.9 
has a large magnitude at lag 1, which suggests the importance of a nonseasonal AR lag 1 term in 
any eventual process that is chosen to estimate. The dying out effect in the first four lags of the 
sample IPACF displayed in Figure 5.4.10 could be a result of a nonseasonal AR component. 
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Figure 5.4.7. Sample ACF and 95% confidence limits for the yearly sunspot numbers. 

Figure 5.4.8. Sample PACF and 95% confidence limits for the annual sunspot numbers. 
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Figure 5.4.9. Sample IACF and 95% confidence limits for the yearly sunspot numbers. 
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Figure 5.4.10. Sample PACF and 95% confidence limits for the annual sunspot numbers. 
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Diagnostic checks are discussed in detail in Chapter 7. For the case of the sunspot 
numbers, results of diagnostic checks from ARMA models fitted to the series, as well as the 
identification graphs, arc needed to come up with the best overall model. When an AR(2) model 
is fit to the yearly sunspot numbers, the independence. normality, and homoscedasticity assump- 
tions of the residuals arc not satisfied. As explained in Section 3.4.5. to overcome problems with 
nonnormality and heteroscedasticity (i.e. changing variance) in the model residuals. one can 
employ the Box-Cox transformation in [3.4.30]. By substituting x = 0.5 and c = 1.0 in [3.4.30], 
one can obtain a square root transformation for the annual sunspot series. It is nwessary to set 
c = 1 because there arc some zero entries in the sunspot series and the Box-Cox transformation 
in [3.4.30] can only be used with positive values. This square root transformation causes the 
residuals of an AR(2) model fitted to the hansformed sunspot series to become approximately 
normally distributed and homoscedastic. However, because the residuals are autocomlated a 
better model is required to fit to the transformed series. 

If an AR(3) model with k = 0.5 and c = 1.0 is estimated, the 4 3  parameter has a magnitude 
of -0.103 and a SE of 0.062. Because 4, is less than twice its standard error, for the sake of 
model parsimony it should not be incorporated into the model. Note that Box and Jenkins (1976, 
p. 239, Table 7.13) obtain a parameter estimate for $3 that is just slightly more than twice its 
standard error. However, they do not employ a data transformation to remove heteroscedasticity 
and nonnormality and only use the Wolfer sunspot series from 1770 to 1869. 

When one examines the ACF of the residuals of the AR(3) model fitted to the transformed 
series, one finds a large value at lag 9. This fact implies that it may be advisable to estimate a 
constrained AR(9) model without the parameters $3 to $8 included in the model. In Section 
6.4.3, the Akaike information criterion (Akaike. 1974) also selects the constrained AR(9) model 
fitted to the sunspot series transformed using square roots as the best overall type of ARMA 
model to use. Previously, Schaerf (1964) also suggested modelling the sunspot data using a con- 
strained AR(9) model but without the square root transformation. 

5.5 OTHER IDENTIFICATION METHODS 

5.5.1 Introduction 
As demonstrated in the previous section, the sample ACF, PACF, IACF and IPACF are 

quite useful for ascertaining which subset of ARMA or ARIMA models are more suitable for fit- 
ting to a given time series. When these identification methods are used in conjunction with the 
Akaike information criterion (Akaike, 1974) in the manner described in Section 6.3, usually it is 
quite straightforward to select the most appropriate model. In addition, as exemplified by the 
application of ARMA modelling to the yearly sunspot series, the results of diagnostic checks can 
also be useful for iteratively designing the best specific model. Nonetheless, in most practical 
applications it is usually not necessary to employ other kinds of identification techniques beyond 
those described in Section 5.3. However, other identification methods arc available and some of 
these procedures are now briefly outlined. Additional identification approaches are also men- 
tioned in Section 6.3 where the Akaike information criterion is described. 
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5.53 R and S Arrays 
Gray et al. (1978) develop a useful representation of the dependence structure of an ARh4A 

process by transforming the theoretical ACF into two functions which they refer to as R and S 
arrays. In addition, Woodward and Gray (1979) define improved versions of these arrays, called 
the shifted R and S arrays. Moreover, Woodward and Gray (1979) present the generalized par- 
tial autocornlation function as a related approach for model identification. 

The R and S arrays are used for determining the orders of the operators in an 
ARIMA@,d.q) model. Although it is usually more informative to display the identification 
results in tabular form, the R and S arrays can also be presented graphically. Computer pro- 
grams m listed in the paper of Gray et d. (1978) for calculating the R and S plots. Moreover, 
Gray et al. (1978) present numerous practical applications while Woodward and Gray (1978) 
identify an ARMA(8,l) model to fit to yearly sunspot numbers by using the R and S arrays. The 
R and S arrays could be extended for i d e n w g  the seasonal ARIMA models of Chapter 12. 

Salas and Obeysekera (1982) demonstrate the use of the generalized partial autocorrelation 
function as well as the R and S arrays for identifying ARMA models to fit to hydrologic time 
series. Furthermore, they present some recursive relationships for calculating the aforesaid iden- 
tification methods. 

5.53 The Comer  Method 
Beguin et al. (1980) present theoretical results for an identification procedure to ascertain 

the orders of p and q in an ARMA@q) model. To determine the orders of the AR and MA 
operators, the enmes of what is termed a "A-array'' are examined. Depending upon the form of 
the model, zero enmes occur in a comer of the A-array according to a specified pattern and hence 
the approach is called the corner method. Beguin et al. (1980) claim that their identification 
methods are much simpler to use than those proposed by Gray et al. (1978). 

5.5.4 Extended Sample Autocorrelation Function 
Tsay and Tiao (1984) develop a unified approach for specifying the order of the operators 

required in an ARIMA@,d.q) model to fit to a given time series. First, they propose an iterative 
regression procedure for obtaining consistent least square estimates for the AR parameters. 
Next, based upon the consistent AR estimates produced by iterated regnssions, they define an 
extended sample autocorrelation fitnctwn for use in model identification. The extended sample 
autocorelation function can be used to decide upon the order of differencing and also the 
numbers of AR and MA parameters that are needed. In practical applications, the authors pro- 
pose that the calculations for the extended sample autocorrelation function be displayed in tabu- 
lar form for conveniently identifying the ARIMA model. 

5.6 CONCLUSIONS 
The stages for constructing a time series model to fit to a given data set arc portrayed in 

Figure m.1. At the identification stage, one must decide upon the parameters required in a 
model for fitting to a given data set. In particular, when designing an ARMA or ARIMA model 
to describe a nonseasonal time series, one must select the order of differencing as well as the 
number of AR and MA parameters that are needed. After examining a plot of the data, the 
parameters needed in the model can be ascertained by examining graphs of the sample ACF, 
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PACF, IACF and IPACF, presented in Sections 5.3.4 to 5.3.7, respectively. Applications for 
illustrating how model identification is carried out in practice arc presented in Section 5.4 for the 
cases of an annual riverflow series and a yearly sunspot series. 

After identifying one or more tentative models to fit to the time series under consideration. 
one can obtain efficient estimates for the model parameters. In Chapter 6, the method of max- 
imum likelihood is recommended for estimating the AR and MA parameters after any nonsta- 
tionarity has been removed by differencing. Additionally, it is explained in Chapter 6 how an 
information criterion can be used to select the best model subsequent to estimating the parame- 
ters for more than one model. Finally, in Chapter 7 diagnostic checks arc presented for deciding 
upon whether the fitted model adequately describes the time series. As shown in Figure III.1, 
when the model possessts inadequacies one can return to the identification stage in order to 
design an improved model which overcomes any difficulties. Usually, the results from the diag- 
nostic check stage can be used for designing this improved model. 

PROBLEMS 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

Three types of hydrological uncertainties are mentioned in Section 5.2.2. By referring to 
the references given in that section, explain in your own words what these uncertainties 
mean to you. Enhance your presentation by referring to specific examples of these uncer- 
tainties. 
Summarize the types of modelling errors discussed by Warwick (1989). Compare these 
errors to the kinds of uncertainties discussed in Section 5.2.2. 
Outline the unified description of model discrimination developed by Ljung (1978) and 
referenced in Section 5.2.3. 
Suggest other types of modelling principles that are not mentioned in Section 5.2.4. 
In Section 5.3.3 a list is presented for the kinds of information that may be found from exa- 
mining a graph of a given time series. Describe three other benefits that may be realized by 
plotting observations over time. 

Examine the graph of a time series which is of direct interest to you. Describe general sta- 
tistical properties of the series that you can detect in the graph. 
In Section 5.3.6, the IACF is defined. Why does Cleveland (1972) recommend using the 
sample ACF and IACF for ARMA model identification rather than the sample ACF and 
PACF? Summarize Charfield’s (1979) viewpoint about the use of the IACF in practical 
applications. 
The original definition of the IPACF was made by Hipel et al. (1977) and is given in Sec- 
tion 5.3.7. Summarize Bhansali’s (1983~) contributions to the development of the PACF 
as an identification tool. 
Develop the equations for determining the theoretical ACF and PACF for an ARMA(l.1) 
process. 
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5.10 Write down the equations for the theoretical IACF and IPACF for an ARMA(l.1) process. 
5.11 Select a nonseasonal time series that is of interest to you. Obtain each of the identification 

graphs in Sections 5.3.3 to 5.3.7 for the series. Based upon these identification results, 
what is the most appropriate type of ARMA or AFUMA model to tit to the data set? 

5.U Using equations in your explanation, outline the approach of Gray et al. (1978) for deter- 
mining the orders of the operators in an ARIMA@,d.q) model. List advantages and draw- 
backs to their identifxation procedure. 

5.13 Employing equations where necessary, describe the extended sample autocorrelation tech- 
nique of Tsay and Tiao (1984) for identifying an AIUMA model. Discuss the advantages 
and disadvantages of their method as compared to its competitors. 
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CHAPTER 6 

PARAMETER ESTlMATION 

6.1 INTRODUCTION 

In Chapter 5, a range of informative graphical methods arc pnsentrd for identifying the 
parameters to include in an ARMA model for fitting to a given nonseasonal time series. As 
explained in that chapter, prior to deciding upon the form of the ARMA model. the data may be 
transformed using the Box-Cox transformation in [3.4.30] in order to alleviate problems with 
nonnormality and/or changing variance. Additionally, the differencing given in [4.3.3] may be 
required for removing nonstationarity. Whatever the case. at the identification stage, one must 
select one or more appropriate ARMA models from [3.4.4] or [4.3.4] for fitting to either the 
series as given or some modified version thereof. 

As shown in Figure III.1, subsequent to identifying one or more tentative models for fitting 
to a particular series, one must obtain estimates for the parameters in the models. The main 
objectives of Chapter 6 are to present procedures for estimating the parameters in ARMA models 
and to explain how an automatic selection criterion such as the Akaike information criterion 
(Akaike, 1974) can be employed for choosing the best overall model when more than one model 
is calibrated. 

For an identified ARMA model in [3.4.4] or [4.3.4], the following parameters must be 
estimated using the available data: 
1 .  mean of the series, 

2. AR parameters, 
3. M A p m e t e r s ,  
4. innovation series, 
5. variance of the innovations. 
Because one often knows a priori the best type of Box-Cox trar&onnation to use with a given 
kind of time series such as annual riverflows. one can first fuc 3, in [3.4.30] at a specified value 
before estimating the model parameters mentioned above. If A is not known, it is possible to 
estimate A along with the other model parameters. However, this requires a significant increase 
in the amount of computer time needed to estimate all the model parameters. Finally. one should 
keep in mind that the integer value for the diflerencing parameter d contained in ARIMA@.d,q) 
models in Chapter 4 is selected using identification methods (see Sections 5.3.3 and 5.3.4). If 
differencing is used, often one may wish to fix the mean of the differenced series at zero and not 
estimate it (see discussion in Section 4.3.1). When d is allowed to take on rtal values to form 
the fractional ARMA models described in Chapter 11, one must estimate the value of d .  

A given time series is just one possible realization or set of measurements from the 
phenomenon that generated it (see discussion in Sections 2.2 and 2.3). Because a time series 
contains only partial information about the phenomenon under study, the true or population 
values of the parameters of a model fitted to the series are not known. Consequently, there is 
uncertainty about the estimation of the model parameters. As explained in Section 6.2.3 and 
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Appendix A6.2, the uncertainty for a specified parameter estimate is quantified by what is called 
the standard error (SE) of the estimate. 

Estimation theory was initiated by the great German mathematician Karl Friederich Gauss 
who developed the method of least squares for solving practical problems. Since the time of 
Gauss, well known reseirchers such as Sir R.A. Fisher, Norbert Wiener and R.E. Kalman, have 
developed an impressive array of estimation procedures and associated algorithms. These gen- 
eral approaches from estimation theory have been formulated for use with specific families of 
statistical models. For example, in this chapter the method of m i m u m  likelihood is described 
and used for estimating the parameters of ARMA models. In Section 3.2.2, the Yule-Walker 
equations given in [3.2.11] can be employed for obtaining what are called moment estimates for 
AR models. 

A great number of textbooks and research papers about estimation theory are available. 
Mendel’s (1987) book, for example, covers a wide variety of estimation techniques including 
least squares, maximum likelihood and the Kalman filter (Kalman, 1960) approaches. A 
research paper by Norden (1972, 1973) presents a survey of maximum likelihood estimation 
which was originally developed by Fisher (1922, 1925). The monograph of Edwards (1972) also 
deals with the maximum likelihood approach to estimation. Most textbooks, in statistics, such as 
the ones by Kempthorne and Folks (1971) and Cox and Hinkley (1974) contain large sections 
dealing with estimation. In addition, statistical encyc lomae  (Kotz and Johnson, 1988; Kruskal 
and Tanur, 1978; Kendall and Buckland, 1971) and handbooks (Sachs, 1984) have good explana- 
tions about estimation procedures. 

Because of many attractive theoretical properties, maximum likelihood estimation is the 
most popular general approach to parameter estimation. In the next section, some of these pro- 
perties arc pointed out and maximum likelihood estimation for calibrating ARMA models is 
described. Subsequent to this, it is explained how the Akaike information criterion (Akaike, 
1974) can be used to select the overall best model when more than one model is fitted to a speci- 
fied time series. Practical applications are used for illustrating how estimation is carried out in 
practice and the Akaike information criterion can be used for model discrimination. 

6.2 MAXIMUM LIKELIHOOD ESTIMATION 

6.2.1 Introduction 

of a set of random variables is written as a func- 
tion of these variables and certain given parameters. For example, for the case of a single ran- 
dom variable following a normal distribution, the pdf is a function of this random variable and 
the parameters in the pdf arc the mean and variance. When the actual values of the mean and 
variance are known for the normally distributed random variable, one can calculate the probabil- 
ity that the random variable takes on a value within a specified range by integrating the pdf over 
this range. On the other hand, if the measurements for a random variable are substituted into the 
pdf and the pdf is then considered as a function of the parameters that have not been estimated, 
the likelihood function is created. In other words, the likelihood function is essentially the pro- 
bability of the actual data as a function of the parameters. 

The probabilio distribution function 
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To be more specific, suppose that one is dealing with the sequence of observations in 
[4.3.3] which consists of n values represented by the vector w’ = (w1,w2, . . . , w,,). The sample 
of n observations, w, can be associated with an n-dimensional random variable having a known 
pdf, p(wlp), which depends on a vector of unknown parameters p. For the case of the ARMA 
model in [3.4.4] or the ARIMA model in (4.3.41, the parameters contained in p are the p AR 
parameters 0 = . . . ,I&,), q MA parameters 8 = (01,02, . . . ,€I,), and the variance, a:, of 
the innovations. Hence, p = ($,e,o:). 

In advance of having the data, the pdf given by p(w I  p) associates a density with a possible 
realization of w, for fixed p. When the observations are available, one would like to find out 
values of p which could have produced the set of time series entries, w. To accomplish this, one 
substitutes the data, w, into the pdf and considers p as the variable in order to produce the likeli- 
hood function L(p1w). Because of the way it is defined, the likelihood function has the same 
form as p(w I p). However, in the likelihood function the set of observations, w, is futed and the 
parameters contained in p are variable. 

Because the relative value of the likelihood function, f.(plw), is of main interest, the likeli- 
hood function often contains an arbitrary multiplicative constant. For simplifying calculations, it 
is usually more convenient to use the natural logarithm of the likelihood function given by 
lnL(plw) = I(plw), which possesses an arbitrary additive constant. This function is commonly 
referred to as the log likelihoodfunction. 

In maximum likelihood estimation, one wants to determine the values of the parameters 
contained in p that maximize the likelihood function or, equivalently, the log likelihood func- 
tion. These estimates are called maximum likelihood estimates (MLE’s). 

One approach to finding the maximum value for a given function is to set the first order 
partial derivative with respect to each variable parameter equal to zero and then to solve these 
equations to find the values of the variables which maximize the function. Because the likeli- 
hood function for ARMA models is quite complicated, this simple approach cannot be used. 
Consequently, after defining the likelihood function for ARMA models in Section 6.2.3 and 
Appendix A6.1, some useful optimization algorithms are recommended for optimizing the likeli- 
hood function. 

The second order partial derivative of the likelihood or log likelihood function with respect 
to each of the variable parameters reflects the rate of change of the slope or. in other words, the 
“spread” of the function. Accordingly, these second order derivatives, which are contained in 
the infomation matrix defined in Appendix A6.2, are used to determine approximate standord 
errors (SE’s)  for the MLE’s. However, before going into the details of the likelihood function 
and the associated information mamx, the motivations for using maximum likelihood estimation 
are explained next. 

6.23 Properties of Maximum Likelihood Estimators 

Likelihood Principle 

Rior to describing some of the attractive properties of maximum likelihood estimation, 
consider first an important characteristic of the likelihood function. One main reason why the 
likelihood function is of such great import in estimation theory is because of what is called the 
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likelihood principle summarized below. 
Likelihood Principle: Assuming that the underlying model is comct. all the infomation that the 
data can provide about the model parameters is contained in the likelihood function. AU other 
aspects of the data are irrelevant with respect to characterizing the model parameters (Fisher, 
1956; Barnard, 1949; Birnhaum. 1962). 

The likelihood principle is in consonance with the Bayesian approach to statistics. This is 
because the likelihood function is a component in the posterior distribution of the parameters 
coming from the data 

As noted in the previous section, when the likelihood function, or quivalently. the log 
likelihood function is maximized, one obtains MLE's for the model parameters. The general 
mathematical expression which defines how one obtains MLE's for any set of data for a given 
family of models, is called the maximum likelihood estimator. In Appendix A6.1, for example, a 
maximum likelihood estimator is presented for calculating MLE's for the parameters of an 
ARMA model fitted to a given time series. 

In general, most maximum likelihood estimators possess some fundamental statistical pro- 
perties which, in turn, have led to the widespread development, acceptance and application of 
these estimators. To characterize estimators, Fisher (1925) introduced the concepts of con- 
sistency and large-sample efficiency. Although these concepts are defined in terms of large sam- 
ples, estimators having these characteristics arc usually well suited for use in practical applica- 
tions. Because maximum likelihood estimators usually satisfy these concepts, Fisher and many 
other statisticians have advocated their employment for application purposes. The maximum 
likelihood estimators referred to in Section 6.2.3 and the one described in Appendix A6.1 are 
consistent and efficient. These two concepts art now briefly summarized. For detailed 
mathematical definitions of the concepts, the reader can refer to the references cited in this sec- 
tion as well as statistical encyclopediae, handbooks and standard textbooks. 

Consistency 

A cornisrent esrimoror is one which converges in probability as the sample size increases to 
the true value of the parameter or parameters being estimated. More specifically, let { be the 
estimate of a model parameter q using a given estimator for a sample size of n .   he estimate fi 
of q. or equivalently its estimator, is consistent if 

l imP[lfi  -q l  > € 1  = o  
n - c  

(6.2.11 

when P stands for probability, and E is any positive number which can, of course, be very close 
to zero. 

In practice, one would like to have an estimator which produces estimates that converge to 
the me values of the model parameters as the sample size increases. Although exceptions can 
be found, most m i m u m  likelihood estimators arc consistent. 
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Efficiency 

Suppose that two estimators are consistent. Let til and ti2 denote the two consistent esti- 
mators or estimates for a model parameter q where the sample size is n . The arympfon’c relative 
Gciency (ARE) of til with respcct to ti2 is: 

var til 
A R E = l i m -  [6.2.21 

n+- var q2 

~f the above ratio is less (more) than one, the estimator G I  is asymptotically more ~ e s s )  efficient 
than 4 2  for estimating q. m e n  the limit is equal to one, the estimators arc equally efficient. 
The asymptotic relative efficiency is the limiting value of the relative Gciency (RE) given by: 

varq 1 
R E = -  [6.2.3] 

varfl2 

For maximum likelihood estimators or MLE’s. the variance of the MLE of a model param- 
eter possesses minimum asymptotic variance and is asymptotically normally distributed when 
consistency and other conditions are satisfied (Cramer. 1946; Rao, 1973). Therefore, when 
investigating the properties of a given estimator, it is informative to compare it to its MLE coun- 
terpart. Suppose that t, is the maximum likelihood estimator for a model parameter fl and ti2 is 
another estimator in [6.2.2]. Because the maximum likelihood estimator possesses minimum 
variance 0 5 ARE 5 1. Furthermore, the ratio is referred to as the first order usymproric &- 
ciency of 4 2  with respect to the maximum likelihood estimator til.  If the first order efficiency is 
less than unity, the estimator fit is less efficient than the maximum likelihood estimator fi, for 
large samples. However, when the first order efficiency is equal to one. the ratio in (6.2.21 can- 
not distinguish between the two estimators. One must then examine what is called second order 
efficiency (Rao, 1961, 1962) in order to select the most efficient estimator. Second order &- 
ciency is concerned with the speed of convergence of the ratio in [6.2.2] and usually requires 
rather complicated expressions in order to be properly defined. Whatever the case, the max- 
imum likelihood estimator is the only known estimator that possesses second order efficiency. 
Gaussian Eficiency: In the definitions of the ARMA family of models in (3.4.4) and the 
ARIMA class of models in [4.3.4], the innovation series represented by a, is assumed to be 
identically and independently distributed with a mean of zero and variance of 0,‘ [ i t .  
IID(O,o,‘)]. To allow one to derive the likelihood function for these models, one must specify a 
distribution for the innovations. In practice, the q ’ s  arc assumed to be normally independently 
distributed with a mean of zero and variance of 0,‘ [i.e. NID(O,o,‘)]. The likelihood function for 
the Gaussian or n o d  case is discussed in Section 6.2.3 and presented in detail in Appendix 
A6.1. By determining the values of the model parameters which maximize the value of the likel- 
ihood or log likelihood function, one determines h4LE’s for the parameters. As explained in 
Appendix A6.2. the covariance matrix is obtained as the inverse of the information marrix and 
the entries along the diagonal give the variance of the estimates for the corresponding model 
parameters. The square root of these variances arc called the SE’s of estimation for the model 
parameters. Because the maximum likelihood procedure is used to obtain the parameter esti- 
mates, these SE’s or, equivalently, the variances, possess Fisherian efficiency and, therefore, are 
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the smallest values that can be obtained in large samples. 
If the innovations arc not normally distributed, one can use the same technique as for the 

NID case to obtain estimates for the model parameters. Even though the innovations do not fol- 
low a normal distribution, these estimates an called Gaussian estimates because the maximum 
likelihood estimator for NID innovations is used to calculate the estimates. It can be shown 
theoretically that the large sample covariance mapix for Gaussian estimates is the same as that 
for the situations for which the innovations arc NID. This robustness property of maximum 
likelihood estimation under the normality assumption is referred to as Gaussian efficiency (Whit- 
tle, 1961; Hannan. 1970, pp. 377-383). However, the reader should keep in mind that even 
though the Gaussian estimates possess Gaussian efficiency, they are not Fisherian efficient ( is .  
have minimum variances for the estimates) becausc the innovations do not follow a normal dis- 
tribution. 

Li and McLeod (1988) show how maximum likelihood may be used to fit ARMA models 
when the innovations, a,, are non-Gaussian. For example, when the a, are log-normal or gamma 
distributed, improved estimates of the parameters can be obtained by using maximum likelihood 
estimation. 

6.23 Maximum Likelihood Estimators 

A given nonseasonal series, 2,. may first be transformed using the Box-Cox transformation 
in [3.4.30] in order to make the series approximately normally distributed. Subsequent to a 
power transformation, the series can be differenccd as in [4.3.3] just enough times to remove any 
nonstationarity. One then ends up with a stationary series w,. t = 1.2,. . . , R ,  which follows a 
normal distribution. By employing the identification procedures of Section 5.3, one can decide 
upon an appropriate ARMA(pq) model to fit to the w, series. Of course, if no Box-Cox transfor- 
mation or differencing are needed. the w, series is simply the original z, observations. 

Assuming that the innovations in [4.3.4] or [3.4.4] are NTD, which also implies that the w, 

or z, scquences follow a normal distribution. one can derive the likelihood function for an 
ARMA model. By employing a suitable optimization algorithm to maximize the likelihood or 
log likelihood function with respect to the ARMA model parameters, one should theoretically be 
able to obtain MLE’s for the parameters. However, the likelihood function is a fairly compli- 
cated expression and flexible algorithms are needed in order to make it computationally possible 
within a reasonable amount of timc to maximize the likelihood function in order to find the 
MLE’s. As a result, nscarchers have suggested saving computational time by maximizing 
approximations to the likelihood function to calculate approximate MLE’s for the model p m e -  
ters. As the sample size increases, the approximate MLE’s approach closer and closer to the me 
MLE’s. Box and Jenkins (1976, Ch. 7). for example. have put forward two approximate max- 
imum likelihood procedures for ARMA models which arc called the conditional and the uncon- 
ditional or iterated methods. Generally speaking, their approaches do not work as well for 
ARM models containing MA parameters and for time series that are fairly short (McLeod. 
1977). 

McLeod (1977) derives an approximate maximum likelihood procedure which is almost 
exact. His technique is referred to as the modified sum of squares algorirhm. Besides providing 
parameter estimates that are very close to the true or exact MLE’s, the approach is very efficient 
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computationally and, therefore, requires relatively little computer time. Moreover, it works well 
with models containing MA parameters and series having relatively few observations. 

More recently, a number of authors have developed exact maximum likelihood estimators 
for use with ARMA models. These exact techniques include contributions by: 
1. Newbold (1974). 
2. Ansley (1979), 
3. 
4. 

Ljung and Box (1979), and 
MClard (1984) who uses a Kalman fdter approach to maximum likelihood estimation. 
As just noted, McLeod’s (1977) estimation technique for ARMA models is computation- 

ally efficient and produces estimates that are almost exact MLE’s. Furthermore. the procedure 
has  been extended for use with seasonal ARMA models (McLeod and Sales, 1983). Accord- 
ingly, this flexible algorithm is recommended for usc in practical ARMA modelling and is out- 
lined in Appendix A6.1. The McLeod-Hipel time series package referred to in Section 1.7 con- 
tains the estimation algorithm of Appendix A6.1 as well as other approximate and exact max- 
imum likelihood estimators. 

In addition to possessing desirable statistical properties, maximum likelihood estimation is 
computationally convenient. This is because a range of useful and powerful optimization tech- 
niques are available to maximize or minimize a function such as the likelihood or log likelihood 
function with respect to the model parameters. Some of the optimization algorithms that have 
been extensively utilized in practical applications include: 
1. Gauss linearization (Draper and Smith, 1980). 
2. steepest descent (Draper and Smith, 1980), 
3. Marquardt algorithm which is a combination of the above two algorithms (Marquards 

1963), 
4. conjugate directions (Powell, 1964,1965). 
5 .  Davidon’s Algorithm (Davidon, 1968) for which a FORTRAN subroutine is provided by 

Ishiguro and Akaike (1989) for log likelihood maximization. 
For the applications given in Section 6.4 and other chapters in this textbook conjugate directions 
is used in conjunction with the estimation procedure of Appendix A6.1 to obtain MLE’s for the 
ARMA model parameters. For an explanation of the variety of optimization methods, the reader 
can refer to textbooks such as those by Luenberger (1984). Gill et al. (1981) and VanderPlaats 
(1  984). 

To obtain estimates for the parameters in an ARMA model, a time series of observations is 
used with an appropriate maximum likelihood estimator. Because this time series is only a finite 
sample realintion of the phenomenon generating the series, the MLE for a given parameter is 
not the population value. The SE or standard derivation of the estimate is used to reflect the 
uncertainty contained in the estimate. In Appendix A6.2, it is explained how the SE’s for the 
parameter estimates are defined. More specifically, the variancecovariance matrix of the 
parameter estimates is the inverse of what is called the information matrix. The square roots of 
the diagonal entries in the variancecovariance matrix provide the estimates of the SE’s for the 
estimated model parameters. Furthermore, because it is known that MLE’s are asymptotically 
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normally distributed, one can obtain 95% confidence limits for a given parameter estimate. If 
for example, zero were contained within the interval f o m d  by a parameter estimate f 1.96SE, 
one could argue that the parameter estimate is not sigmficantly different from zero and perhaps 
the parameter should be left out of the model. 

6.3 MODEL DISCRIMINATION USING THE AKAIKE INFORMATION CRITERION 

6.3.1 Introduction 
As noted in Chapter 5 ,  the practitioner is usually confronted with the problem of choosing 

the most appropriate model for fitting to a given data set from a large number of available 
models. Consequently, model discrimination procedures arc required and some possible selec- 
tion methods are listed in Section 5.2.3. The identification methods in Section 5.3 constitute 
graphical and tabular techniques that can assist in deciding upon which model to choose. How- 
ever, these methods require some skill when being used in applications since the modeller must 
be cognizant of the properties of the various types of identification graphs in order to ascertain 
which parameters should be included in the model. To increase the speed, flexibility. accmcy 
and simplicity involved in choosing a model, the Akaike Information Criterion (AIC) (Akaike, 
1974) has been found to be quite useful. The AIC was first suggested for u s e  in hydrology by 
Hipel et al. (1977) and McLeod et al. (1977). Hipel (1981) explains in detail how the AIC can 
be used in geophysical model discrimination and provides references for its application to many 
different kinds of time series. 

6.3.2 Definition of the Akaike Information Criterion 
Based upon information theory, Akaike (1972a. 1973, 1974) developed the AIC which is 

defined as 

Alc = -2lnML + 2k (6.3.11 

where ML denotes maximum likelihood, lnML is the value of the maximized log likelihood 
function for a model fitted to a given data set, and k is the number of independently adjusted 
parameters within the model. A desirable attribute of the AIC is that the modelling principles 
described in Sections 1.3 and 5.2.4 are formally incorporated into the equation. The first term on 
the right hand side of 16.3.11 reflects the doctrine of good statistical fit while the second entry 
accounts for model parsimony. Because of the form of [6.3.1], when there are several available 
models for modelling a given time series, the model that possesses the minimum value of the 
AIC should be selected. This procedure is referred to by Akaike (1 974) as MAICE (minimum 
AlC estimation). 

The original mathematical development for the AIC formula in [6.3.1] is given by Akaike 
(1973,1974) while a summary of the derivation is presented by Ozaki (1977) and also Kitagawa 
(1979). Even though the entries in [6.3.1] reflect sound modelling principles, as noted by 
Akailre (1978) "... the only justification of its use will come from its performance in applica- 
tions." The MAICE procedure has previously been successfully applied to a wide range of sta- 
tistical problems. The method has been used to decide upon the order of an ARMA model to fit 
to a time series (Akaike, 1974; Hipel et al., 1977; McLeod et al., 1977; Ozaki, 1977). to ascertain 
the type of nonstationary ARIMA model to describe a time series (Ozaki, 1977), to determine 
the order of an AR model (Akaike, 1978; Akaike, 1979; Shibata, 1976). to select the order of a 
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Markov chain (Tong, 1975), to decide upon the order of a polynomial regression (Akaike, 
1972b; Tanabe, 1974), to determine the number of factors needed in a factor analysis (Akaike, 
1971). to assist in robot data screening (Akaike, 1972b). to detect outliers in a data set (Kita- 
gawa. 1979), to analyze cross classified data (Sakamoto and Akaikc, 1977). and to assist in 
canonical correlation analysis of time series (Akaike, 1976). The AIC can be employed to select 
the most suitable model when more than one family of models are being considered and McLeod 
and Hipel (1978) used the MAICE procedure to determine whether an ARMA or Fractional 
Gaussian noise model should be utilized to model a given annual hydrological time series (see 
Section 10.4). The AIC can be employed to select the best model from the families of seasonal 
models discussed in Part VI, and to choose the most appropriate intervention model (sce Chapter 
19). In fact, the MAICE procedure can be used with all the models Considered in this book (see 
Table 1.6.2) and the wide range of applications presented by Hipel (1981) confum the versatility 
of this method for selecting the most appropriate model to fit to a time series. 

6.33 The Akaike Information Criterion in Model Construction 

Employment of the MAICE procedure reinforces and complements the identdkation, esti- 
mation and djagnostic stages of model constructions illustrated in Figure m.1 at the start of Part 
III. Figure 6.3.1 depicts how MAICE can be incorporated into the three stages of model 
development Even though this chapter is concerned with nonseasonal ARMA and ARIMA 
models, the same general methodology can be employed no matter what types of time series 
models are being considered. For instance, the AIC model building procedure is recommended 
for use with the long memory, seasonal, transfer function-noise, intervention and multivariate 
models of Parts V to E, respectively. 

As shown by the flow chart in Figure 6.3.1, there are basically two approaches for employ- 
ing the MAICE procedure in model construction. One method is to calculate the AIC for all pos- 
sible models which are considered worthwhile for fitting to a given data set. For example, after 
specifying the Box-Cox parameter 3, in r3.4.301 (often 3, is set equal to unity if it is not known 
beforehand that a transformation is needed) maximum values for p. q and perhaps d may be set 
for ARIMA@d,q) models. The AIC can then be calculated for all possible combinations of p ,  d 
and q and the ARIMA model with the minimum AIC value is chosen. Although the selected 
model can usually be shown to adequately satisfy the important residual assumptions, as shown 
in Figure 6.3.1 it is always advisable to check for whiteness, normality, and homoscedasticity of 
the residuals using the methods in Sections 7.3 to 7.5, respectively. When the residuals are not 
white, other models should be considered by specifying a more flexible range for p ,  d and q. If 
the residuals do not possess constant variance and perhaps arc not normally distributed then a 
suitable Box-Cox transformation may rectify the situation. To select the most suitable value of 
k, a range of values of 3, may be med for the best ARIMA@,d,q) model which was just chosen 
using the MAICE procedure. The value of 3, which minimizes the AIC for the ARIMA model is 
then chosen. Another method is to obtain a MLE of 3, for the best model and then to fix 3, at this 
value if the exhaustive enumeration is repeated. Of course, A could be estimated for all possible 
combinations of p .  d and q in the exhaustive enumeration, but this would q u i r e  a very large 
amount of computer usage. 

If the diagnostic check stage is skipped and information from the identification and estima- 
tion stages is ignored when employing the exhaustive enumeration procedure with the AIC, it is 
possible that the best model may be missed. For example, in Section 6.4.3 it is shown that the 
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Figure 6.3.1. Model construction using MAICE. 

most suitable type of ARMA model to fit to the annual sunspot series is an AR model of order 9 
with the third to eighth AR parameter omitted from the model and the data transformed by a 
square root transformation. As explained in that section, if diagnostic testing had not been done 
and the SE's of the parameter estimates had not been considered, the most suitable model would 
not have k n  discovered. Besides the annual sunspot series, the MAICE procedure is used in 
Section 6.4.2 to decide upon the most appropriate ARM model to fit to the average annual 
flows of the St Lawrence River at Ogdensburg, New Yo&. 
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An exhaustive AIC study may prove to be rather expensive due to the amount of computa- 
tions. Consequently, as illustrated in Figure 6.3.1 an alternative approach is to only estimate the 
parameters and hence the AIC for a subset of models. For example, information from the iden- 
tification stage (see Chapter 5) may indicate three tentative models to fit to the time series. The 
AIC is then only calculated for these three models and the model with the minimum AIC value is 
selected If there are any problems with the residuals, appropriate action may be taken as shown 
in Figure 6.3.1. Otherwise, the chosen model can be employed in practical applications such as 
foncasting (see Chapter 8) or simulation (Chapter 9). 

6.3.4 Plausibility 

A question which is often asked by practitioners is how to interpret the relative differences 
in the values of the AIC for the various models which arc fit to a specified data set. In fact, the 
different AIC values can be interpreted in a variety of manners. For example, if one model 
possesses an AIC value which is approximately 2k less than that of another model, this is analo- 
gous to the superior model having k less parameters than the other model. A lower AIC value 
can also be considered to be mainly due to a better statistical fit because of the first term on the 
right hand side of [6.3.1]. However, a lower AIC value is usually caused by both components of 
the formula in [6.3.1] and, therefore, an alternative approach for interpreting the differences in 
the AIC values between two models is to consider plausibility. 

As shown by Akaike (1978), exp(-O.SNC) is asymptotically a reasonable definition of the 
plausibility of a model specified by the parameters which are determined by the method of max- 
imum likelihood. Consequently, the pluusibility of model i versus model j can be calculated 
using 

Plausibility = exp[O.S(AIC, - AIC;)] [6.3.2] 

where NC, is the value of the AIC for the ith model and AIC, is the AIC value for the j th 
model. Table 6.3.1 displays some representative results for the plausibility of model i against 
model j where the j th model is assumed to have a lower AIC value than model i .  As can be 
seen in Table 6.3.1, it is only the relative difference of the AIC values that is important and as 
these differences increase the plausibility decreases exponentially. Notice that when the AIC 
values differ by 6 the plausibility is only about 5%. 

6.35 Akaike Information Criterion for ARMA and ARIMA Models 

To determine the value of the AIC for an ARMA@.q) model, both terms in [6.3.1] must be 
calculated separately. By optimizing the log likelihood function with respect to the model 
parameters (see Section 6.2.3 and Appendix A6.1), the value of the maximized log likelihood 
can be found for substitution into 6.3.1. The number of model parameters k is due to p AR 
parameters, q MA parameters. the variance of the model residuals, the Box-Cox exponent 1 if it 
is included in the model, and the mean of the transformed series. 

When considering a nonstationary series of length N, the data is differenced d times using 
[4.3.3] to produce a stationary series of length n = N - d. Because the differencing reduces the 
amount of information, this will certainly affect the first term on the right hand side of [6.3.1]. 
Hence, the AIC for an ARIMA model can be roughly calculated as 
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Table 6.3.1. Plausibility of model i versus model j .  

-(AIcj-AIci) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 

Plausibility 

0.6065 
0.3679 
0.2313 
0.1353 
0.0821 
0.0498 
0.0302 
0.0183 
0.01 11 
0.0067 
O.OOO6 

N 
n 

AIC = -(-2lnML) + 2k [6.3.3] 

where the value of the maximized log likelihood is obtained by optimizing the logarithm of 
[A6.1.5]. The total number of panmeters k is the same as that for the ARMA model except 
when the mean of the differenced series is assumed to be zero and hence is not estimated. the 
number of parameters is decreased by one. 

Another alternative for developing an AIC formula for an AFUMA model is to alter both 
components on the right hand side of [6.3.1]. As argued by Ozaki (1977), an increase in the 
number of data points contributes to decreasing the penalty due to the number of parameters. 
This effect can be incorporated into the AIC by writing the formula as 

AIC = -(-2lnML N + 2k) I6.3.41 
n 

6.3.6 Other Automatic Selection Criteria 

As shown by Figure 6.3.1 the MAICE procedure tends to “automate” model construction 
and to simplify model selection. In practice, it has been found that the MAICE methodology 
almost always chooses the same models which would be selected using more time consuming 
methods such as those presented in Section 5.3 and elsewhere. For example, when one model is 
a subset of another, a likelihood ratio test can be employed to determine if the model with more 
parameters is required for modelling a specified data set. However, as shown by McLeod et al. 
(1977). results from likelihood ratio tests usually confirm the conclusions reached using the 
MAICE procedure. An additional advantage of MAICE is that it is not necessary to select sub- 
jectively a significance level as is done with the likelihood ratio test. 

The AIC is not the only uutomtic selection criterion (ASC) that can be used in model 
discrimination, although it is probably the most flexible and comprehensive of the methods 
which arc presently available. For choosing the order of an AR model, Akaike (1969, 1970) 
developed the point estimation method called the final prediction error (WE) technique (see 
Apptndix A6.3 for a definition of the FPE and its relationship to the AIO. McLave (1975) 
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presented an algorithm to be used in subset autoregression for obtaining the best constrained AR 
model where model selection is based upon the FPE criterion (see Section 3.4.4 for a discussion 
of constrained models). In another paper, McLave (1978) compared the FPE technique and a 
sequential testing approach which he referred to as the “max x2 method” for choosing the con- 
strained AR model. Other ASC’s which can only be used for AR modelling include the tech- 
nique devised by Anderson (1971). the “CAT” criterion of Parzen (1974). and the method of 
Hannan and Quinn (1979). The “D-statistic” of Gray et al. (1978) can be utilized for choosing 
the most appropriate nonseasonal A M @ , @  model, although the statistic has not been suffi- 
ciently developed for use in nonstationary and seasonal modelling. Mallows (1973) developed a 
statistic for use in model discrimination that is related to what he calls the Cp statistic. Based 
upon the characteristics of the sample ACF and the sample PACF (refer to Sections 5.3.4 and 
5.3.5 for explanations of the sample ACF and PACF, respectively), Hill and Woodworth (1980) 
employed a pattern recognition technique to identify the more promising ARIMA models that 
should be considered for fitting to a specified time series. Following this, they recommended 
using an appropriate ASC to select the overall best model. Akaike (1977). Rissanen (1978) and 
Schwarz (1978) developed similar selection criteria for use with ARMA models while Chow 
(1978) proposed an improved version of these methods. Sawa (1978) defined a criterion for sta- 
tistical model discrimination called the minimum attainable Bayes risk. Stone (1979) compared 
the asymptotic properties of the AIC and Schwarz criterion while Hannan (1979, 1980) derived 
important theoretical results for various kinds of ASC’s. Based on the Kullback Leibler infor- 
mation number, Shibata (1989) obtained the TIC (Takeuchi’s Information Criterion) as a natural 
extension of the AIC. He then went on to develop the RIC (Regularization Information Cri- 
terion) as a meaningful expansion of both the AIC and TIC. Moreover, Shibata (1989) compared 
various ASC’s in terms of criteria which include consistency and efficiency. 

As pointed out in Section 1.3.3, many of the ASC’s have a structure which is quite similar 
to that of the AIC in [6.3.1]. Consider, for instance, Schwarz’s approximation of the Buyes 
information criterion (BIC) (Schwarz, 1978) which is written as 

BIC = -2lnML + kln(n) [6.3.5] 

As is also the case for the AIC in [6.3.1], the first term on the right hand side of [6.3.5] reflects 
good statistical fit while the second component is concerned with model parsimony. When fit- 
ting more than one model to a given time series, one selects the model which gives the lowest 
value of the BIC. To employ an ASC such as the BIC in [6.3.5] in model construction. simply 
replace the AIC by the other ASC in Figure 6.3.1. As explained in Section 6.3.3, there are two 
basic approaches for utilizing an ASC in model development. 

Certainly further theoretical and practical research is required to compare the capabilities of 
the more promising automatic selection procedures. However, the efficacy of MAICE is clearly 
demonstrated by the many and varied applications cited in this book and elsewhere. For 
instance, MAICE can be employed to choose the best model from different families of seasonal 
models (see Part VI), and to design transfer-function noise (Part W), intervention (Part VIII) 
and multivariate ARMA (Part IX) models. Furthermore, when considering different types of 
models for forecasting, usually the kind of model which forecasts most accurately also possesses 
the lowest AIC value (see Chapter 15). Some disadvantages of MAICE and the other ASC’s arc 
that an overall statistic tends to cover up much of the information in the data and the practitioner 
may lose his or her sense of feeling for the inherent characteristics of the time series if he or she 
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bases his or her decisions solely upon one statistic. However, when MAICE is used in conjunc- 
tion with the three stages of model consauction as is shown in Figure 6.3.1, then is no doubt 
that MAICE greatly enhances the modelling process. 

Akaike (1985) clearly explains how the derivation of the AIC is based upon the concept of 
entropy. In fact, the minimum AIC procedure can be considered as a realization of the entropy- 
marimizarion principle (Akaike, 1977). A further amactive theoretical feature of the MAICE 
approach is that it can be used to compare models which are not nested. Therefore, as noted ear- 
lier, one can use the MAICE procedure to select the best overall model across different families 
of models, as is done in Part VI for seasonal models. The practical import of the MAICE 
method for use in model discrimination is demonstrated by the two applications in the next sec- 
tion. 

6.4 APPLICATIONS 

6.4.1 Introduction 
Table 5.4.1 in the previous chapter lists ARMA models identified for fitting to five nonsea- 

sonal stationary natural time series. In addition, Table 5.4.2 and Section 4.3.3 presents ARlMA 
models selected for fitting to three nonseasonal nonstationary time series. The maximum likeli- 
hood estimator described in Appendix A6.1 and mentioned in Section 6.2.3 can be used to calcu- 
late MLE’s and SE’s for the parameters in all of the foregoing models. Moreover, when more 
than one model is fitted to a given time series, the AIC of Section 6.3 can be employed for 
choosing the most appropriate model. 

In the next two sections, estimation results along with applications of the AIC are presented 
for the same two case studies for which detailed identification findings are given in Section 5.4. 
The first application deals with modelling the average annual flows of the St. Lawrence River at 
Ogdensburg. New York, while the second one is concerned with modelling average annual sun- 
spot numbers. 

6.4.2 Yearly St. Lawrence Riverflows 
Average annual flows for the St. Lawrence River at Ogdensburg, New Yo&, are available 

from 1860 to 1957 (Yevjevich. 1963) and plotted in Figures 2.3.1 and 5.4.1 in rn3/s. The sample 
ACF, PACF. IACF, IPACF for these flows are displayed in Figures 5.4.2 to 5.4.5, respectively. 
As explained in Section 5.4.2. these identification graphs indicate that probably the best type of 
ARMA model to fit to the St Lawrence flows is a constrained AR(3) model without the Qr 
parameter. However, one may also wish to try fitting AR( 1) and unconstrained AR(3) models. 

Table 6.4.1 lists the MLE’s and SE’s for AR(l), AR(3) and constrained AR(3) models fit- 
tcd to the St Lawrence flows. The theoretical definition for AR models can be found by refer- 
ring to [3.2.5]. 

Model discrimination can be accomplished by comparing parameter estimates to their SE’s, 
by using the AIC or by performing the likelihood ratio test. In order to employ the first pro- 
cedure, first consider the models listed in Table 6.4.1. Notice that for both the AR(3) model and 
the AR(3) model without $2 the estimate I& for $3 is more than twice its standard error. There- 
fort. it can be argued that even at the 1% significance level, $3 is significantly different from 
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Table 6.4.1. Parameter estimates for the AR models fitted to 

i AIC’S 
1 1176.38 

Constrained 
AR(3) 
without $2 

~ Parameters MLE’S 

$1 0.708 

~ =a 419.73 

$1 0.659 

$3 0.216 
=a 409.15 

$1 0.619 
$3 0.177 
=a 410.27 

$2 -0.087 

SE’S 

0.072 

0.099 
0.119 

0.099 

0.084 
0.084 

1175.59 

1174.11 
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zero and should be included in the model. Consequently, the AR(1) model should not be utilized 
to model the St. Lawrence riverflows. Furthermore, because the SE for 4, in the AR(3) model is 
greater than J2, for model parsimony the AR(3) model without e2 is the proper model to select. 

When the AIC is employed for model selection, it is not necessary to choose subjectively a 
significance level, as is done in hypothesis testing. By using (6.3.11, the values for the AIC are 
calculated for the three AR models and listed in the right hand column of Table 6.4.1. As can be 
seen, the AR(3) model without q2 has the minimum AIC, and, therefore, the AIC also indicates 
that this model should be chosen in preference to the others. 

Suppose that one wishes to discriminate between models where one model is a subset of 
another. For the case of an AR model, let the order of one AR model be k and the order of 
another model containing more AR parameters be r .  Let the residual variances of these two 
models be &z(k) and 6;(r),  respectively. The likelihood ratio srurisric given by 

[6.4.1] 

is x2 distributed with r - k degrees of freedom. If the calculated x2(r - k) from [6.4.1] is greater 
than x2(r - k) from the tables at a chosen significance level, a model with more parameters is 
needed. 

The above likelihood ratio can be utilized to choose between the AR(1) model and the 
AR(3) model with q2 = 0. By substituting n = 97, k = 1.  the residual variance of the AR(1) 
model for ;:(k), r = 2, and the residual variance of the AR(3) model with $2 = 0 for &), the 
calculated x2 statistic from [6.4.1] has a magnitude of 4.58. For 1 degree of freedom, this value 
is sigruficant at the 5% significance level. Therefore, this test indicates that the constrained 
AR(3) model should be selected in preference to the AR( 1) model. 

The likelihood ratio test can also be employed to test whether an AR(3) model without 
gives as good a fit as the AR(3) model. Simp1 substitute into [6.4.1] n = 97, k = 2, the residual 
variance of the AR(3) model with $2 = 0 for 0, (k), r =3, and the residual variance of the AR(3) 4 
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model for 6,'(r). The calculated x2 statistic possesses a value of 0.0569. For 1 degree of free- 
dom this value is certainly not significant even at the 50% significance level. Consequently, the 
constrained model without gives an adequate fi t  and should be used in preference to the 
AR(3) model in order to achieve model parsimony. 

AR(3) model without $2 as 
By substituting the estimated AR parameters into [3.2.5], one can write the constrained 

(1 -0.619B -O.177B3)(z, - 6 8 1 9 ) = ~ ,  [6.4.2] 

where z, is the average annual flow at time I, and 6819 is the MLE of the mean for the z, series. 
Diagnostic checks presented in the next chapter in Section 7.6.2 demonstrate that the constrained 
AR(3) model without $* adequately models the average annual flows of the St. Lawrence River. 

6.43 Annual Sunspot Numbers 

The yearly Wolfer sunspot number series is available from 1700 to 1960 (Waldmeier, 
1961) where a plot of the series from 1770 to 1869 is shown in Figure 5.4.6. The sample ACF. 
PACF, IACF and IPACF are presented in Figures 5.4.7 to 5.4.10 in the identification chapter. 
As explained in Section 5.4.3, these identification graphs in conjunction with the output from 
diagnostic checks (see Section 7.6.3) indicate that an appropriate model may be a constrained 
AR(9) model without (I3 to (I8 fitted to the square roots of the sunspot series. 

The MAICE procedure of Section 6.3 can be used to select the best type of ARMA model 
to f i t  to the sunspot series. Previously, Ozaki (1977) found using MAICE that an ARMA(6.3) 
model is the most appropriate model to f i t  to the given sunspot series having no data transforma- 
tion. Akaike (1978) employed the AIC to select an ARMA(7,3) model with a square root 
transformation as the best sunspot model. However, Akaike (1978) did note that, because of the 
nature of sunspot activity, a model based on some physical consideration of the generating 
mechanism may produce a better fit to the data. Nevertheless, in this section it is shown how the 
model building procedure outlined in Figure 6.3.1 can be used to select an even better model 
from the family of ARMA models. As was suggested by McLeod et al. (1977) and also Hipel 
(1981), the AR(9) model, with a square-root transformation and the third to eighth AR parame- 
ters omitted from the model, produces a lower value of the AIC than all of the other aforemen- 
tioned ARMA models. Earlier, Schaerf (1964) suggested modelling the sunspot data using a 
constrained AR(9) model but without the square-root transformation. 

Because Ozaki (1977) used the series of 100 sunspot values listed as series E in the book of 
Box and Jenkins (1976), the m e  data set is used here for comparison purposes. By using an 
exhaustive enumeration procedure, Ozaki (1977) calculated the AIC for all ARMA@,q) models 
for OSp,qS9 and found that an ARMA(6.3) model possessed the minimum AIC value. Employ- 
ing [6.3.1], the values of the AIC were calculated for the same set of models examined by Ozaki 
(1977). The second column of Table 6.4.2 lists the AIC values for some of the models when the 
data is not transformed using [3.4.30] (i.e., b 1  and c=O in [3.4.30]). It can be seen that the 
minimum AIC value occurs for the ARMA(6,2) model. which is almost the same as the value of 
the AIC for the constrained AR(9) model. Notice that the ARMA(6.3) model suggested by 
Ozaki (1977) has a much higher AIC value than those for the ARMA(6,2) and constrained AR(9) 
models. This discrepancy is probably due to the different estimation procedure used by Ozaki. 
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The estimation method of McLeod (1977) described in Appendix A6.1 provides parameter esti- 
mates that an closer approximations than those of Box and Jenkins (1976) to the exact MLE’s. 
As shown by McLeod (1977), implementation of his estimation method can result in improved 
estimates of the model parameters especially when MA parameters are contained in the model. 
As far as Table 6.4.2 is concerned, the improved estimation procedure affects the log likelihood 
in [6.3.1] and this in turn causes the AIC values to be slightly different than those given by 
OzaLi (1977, p, 297, Table 6). 

Because information from the three stages of model construction is essentially ignored 
when using an exhaustive AIC enumeration such as the one adopted by Ozaki (1977). the best 
ARMA model is missed. To avoid this type of problem, the AIC can be combined with model 
construction as shown in Figure 6.3.1. From the plots of the sample ACF, PACF. IACF. and 
IPACF in Figures 5.4.7 to 5.4.10, respectively, it is Micu l t  to decide upon which model to esti- 
mate. However, the sample PACF does possess values at lags 1 and 2 which are significantly 
different from zero and also some nther larger values at lags 6 to 9. When an ARMA(2.0) 
model is fitted to the data the independence, normality and homoscedastic assumptions (see Sec- 
tions 7.3 to 7.5, respectively) are not satisfied. The residual ACF (see Section 7.3.2) has a large 
value at lag 9 and this fact suggests that an AR parameter at lag 9 should perhaps be incorporated 
into the model. The value of the AIC is lowest in column 2 of Table 6.4.2 for the AR(9) model 
without AR parameters from lags 3 to 8. However, because the statistic for changes in residual 
variance depending on the current level of the series, the statistic for trends in variance over time 
(see Section 7.5.2) and the skewness coefficient (see Section 7.4.2) all possess magnitudes which 
are more than twice their standard error, this points out the need for a Box-Cox transformation to 
eliminate heteroscedasticity and nonnormality. A square-root transformation can be invoked by 
setting h q u a l  to 0.5 in [3.4.30] and assigning the constant c a value of 1.0 due to the zero 
values in the sunspot series. Notice from the entries in the third column in Table 6.4.2 that a 
square-root transformation drastically lowers the AIC values for all of the models. The best 
model is an AR(9) or ARMA(9,O) model with a square-root transformation and without the third 
to eighth AR parameters. This constrained model was not missed because information from the 
model construction stages was used in conjunction with the MAICE procedure. Hence, when 
modelling a complex time series such as the sunspot data, it is advantageous for the practitioner 
to interact at all stages of model development by following the logic in Figure 6.3.1. 

In Table 6.4.3, the MLE’s and SE’s are shown for the parameters of the most appropriate 
ARMA model which is fitted to the sunspot time series. When considering the 100 observations 
from 1770 to 1869 which are listed as Series E in Box and Jenkins (1976), the difference equa- 
tion for the constrained AR(9) model with a square-root transformation is written as 

( 1  - 1.325B +0.605B2-0.130B9)(w, - 10.718)=0, [6.4.3] 

where 

w, = (1/0.5)[(z, + 1.0)“’- 1.01 

is the transformation of the given L, series for the sunspot numbers. The calibrated difference 
quation for the model fitted to the entire sunspot series from 1700 to 1960 is 
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Panmeters 
$1 

92 
k 

=a p* 

Chapter 6 

MLE’s SE’s 
1.325 0.074 
-0.605 0.076 
0.130 0.042 
10.718 1.417 
4.560 

Table 6.4.2. AIC values for the ARMA sunspot models. 
AIC 

for kl. 
c 4 . 0  

618.30 
55 1.85 
547.63 
549.57 
546.98 
547.29 
548.20 
547.23 
548.1 1 
545.05 
55 1.35 
550.73 
548.17 
551.01 
545.67 
547.65 
547.65 
548.18 
545.64 

AIC 
for k O . 5 ,  

c=1.0 
580.40 
518.41 
519.19 
519.13 
516.10 
523.82 
517.96 
517.38 
517.39 
518.43 
523.34 
502.40 
5 18.98 
52 1.37 
519.83 
520.44 
5 19.72 
5 18.78 
511.58 

(1 - 1.245B + 0.524B2 - 0.192B9)(w, - 10.673) =(I, 
As shown in Section 7.6.3, the sunspot model in [6.4.4] satisfies diagnostic checks. 

[6.4.4] 
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By using [6.3.2] the relative plausibility of the sunspot models can be obtained. For 
instance, from Table 6.4.2 the next best model to the one in [6.4.3], according to the AIC, is an 
ARMA(4,4) model with a square-root transformation. When the appropriate AIC values from 
Table 6.4.2 are substituted into [6.3.2], the plausibility of the ARMA(4.4) model with a square- 
root transformation as compared to the best model is 0.10. According to the AIC, all of the other 
ARMA models with a square-root transformation are less plausible than even the ARMA(4.4) 
model. In addition, a comparison of the entries in columns two and thne of Table 6.4.2 reveals 
how a square-root transformation significantly lowers the AIC values and hence increases the 
plausibility of a given ARMA model. 

6.5 CONCLUSIONS 

As explained in Section 6.2.2, maximum likelihood estimators possess a range of very 
desirable statistical properties which makes them highly attractive for use in practical applica- 
tions. For example, maximum likelihood estimators are efficient and therefore produce parame- 
ter estimates having minimum variances in large samples. Accordingly. maximum likelihood 
estimation is the best approach for estimating the parameters in an ARMA model which is fined 
to a given time series. Of particular, practical importance is the maximum Likelihood estimator 
of McLeod (1977) described in Appendix A6.1 which is efficient both from statistical and com- 
putational viewpoints. This estimation procedure is used for estimating parameters in not only 
A R M  and ARIMA models but also many of the extensions to nonseasonal ARMA models 
presented later in the book and listed in Table 1.6.2. 

Often the identification procedures of Section 5.3 suggest more than one model to fit to a 
specific time series. After calibrating the panmeters for the ARMA models, the best overall 
model can be selected using the MAICE procedure of Section 6.3. The ways in which the 
MAICE approach can be incorporated into the three stages of model construction given in Figure 
III.1, are shown in Figure 6.3.1. 

After selecting the best overall fitted model using the AIC or another appropriate ASC, the 
chosen model should be subjected to rigorous diagnostic checking. Procedures for making sure 
that various modelling assumptions are satisfied are described in detail in the next chapter. 

APPENDIX A6.1 

ESTIMATOR FOR ARMA MODELS 

The purpose of this appendix is to describe the modified sum of squares algorithm of 
McLeod (1977) for obtaining approximate MLE’s for the parameters in an ARMA model. As  
pointed out in Section 6.2.3 this estimator is computationally efficient and produces parameter 
estimates which are usually identical to the exact MLE’s. 

Let w,. t = 1.2,. . . , n ,  be a stationary time series which is normally distributed. One 
wishes to use the maximum likelihood estimator to obtain estimates for the parameters in the 
ARMA model defined in [3.4.4] or [4.3.4]. The parameters to estimate are: 
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1. the mean p for the series. If the series has been differenced at least once, one may wish to 
set p 4  for the w, series. Otherwise, p can be estimated using 

and then fixed at G when estimating the other model parameters. Another approach is to 
include p as an additional parameter to estimate along with those mentioned below. For 
time series of moderate length (i.e.. n 2 30), the estimate given by G will be very close to 
that obtained when p is iteratively estimated along with the other model parameters. 
the p AR parameters contained in the set 2. 

4 = ( 9 1 . h  * * 

e = (e1 ,e2 , .  . . , eq). 
3. the q MA parameters in the set 

4. 

5. 

the innovation series given by aI,a2, . . . ,a,. 

the variance, cr:, of the innovations. 

To write down the likelihood function for an ARMA@q) model, one must assume a distri- 
bution for the innovations and hence the w, series. In particular, assume the innovations are 
NID(0, a,') and the w, sequence is N(p,ci:). 

Recall that for a single random variable, w .  which is N ( p , d ) .  the pdf is written as 

Suppose that one has a time series, w,, of n wndom variables given by w1,w2, . . . , w,,, where the 
w's arc jointly normally distributed as 

where 
T p = @.p, . . . t p) 

since pl = 
where 

= - * = p,,. r,@.q)(@,e) = E(WW') is the variance-covariance matrix of the wl's 

wT= (wl -c(,wz- p, . . . , w, -p) 

and the ( i j )  element of r!*q) is yli+ for which the autocovariance is defined by 
yk = E[wit.wl4] as in (2.5.3). The joint normal distribution of the w,'s is given by 



Parameter Estimation 223 

When the unconditional sum of squares function is given by S(e.8) = d:, Box and Jen- 

kins (1976, Ch. 7, A7.4) show that the above can be used to evaluate dMr,@4)($,8)wn con- 
veniently. The d,’s can be calculated using the back-fortcasting procedure of Box and Jenkins 
(Box and Jenkins, 1976, pp. 215-220) as 

1- 

d, = €[a, Iw,@.Ol 

Mort specifically, let [w,] and [a,] denote conditional expectations given W , - ~ , W , - ~  ,..., wl. 
Then, 

+@“,I = B(B )[a, 1 

where [a,] = 0, t > n .  Similarly, 

[A6.1.3] 

$(F)[W,l = W”,l [A6.1.4] 

where F is the forward differtncing operator defined by Fw, = w , + ~ .  and e, - NID(O,a,2) with 
[e,]  = 0, f < 1.  Then. the unconditional sum of squares function S($,O) is calculated as follows: 

Step 0: Initialization. Set Q large enough so the model is well approximated by a M A ( Q  pro- 

Srep I :  Calculate [w,] (r =n+Q,  , . . , 1)  using rA6.1.41. Begin this calculation by setting 
cess. Typically, Q = 100 is sufficient 

[ w , ] = O , f 2 n - p .  

Step 2: Calculate [e,] ( f  = n+Q, . . . , 1) using rA6.1.31. Start this calculation by setting [e,] = 0, 

Sfep 3: Back forecast w, ( I  = 0,-1, . . . , 1 - Q). This is done by using [A6.1.4] to calculate frst  
f = n - p .  

[w,I then [w-ll, . . . , [ y g l .  

Step 4: Calculate [a,] (t = 1 4 ,  . . . , n)  using rA6.1.3). 

srep 5: s($,o) = [a,]*. 

Consequently, the likelihood function is given by 
t = l Q  
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(A6.1.51 

Because the term lM,@*q)($.8)1 is dominated by the expression exp{-S($.8)/2a:] in 
rA6.1.51 for large n and lMfd)($,e)l is difficult to calculate, Box and Jenkins (1976. p. 213) 
suggest that the determinant can be disregarded and approximate MLE’s can be obtained for the 
model parameters. However, if the sample is small and/or MA parameters are included in the 
model, the resulting parameter estimates may differ appreciably from the exact MLE’s (McLeod, 
1977). To rectify these problems various authors have suggested different approaches for calcu- 
lating IM,@*q)($,8)1. McLeod (1977) devised a procedure whereby lM2d)($,8)l is replaced by 
its asymptotic limit given by 

(A6.1.61 

When there are no MA parmeters in an ARMA(pq) model and hence q = 0, it is known 
that for n 2 p (Box and Jenkins, 1976, p. 275) 

and the mamx M,@*’)(@) has the (i.j)th element (Pagano, 1973; McLeod, 1977) 
min(i.j) 

c ($i-k-l$j-k-l-$p+l+k-i$p+l+k-j) 
k=O 

where $o = -1. To calculate m,,o($), one can use 

As shown by McLeod (1977) 

[A6.1.7] 

[ A6.1.81 

where $*i is the ith parameter in the operator of orderp+q that is defined by 

$*(B)  = w ) e ( B )  

and $* = ($*1.$*2, . . . , I$*~+~) .  Consequently, to compute mp*q($,8) in [A6.1.8]. it is only 
necessary to calculate the determinants of the three positive definite matrices which arc obtained 
from [A6.1.7]. 

For convenience, McLeod (1977) defines the modified sum of squares function given by 

Sm ($B = sc$.exm, ($,e)i-l’n [A6.1.9] 

and this is the function called the modified sum of squares (MSS) referred to in Section 6.2.3. 
To obtain MLE’s for the model parameters, the modified sum of squares must be minimized by 
using a standard optimization algorithm such as the method of Powell (1964, 1965). When 
modelling seasonal time series, it is a straightforward procedure to appropriately alter rA6.1.91 
for use with seasonal ARMA models (McLeod and Sales. 1983). 
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As noted in Section 6.1, often the value of the Box-Cox parameter k in (3.4.301 is known in 
advance for a given type of time series. If X is not known, this parameter can be iteratively 
estimated along with the other ARMA model parameters. However, one must take into account 
the Jacobian of the transformation to obtain the log likelihood function given by (McLcod, 1974; 
Hipel et al., 1977) 

[A6.1.10] 
,=1 L n  

where c is the constant in the Box-Cox transformation in [3.4.30] that causes all entries in the w, 

series to be positive. When all the entries in the w, series arc greater than zero, one sets c = 0. 
When 1 is futed beforehand or estimated, one should minimize [A6.1.10] to obtain MLE’s for 
the model parameters. If a computer package does not possess the capability of obtaining the 
MLE of X, the log likelihood can be calculated for a range of fixed values of 2., and the X which 
gives the largest value of the log likelihood can be chosen. 

When using the estimator of this appendix to obtain MLE’s for an ARMA model or other 
types of models given in this text, it is recommended that the w, series be standardized before 
using the estimator. For example, each observation in the w, series can be standardized by s u b  
aacting out the mean of the series and dividing this by the standard deviation of the series. If the 
series is not standardized, one may run into numerical problems when optimizing the likelihood 
function. ’Ihis is especially true for the transfer function-noise and intervention models in Parts 
MI and VIII, respectively where the absolute magnitude of an estimated transfer function param- 
eter may be much greater than the absolute magnitudes of the AR and MA parameters contained 
in the correlated noise terms. 

APPENDIX A6.2 

INFORMATION MATRIX 

To obtain SE’s for the MLE’s of the AR and MA parameters in an ARMA model, one must 
calculate the variancecovariance matrix for the model parameters. The squm roots of the diag- 
onal entries in this matrix constitute the SE’s for the corresponding parameter estimates. 

Because the variance-covariance matrix is the inverse of the Fisher information mamx, frst 
consider the definition for the information matrix. Let the sets of AR and MA parameters given 
in Section 6.2.1 as $ = ($1.$2, . . . ,$,,) and 8 = (8,,02, . . . ,e,), respectively, be included in a 
single set as = ($,e). The variance of the innovations is denoted by a:. The likelihood func- 
tion is written as L(plw), where w = (wlrw2, . . . , w,) is the set of observations. Let 
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[A6.2.1] 

where the ( id)  element is defined inside the brackets on the right hand side, the dimension of the 
information matrix is @+9) by @+q), pi and pi are the ith and j th parameters, respcctively, and 

B = ($,6) is the set of MLE’s for the AR and MA parameters. Then, I @ )  is said to be the 
thyretical Fisher large sample information per observation on p. In practice I @ )  is estimated by 

me vuriance-covariance marrir for ~ ( ( j )  for the set of MLE’S p is given in large samples 

V ( ( j )  = nI&’ [ A6.2.21 

The square roots of the diagonal entries in the variance-covariance matrix in [A6.2.2] provide the 
estimates for the standard errors (SE’s)  of the corresponding parameters. The variance- 
covariance matrix is often referred to as simply the covariance matrix. 

The second order partial derivatives with respect to the model panmeters reflect the rate of 
change of slope of the log likelihood function. When this slope change is high, there is less 
spread around an optimum point in the log likelihood function. This in turn means that the 
inverse of the slope change is small which indicates a smaller SE when considering a diagonal 
entry in the variance-covariance mamx. 

For an ARMA model, the variance-covariance matrix can be written in terms of the AR and 
MA parameters. In practice, the entries in the matrix can be calculated numerically. 

Because it is known that MLE’s are asymptotically normally distributed, one can test 
whether or not a given MLE is significantly different from zero. For example. if zero falls out- 
side the interval given by the MLE It 1.96 SE, one can state that the estimate under consideration 
is significantly different from zero at the 5% significance level. If this were not the case, one 
may wish to omit this parameter from the model fitted to the series. Constrained models are 
described in Section 3.4.4 while an example of a constrained model is the constrained AR(3) 
model fitted to the yearly St Lawrence riverflow in Sections 5.4.2,6.4.2 and 7.6.2. 

I @ ) .  

by the inverse of the information mamx. Hence, 

From the definition [A6.2.1] it may be shown that 

[ A6.2.31 

where the ( i d )  element in each partitioned matrix is indicated and y,@xp), 7,,(9xq), yvu@x4),  
yw(9xp) are the theoretical auto and cross covariances defined by 

$(B)v, =-alr 
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Ydk) = E(v,v,t&), 

7,(Q = ~(W+d.  

Y,(N = E ( V I % & ) .  

Y,(M = Yw( -o  [A6.2.4] 

The cova~iance functions in [A6.2.4] may be obtained from a generalization of the algorithm 
given in Appendix A3.2. 

APPENDIX A 6 3  

FINAL PREDICTION ERROR 

Suppose that it is required to determine the order of an AR model to fit to a stationary time 
series w1.w2, . . . , w,,. Prior to the introduction of the AIC defined in [6.3.1], Akaike (1%9, 
1970) developed a statistic called the final predicrion error (FPE) for selecting the order of the 
AR model. The FPE is an estimate of the one step ahead prediction error variance of the AR@) 
model in r3.2.51 and is defined as 

[A6.3.1] 

- 2  1 "  where o,@) = - C d: is the unbiased estimate of the midual variance of the AR@) 
- p  I=p+l 

model. According to Akaike (19a9.1970). the AR model with the minimum value of the FPE in 
[A6.3.1] should be selected for modeling the series. 

Taking natural logarithms of rA6.3.11 produces the result 

W P E  = lnij(p) + + o(n-2) [ A6.3.21 

It is known that (-2) times the log likelihood of a Gaussian AR@) model is approximately given 
by nln i j (p )+  constant. Hence, as noted by Ozaki (1977). 

n 

nlnFPE = AJC + constant + O(n-') [A6.3.3 J 

Consequently. the MAICE procedure for AR model fitting is asymptotically equivalent to choos- 
ing the minimum value of the FPE. 
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PROBLEMS 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

6.8 

6.9 

Chapter 6 concentrates on explaining how the method of maximum likelihood can be used 
for estimating the parameters of ARMA models. However, other parameter estimation 
approaches arc also available. Make a list of the names of six other estimation techniques. 
Outline the main ideas behind any two of these six methods. 
In Section 6.2.2, first order and second order efficiency arc referred to. Using equations 
where necessary, discuss these two concepts in more depth than that given in Section 6.2.2. 

A criterion for characterizing an estimator is sufficiency. Define what is mcant by suffi- 
ciency. Are maximum likelihood estimators sufficient? 
What is an approximate maximum likelihood estimator? Outline the main components 
contained in the conditional and unconditional approximate maximum likelihood estima- 
tors suggested by Box and Jenkins (1976). 
What is an exact maximum lielihoood estimator? Describe the main steps followed when 
applying the exact maximum likelihood estimators provided by Ansley (1979) as well as 
Ljung and Box (1979). 
To optimize a likelihood or log likelihood function, a number of optimization algorithms 
arc listed in Section 6.2.3. Outline the steps contained in the conjugate dinctions algo- 
rithm of Powell (1964, 1965). Discuss the advantages and limitations of Powell’s algo- 
rithm. 
Explain the difference between maximum likelihood estimation and Gaussian estimation. 
Show that the exact log likelihood function for a Gaussian AR(1) is: 

21 = CI + $I(zf-I - CI) + a, 

whercar-NID(0,a,2)andr= 1, ..., n maybewrittenas 

where 
n 

I =2 

2 S($l) = (1 - $:)(zl - PI2 + ZNZ, - cr) - $l(Z,-k - P)l 

Simulate z,, r = 1,. . . , n several times for various n and plot L($l,p,az) for 1 $ 1 1  < 1. 

Suppose that 

(1 - $IB)Z, =a, 

where log (I, - NID(0,a;). Show that I($1) = (1 + ai2)e2”’ 

(a) Consider the AR( 1) model 
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1 If a, - NID(O.1). show that I ( @ )  = - 
1 - 8 2  

@) Now consider the AR( 1 )  model 

(1 - W Z ,  =a,. 

where log a, - NID(0.1). Show that in this case, that 

(c) Compare the relative efficiency of Gaussian estimation versus maximum likelihood 
estimation when log a, - NID(O.1). Verify your theoretical calculation by simulation 
(sce Chapter 9 for an explanation of simulation). 

6.10 Outline the theoretical development of the AIC given in [6.3.1]. 

6.11 Two approaches for employing the AIC in conjunction with model construction arc 
described in Section 6.3.3. Using an annual time series of your choice, employ these two 
proceduns for determining the best overall ARMA or ARIMA model to fit to the series. 

6.12 Compare the MA(2) and AR(2) models for the Mean Annual Temperatures in Central Eng- 
land. Calculate the plausibility of the MA(2) model versus the AR(2) model. 

6.13 The general form of an automatic selection criterion for model discrimination is given in 
Section 1.3.3 while the AIC and BIC are defined in [6.3.1] and [6.3.5]. Excluding the AIC 
and BIC, give the definitions of three other ASC’s. Discuss the domains of applicability, 
advantages and drawbacks of each of these ASC’s. 
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CHAPTER 7 

DIAGNOSTIC CHECKING 

7.1 INTRODUCTION 

In Chapter 5 ,  a variety of useful graphical tools arc presented for identifying one or more 
promising ARMA or ARIMA models to fit to a given time series. Subsequent to model identifi- 
cation, the method of maximum likelihood described in Chapter 6 can be employed for obtaining 
MLE’s and SE’s for the model parameters. When parameter estimates arc calculated for more 
than one model. the AIC of Section 6.3, or another appropriate ASC mentioned in Section 6.3.6, 
can be used to select the overall best model. The objective of Chapter 7 is to ensure that this 
model adequately describes the time series under consideration by subjecting the calibrated 
model to a range of statistical tests which are referred to as diagnostic checks. The overall 
approach to model construction is displayed in Figurc m.1 while Figure 6.3.1 shows the ways in 
which the AIC can be used in conjunction with the model building stages. 

One class of diagnostic checks is devised to test model adequacy by overfitting. This 
approach assumes that the possible types of model inadequacies arc known in advance. The pro- 
cedure of overfitting consists of including one or more extra parameters in the model to ascertain 
if an improved model can be designed (Box and Jenkins, 1976, Ch. 8; Granger and Newbold, 
1977, Ch. 3). Section 7.2 explains how overfitting can be carried out in practice. 

The most useful and informative diagnostic checks deal with determining whether or not 
the assumptions underlying the innovation series are satisfied by the residuals of the calibrated 
ARMA or ARIMA model. As pointed out in Section 3.4.5 and many other locations in the book, 
when fitting a model to a time series the estimated innovations or residuals are assumed to be 
independent, homoscedastic (i.e. have a constant variance) and normally distributed. Estimates 
for the a,’s are automatically calculated at the estimation stage along with MLE’s and SE’s for 
the model parameters (see Appendices A6.1 and A6.2). 

Of the three innovation assumptions, independence and, hence, whiteness, is by far the 
most important A data bansfonnation cannot correct dependence of the residuals because the 
lack of independence indicates the present model is inadequate. Rather, the identification and 
estimation stages must be repeated in order to determine a suitable model. If the less important 
assumptions of hornoscedasticity and normulity arc violated. they can often be comcted by a 
Box-Cox transformation of the data defined in [3.4.30]. 

Table 7.1.1 lists the main problems that can occur with the statistical properties of the resi- 
duals of a fitted model and how they can be comted .  Diagnostic checks for whiteness, nonnal- 
ity and homoscedasticity of the residuals are presented in Sections 7.3 to 7.5. respectively, along 
with explanations regarding corrective actions that can be taken. Practical applications of apply- 
ing these tests to a yearly riverflow series and sunspot numbers are presented in Section 7.6. 

One should keep in mind that diagnostic checks only have meaning if the parameters of the 
model are efficiently estimated using the marimwn likelihood upprouch of Chapter 6 at the esti- 
mation stage. If, for example, the method of moments were used to estimate the parameters of 
an ARMA model containing MA parameters, these moment estimates would be inefficient and 
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Table 7.1.1. Rectifying violations of the assumptions 
underlying the modcl residuals. 

transforma tion 

probably quite different from the corresponding MLE's. Problems arising in the residuals of the 
ARMA model calibrated using moment estimates may be due to the inefficiency of the estimator 
rather than the specific parameters included in the model. Accordingly, for all of the diagnostic 
checks presented in Chapter 7 it is assumed that a maximum likelihood estimator is used to esti- 
mate the model parameters. For ARMA models, the only exception to this is the case of a pure 
AR model in [3.2.5]. Recall that for an AR model, both the method of moments using the Yule- 
Walker equarionr in I3.2.121 and the technique of maximum likelihood furnish efficient parame- 
ter estimates. 

7.2 OVERFI'ITING 

Ovefltring involves fitting a more elaborate model than the one estimated to see if includ- 
ing one or more additional parameters greatly improves the fit. Extra parameters should be 
estimated for the more complex model only where it is feared that the simpler model may 
require more parameters. For example, the sample PACF and the IACF for an annual time series 
may possess decreasing but significant values at lags 1, 2. and 9. If an AR(2) model were origi- 
nally estimated, then a model to check by overfitting the model would be 

In Section 6.4.3, this is the type of model which is fitted to the square roots of the yearly sunspot 
numbers. Because, as shown in Table 6.4.3, the MLE of & is more than three times the value of 
its SE, this indicates that the more elaborate AR model containing & should be selected. More- 
over, the AIC (Table 6.4.2) and diagnostic checks applied to the residuals of the constrained 
AR(9) model fitted to the square roots of the annual sunspot numbers (Section 7.6.3) c o n f m  
that the more complex model should be employed. Box and Newbold (1971, Section 3.6) as 
well as Box and Jenkins (1976. Section 8.1.2) show other interesting applications of overfitting. 

The practitioner must take cam to avoid model redundancy which could occur if the AR 
and M A  components were simultaneously enlarged. For example, suppose that one initially fits 
an AR(1) model to a series but then expands the model by adding one more AR plus an addi- 
tional MA parameter to form an ARMA(2.1) model. Suppose that the difference equation for an 
ARMA(2.1) model fitted to a given series given as w, is 
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(1 - 0.80E + 0.12B2)(w, - 26) = (1 - 0,2OE)a, 

Upon examining the SE’s for some of the MLE’s for the parameters one sees that they are very 
large. For example, the SE for $2 may be 0.22 which is much larger than & = 0.12, even though 
there arc 200 entries in the series. The reason for a large SE is the instability introduced into the 
estimation algorithm due to parameter redundancy. Notice that the difference equation can be 
written as 

(1 - 0.608)( 1 - 0.20E)(w, - 26) = (1 - 0.2OE)o, 

which simplifies to 

(1 - 0.60E)(w, - 26) = U, 

Therefore, the AR(1) model is more appropriate than the ARMA(2.1) model for fitting to the 
series. 

Whenever one notices abnormally large SE’s one should check for redundant or nearly 
redundant factors in a model due to overspecifying the model and then take corrective action by 
removing the redundant factors and fitting a simpler model. The over specification of the model 
parameters may cause rather large flat regions near the maximum point of the likelihood func- 
tion and this in turn means that the SE’s must be large (see Appendix A6.2). The large SE’s sug- 
gest that a wide range of models could suitably model the data. However, in keeping with the 
principle of model parsimony, the simpler model should be chosen and, hence, redundancy 
should be avoided. 

The problem of model redundancy provides an explanation as to why one cannot start out 
by fitting an overspecified model having many parameters and then reducing the number of 
parameters until an adequate model is found. Rather, one must begin with a fairly simple model 
and then carefully expand to a more Complicated model, if necessary. 

Another method of testing model adequacy by overfitting, which was originally suggested 
by Whittle (1952). is to fit a high-order AR model of order r where 20 < r < 30. Suppose the 
original model has k estimated parameters plus the estimated residual variance, 6:(k).  Then it is 
shown (McLeod, 1974; Hipel et al., 1977) that the likelihood rurio srurisric is 

[7.2.1] 

where 6&) is the residual variance estimate for an AR process of order r .  If the calculated 
x2(r - k )  from (7.2.11 is greater than x2(r - k) from the tables at a chosen significance level, 
then a model with more parameters is needed. 

The likelihood ratio test in [7.2.1] can also be used to determine if a model containing 
fewer parameters gives as good a fit as the full model. An application of this test is presented in 
Section 6.4.2 where three types of AR models are fitted to the average annual flows of the St. 
Lawrence River. The likelihood ratio test, as well as the AIC, select a constrained AR(3) 
without $2 as the best AR model to fit to the St Lawrence flows. 

When using the likelihood ratio test, the models being compared must be nested. Hence, 
the less complex model must be contained within the more complicated one. For instance, an 
AR(1) model is nested within an AR(k) model for k22. As pointed out in Section 6.3, when 
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using the AIC for model discrimination, the models do not have to be nested and one can com- 
pare any number of different kinds of models at the same time. 

7.3 WHITENESS TESTS 

7.3.1 Introduction 

The a, sequence for AR (see Section 3.2). MA (Section 3.3). ARMA (Section 3.4) and 
ARIMA (Section 4.3) models arc assumed to be independently distributed in the theoretical 
definition of these models. This implies that the estimated innovations or residuals arc uncorn- 
lated or white. In the next subsections, a number of statistical tests arc described for determining 
whether or not the residuals. represented as d,. f = 1.2, . . . , n ,  arc white. 

7.32 Graph of the Residual Autocorrelation Fundion 

outocorrelutionfunction (RACF). The RACF at lag k is calculated as 
The most informative approach to check for whiteness is to examine a graph of the residuul 

rk(d) = dId[-k/ id: [7.3.1] 

Because of the term in the denominator in [7.3.1], the values of the RACF can range between -1 
and +l. Additionally, since the RACF is symmetric about lag zero, one can plot the RACF 
against lags for positive lags from lag one to about lag n/4. 

When examining a plot of the RACF, one would like to know if a given value is signifi- 
cantly different from zero. Asymptotically, the RACF is normally distributed as N ( 0 , - )  for any 

lag. Therefort. to draw the 95% confidence interval, for example, one can plot .? and 

-''% above and below. respectively, the lag axis. If a given value of the RACF is significantly 

different from zero, it will fall outside the confidence interval. 

McLeod (1978). Define the vector of the first L values of the RACF as 

l=k+l [ i=l ] 

1 
n 

.In 

A more accurate derivation for the large sample distribution of the RACF is provided by 

r(d) = [r1(4.9(d),  . . . , r~(d) l '  [7.3.2] 

Denote by vk($) the coefficient of Bk in the Maclawin series expansion of [$(B)]-', where $ ( B )  

is the AR operator defined in [3.4.4] as $(B) = 1 +I$ - $$12 - . . . Likewise, let 
wk(0) be the coefficient of Bk in the Maclaurin series expansion of [e(B)]- ' .  where O(B) is the 
MA operator given in [3.4.4] as O(B) = 1 - OIL3 - O - p 2  - * * - - eqBq.  Then it can be proven for 
large samples that the residuals in r(B) in [7.3.2] follow the multivariate normal distribution 
given as: 

[7.3.3] 

when U = lL - X ' l - ' X ,  1, is the identity matrix, I = X ' X  is the large-sample information 

U 
n 

r(d) - N [ O , - ]  
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matrix, and X = [ ~ y ~ - ~ ( $ ) , ~ y ~ - ~ ( € l ) ]  are the i j  enmes in the two partitions of the X matrix. The 
dimensions of the matrices X, v~-~($), and vi-j(e) are, respectively, Lx(p + q) ,  L x p ,  and L x q .  

Notice in [7.3.3] that U is a function of the AR and MA parameters in the ARMA model 
fined to the original series. This is the reason why the findings are beaer than earlier work. Pre- 
viously, Box and Pierce (1970) obtained [7.3.3] for an AR model but the result in [7.3.3] is valid 
for a more general ARM model. Finally, equation [7.3.3] can be extended for usc with sea- 
sonal ARIMA models (Section 12.3.4) as well as the other ARMA based models presented in 
PartsVItoIX. 

To obtain the 95% confidence interval for the RACF at lag k, one calculates 

95% =*1.964% n 
coyiderne 
infrrvd 

where U, is the diagonal e n w  at location kk in the mamx U in [7.3.3]. For each lag 

k = 12, . . . , L = -, one can determine the 95% confidence interval which can be plotted on a 

graph of the values of the RACF against lag k. Usually, the most important values of the RACF 
to examine are those located at the first few lags for nonseasonal data. If one or more of the 
values of the RACF fall outside the 95% confidence interval, this means that the current model is 
inadequate. The use of these confidence limits for checking model adequacy is discussed by 
Hipel et al. (1977), McLeod et al. (1977) and McLeod (1977). 

When the present model is insufficient due to correlated residuals, one can use the results 
contained in a graph of the RACF to update the model. Suppose, for example, that an examina- 
tion of the graph of the RACF reveals that the residuals of an AR(1) model fitted to the given w, 

series are correlated at lag one. Hence, the inadequate model can be written as 

n 
4 

where $, is the AR parameter, p is the mean of the w, series and b, is the residual series that is 
correlated at lag one. Because the RACF has a significantly large value at lag one, the following 
MA(1) model can be fitted to the b, series representing the correlated residuals: 

b, = (1 - e,B)a, 

where 8, is the MA parameter. By substituting b, into the previous equation, one obtains the 
ARMA(1,l) model written as 

(1 - O $ W ,  - p) = (1 - O,B)o, 

Consequently, one can fit an ARMA(l.1) model to the original w, series in order to obtain 
MLE’s for the parameters when the parameters are all estimated together within the same 
ARMA(1,l) model framework. The residuals of the ARMA(1,l) can then be subjected to 
rigorous diagnostic checks in order to ascertain if further model modifications are required. 

In the foregoing example for redesigning a model having correlated residuals, the form of 
the RACF clearly indicates how to expand the model. When this is not the case, other pro- 
cedures can be employed for developing a more suitable model. One approach is to repeat the 
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identification and estimation stages of model construction shown in Figure m.1 in order to dis- 
cover a more suitable model. Another alternative is to use the AIC in conjunction with the ear- 
lier stages of model construction by following an appropriate path in Figure 6.3.1. 

7.33 Portmanteau Tests 

Rather than examine the magnitude of the value of RACF at each lag as is done in the pn-  
vious subsection, one could look at an overall test statistic which is a function of the RACF 
values from lags one to L in order to perform a sigruficance test for whiteness. However, this 
type of test is less sensitive bccause the lag locations of signifcantly large correlations and their 
magnitudes arc buried in the test statistic. When a test statistic indicates a correlation problem in 
the RACF. one must then examine the graph of the RACF in order to understand what is happen- 
ing and, subsequently, take corrective action. 

Box and Pierce (1970) developed a Porbnanteau statistic given as 

Q ’ L  = n i r ; ( d )  
k=l 

[7.3.4] 

which is x2 distributed on (L - p - q )  degrees of freedom. Later, Davies et al. (1977) and Ljung 
and Box (1978) derived an improved version of the Portmanteau statistic which is written as 

[7.3.5] 

and is also x2 distributed on (L - p - q )  degrees of freedom. More recently, Li and M c W  
(1981) devised another enhanced Portmanteau statistic to test for whiteness. Specifically, if L is 
large enough so that the weights vk($) and vk(0) in [7.3.3] have damped out, then 

L L(L + 1) 
QL = n C r:(d) + 

2n k= 1 
[ 7.3.6) 

where QL is x2 distributed on (L  - p  - q )  degrees of freedom, and L can be given a value from 
about 15 to 25 for nonseasonal time series where L is not greater than about nl4. A test of this 
hypothesis can be done for model adequacy by choosing a level of significance and then compar- 
ing the value of the calculated x2 to the actual x2 value for (L-p-q) degrees of freedom from the 
tables. If the calculated value is greater, on the basis of the available data the present model is 
inadequate, and appropriate changes must be made by examining in detail a plot of the RACF 
and, perhaps, also identification graphs of the original w, series. 

The modified Portmanteau statistics in [7.3.5] and I7.3.61 arc recommended for employ- 
ment over the first version in (7.3.41. Moreover. the statistic in [7.3.6] has advantages over the 
one defmed in [7.3.5]. In particular, using simulation experiments, Kheoh and M c M  (1992) 
demonstrate that the Portmanteau test statistic in [7.3.6] has a more accurate significance level 
than the one in [7.3.5] and possesses about the same power as that statistic. Also, the test statis- 
tic in [7.3.6] can be naturally extended for use in the multivariate case as in [21.3.2]. 
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7.3.4 Other Whiteness Tests 

A range of other whiteness tests can be employed for checking whether or not the residuals 
of a fitted ARMA model arc white. For example, one can use the cumulative perwdogram 
graph of Section 2.6 to test for whiteness. However, when examining model residuals, it is 
known that this test is inefficient Often the cumulative periodogram test fails to indicate model 
inadequacy due to dependence of the residuals unless the model is a very poor fit to the given 
data. 

A quite different approach to whiteness tests is to examine the autocorrelation function 
(ACF) of the squured model residuals, df. r = 12, . . . , n ,  which is estimated at lag k as 

[7.3.7] 

where the variance of the residuals is calculated using 

- 2  2 
0, = E d ,  In 

,= I  

Consider the vector of squared residuals given by 

r(ui> = [rl(u2),r2(a2), . . . ,rL(u2)lr [7.3.8] 

For fixed L ,  McLeod and Li (1983) show that &r(u2) is asymptotically multivariate normal 
with mean zero and unit covariance mamx. Hence, one could check for correlation of the 
squared residuals by examining a graph of rk(ai) against lag k = 1.2, . . . ,I!,, dong with the 95% 

confidence limits. Furthermore, a significance test is provided by the Portmanteau statistic 
(Ljung and Box, 1978) 

(7.3.91 

which is asymptotically x2 distributed on (L - p - q )  degrees of freedom if the a, are indepen- 
dent. 

In some applications, the autocorrelation function of the squared residuals is more sensitive 
than the RACF for detecting residual dependence. In particular, the autocomelation function of 
squared residuals have been found especially useful for detecting nonlinear types of statistical 
dependence in the residuals of fitted ARMA models (Granger and Andersen, 1978; Miller, 1979; 
McLeod and Li. 1983). 

7.4 NORMALITY TESTS 

7.4.1 Introduction 

The theoretical definitions for AR, MA, ARMA and ARIMA models are presented in Sec- 
tiens 3.2.2, 3.3.2, 3.4.2, and 4.3.1, respectively. Recall that for each of these models it is 
assumed that the innovations, represented by the q ' s ,  are identically and independently dism- 
buted. This means that the disturbances must follow the same distribution, such as a Gamma or 
Gaussian distribution, and be independent of one another. As pointed out in Section 6.2, in order 
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to obtain estimates for the model parameters one must assume that the innovations follow a 
specific distribution. In particular, comprehensive maximum likelihood estimators for ARMA 
models have been developed for the situation where the 0,’s are Gaussian or normally distri- 
buted. A maximum likelihood estimator which is both statistically and computationally efficient 
is described in Appendix A6.1. 

A wide range of flexible tests arc available for ascertaining whether or not the residuals of a 
fitted ARMA model follow a n o d  distribution. Some of these normality tests arc described in 
the subsequent subsections. If, for example, tests reveal that the residuals are not normal, one 
can transform the given data using the Box-Cox transformation in [3.4.30]. After fitting an 
ARMA model to the transformed series, one can employ appropriate normality tests to check 
whether or not the residuals from this model arc Gaussian. 

In addition to the statistical tests presented in the next three subsections and elsewhere, one 
can employ graphical methods for visually detecting departures from normality. A range of 
graphical techniques for use in exploratory data analysis are presented in Section 22.3 and 
referred to in Section 5.3.2. Some of these graphs can be used as visual normality checks. For 
example, if the box and whisker graph in Section 22.3.3 for the given time series is fairly sym- 
metric, one can argue that the data follow a symmetric distribution such as a normal distribution. 
In a plot of the series against time, one should not see a lot of exweme values if the wI series is 
Gaussian. 

7.43 Skewness and Kurtosis Coefficients 

Let the residual series for the fitted ARMA or ARIMA model be given as a,, 
t = 1,2, . . . , n .  If the dl’s are normally distributed, they should possess no significant skewness. 
The skewness coflcienr g1 for the d, series is calculated using 

[7.4.1] 

To test the null hypothesis that the data are normal and therefore possess no significant skew- 
ness, one must know the distribution of gl.  D’Agostino (1970) presents a method for transform- 
ing g1 so that the transformed value is distributed as N(0,l). This allows one to calculate the sig- 
nificant level for gl. 

The steps required in transforming gl to a random variable which is N(O.l) are as follows 
(D’Agostino, 1970): 

I f 2  1. 
Y = gl [ (n :(:)!; 3, ] where g1 is calculated from the d, series using r7.4.11. 

3(n2 + 27n - 70)(n + l)(n + 3) 
(n - 2)(n + 5)(n + 7)(n + 9) 

2’ B2= 

3. W 2  = -1 + [2(B2 - 1)]1’2 

4. 6 =  (lnW)-’Q 
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The random variable Z, which is a transformation of the skewness coefficient gl, is distributed as 
N(0.1).  

After calculating Z and choosing a level of sigruficance, one can refer to standard normal 
tables to determine whether or not Z is significantly large. If, for example, Z has a sigruficance 
level which is less than 0.05 according to the tables, one can assume that based upon the current 
information the d, series possesses signrficant skewness and is, therefore, not normally distri- 
buted 

The kwtosis coeficient for the d, series is determined as 

[7.4.2] 

If the given data are normal, the statistic g2 is approximately distributed as N(0,24/n). Hence, 
for an estimated g2, one can calculate the significance level for testing the null hypothesis that 
the data are normally distributed. 

7.43 Normal Probability Plot 

As before, suppose that a residual series is given as d,, r = 1.2, . . . , n .  When the entries in 
the d, series are ordered from smallest to largest, the sample order statistic is 

a(l, 5 ac2, 5 . . . 5 a,,, [7.4.3] 

Let the hypothesized cumulative distribution function of the transformed data be F(dha) .  Also, 
let p i ,  which is called the plotting position, be an estimate of F(dci)ka).  Hence, is the 
theoretical standad quantile. To construct a probability plot, the dci, and F’(pi) arc plotted as 
the abscissae and ordinates, respectively. 

Following the recommendation of Looney and Gulledge (1985). for the case of a normal 
probability plot, the plotting position of Blom (1958) is recommended for use in practical appli- 
cations. This plotting position is defmed as 

i - 0.375 
pi  = n + 0.25 

[7.4.4] 

When the d,’s arc N(0,;:). a normal probability plot, consisting of the theoretical standard 

n o d  quantile being plotted against the empirical quantile 4;). should form a straight 
line. The 95% Kilmogorov-Smimov confidence interval (CI) can also be included with the nor- 
mal probability plot. For a given plotting position, p i ,  the two sides of the confidence interval 
are calculated using (Lilliefors, 1967) 
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[7.4.5] 

The reader should keep in mind that this procedure is known to not be very sensitive to depar- 
tures from normality, particularly in the tails. Additional research on probability plots includes 
contributions by Stirling (1982). Michael (1983) and Royston (1993). 

7.4.4 Other Normality Tests 

Besides those tests described in the previous two subsections, many other tests are avail- 
able for determining whether or not a time series such as the sequence of model residuals is nor- 
mally distributed. Normality tests arc described in most standard statistical textbooks, statistical 
encyclopediae and handbooks. plus research papers. Shapiro et al. (1968). for instance, review 
and compare nine methods for testing for normality in a single sample. Two normality tests arc 
briefly referred to below. 

Shapiro-Wilk Test 
The Shupiro-Wilk test for normality is based on the test statistic 

W = b 2 / i d f  I7.4.61 

where b2 is proportional to the best linear unbiased estimate of the slope of the Linear regression 
of d(i )  in f7.4.31 on the expected value of the ith normal order statistic (Shapiro and Wilk, 1965). 
A general algorithm for calculating W and its significance level is given by Royston (1982). 
Simulation experiments suggest that the Shapiro-Wilk test is a good general omnibus test for 
normality in many situations. Finally. Filliben (1975) defines the normal probability plot com- 
lation coefficient. which is closely related to the Shapiro-Wilk statistic, and compares the power 
of this test statistic for normality with six others. 

r=1 

Blorn’s Correlation Coefficient 
Looney and Gulledge (1985) recommend the use of a correlation coefficient test for nor- 

mality. The test, which is based upon Blom’s plotting position, summarizes and objectively 
evaluates the information contained in a normal probability plot 

The test statistic for the composite test of normality is constructed using the Pearson 
product-moment correlation coefficient between F’(pj) and dci,. As with the Shapiro-Wilk test, 
“large” values for the test statistic tend to support the assumption of normality. The signifi- 
cance range for the cornlation coefficient test is obtained fkom the tabulated empirical percen- 
tage points printed in Looney and Gullcdge’s (1985) paper. Monte Carlo results indicate that 
this correlation coefficient test compares quite favourably to the Shapuo-Wilk test 
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7.5 CONSTANT VARIANCE TESTS 

75.1 Introduction 
For the ARMA and ARIMA models of Chapters 3 and 4, respectively, as well as most of 

the other models in the book, the innovation series is assumed to have a constant variance, G,'. 

The statistical word for constant variance is homoscedusticiry. One would like the residuals of a 
fitted ARMA or ARIMA model to be homoscedastic. 

If the variance of the innovations change, they are said to be heferoscedustic. Changing 
variance or hcttroscedasticity can occur in a number of different ways. Firstly. the variance of 
the residuals may incmse or decrease over time. Secondly, the variance may be a function of 
the magnitude of the series. For instance, the variance may be greater for higher values of the 
innovations and lower for smaller values. In the next section, tests are presented for checking for 
variance changes that occur over time and changes that are dependent upon level. 

The plot of the Beveridge wheat price indices are shown in Figure 4.3.15. As can be seen, 
the variance or "spread" of the data is inmasing over time. If an ARIMA model were fitted 
directly to the given time series, the variance of the residuals of the model would also become 
greater with increasing time. Consequently, as explained in Section 4.3.3, to alleviate problems 
with heteroscedasticity the wheat price indices are first transformed using the natural logarithmic 
transformation contained in [3.4.30] before fitting an ARIMA model to the series. In general, an 
appropriate Box-Cox transformation can often alleviate the problem of heteroscedasticity in the 
model residuals. 

7.53 Tests for Homoscedasticity 
The following tests were developed by McLeod (1974), and their application described by 

Hipel et al. (1977) and McLeod et al. (1977), are useful for determining whether a transforma- 
tion of the data is needed by checking for changes in variance (heteroscedasticity) of the residu- 
als. As is mentioned earlier, the variance of the normally independently dishibuted residuals is 
assumed to be constant (homoscedastic). Suppose that uI is NID[O,a~(r)] and that the variance 
changes with time as a:([). Let the stochastic random variable be N D  (O,$) and hence have 
constant variance. Suppose then that 

u1 = exp k12)[K(r) - K] [7.5.1] i -k 
where x is some constant to be estimated, K ( t )  is a function of time to be specified, and c is the 
mean of K ( f )  and equals n - ' i K ( r ) .  The variance of the u1 residuals is then 

1=1 

= exp X[K(r) - K ]  I -). [7.5.2] 

It can be shown that the natural logarithm of the likelihood Lh for c? and x is 
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n 1 
Lh = - -In$ - - {exp[- x(K(r) - E)](I?} 

2 2 d  

and 

p.5.31 

(7.5.41 

One solves aLh/ad = 0 exactly for $, and substitutes for a? into [7.5.4]. Next, quation [7.5.4] 
is set equal to zero. and the residual estimates d, obtained from the estimation stage in Section 
6.2 arc used for (I,. This equation is then solved for a MLE of x by using the Newton-Raphson 
method with an initial value of x = 0. 

In order to carry out a test of the hypothesis, the first step is to postulate the null hypothesis 
that x = O  and, therefore, to assume that the residuals have constant variance. The alternative 
hypothesis is that the residuals are heteroscedastic and that x # 0. By putting K(r)  = r in the pre- 
vious equations, it is possible to test for mnds in variance of the residuals over time. If 
K(r )  = w, - d,. then one can check for changes of variance depending on the current level of the 
w, series in r4.3.31. A likelihood ratio test of the null hypothesis is obtained by computing the 
MLE of x and comparing it with its standard emr. The variance for the MLE i for x is calcu- 
lated by using the equation 

V a r i  = -l/(a2Lh/&2) [7.5.5] 

Because the MLE for x is asymptotically normally dismbuted, after a level of significance 
is chosen it is a straightforward procedure to determine whether to accept or to reject the null 
hypothesis. This test is also valid for transfer function-noise, intervention, multivariate ARMA 
and regression models. In regression models, the test for heteroscedasticity can indicate whether 
an important covariate is missing (Anscornbe, 1961; Pierce, 1971). 

If model inadequacy is revealed by either of the tests, a simultaneous estimation procedure 
can be used to estimate the AR and MA parameters, d. and 1. This would involve an enormous 
amount of computer time. However, in practice, the Box-Cox transformation in [3.4.30] will 
often stabilize the variance. 

7.6 APPLICATIONS 

7.6.1 Introduction 
Tables 5.4.1 and 5.4.2 list ARMA and ARIMA models identified for fitting to five nonsea- 

sonal stationary and three yearly nonstationary time series, respectively. Detailed identification 
and estimation results are presented in Sections 5.4 and 6.4, respectively. for the average annual 
St. Lawrence riverflows and the yearly sunspot numbers. Likewise. in this section representative 
output from the diagnostic check stage of model construction is given for these same two annual 
geophysical timc series. However, the reader should keep in mind that al l  of the models identi- 
fied in Tables 5.4.1 and 5.4.2 passed the tests for whiteness, normality and homoscedasticity 
given in Sections 7.3 to 7.5, respectively. 
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7.63 Yearly St. Lawrence Riverilows 

Figures 2.3.1 and 5.4.1 display the average annual flows of the St. Lawrence River (Yevje- 
vich, 1%3) in m3/s at Ogdensburg, New York. from 1860 to 1957. Identification graphs in Fig- 
ures 5.4.2 to 5.4.5 indicate that a constrained AR(3) model without h is the most appropriate 
AR model to fit to this series. Parameter estimates for this model along with their SE’s are given 
in Table 6.4.1 while [6.4.2] is the difference equation for the calibrated model. Furthermore, 
both the likelihood ratio test (see [6.4.1] and [7.2.1]) and the AIC (see Section 6.3) select the 
constmined AR(3) model for describing to the St. Lawrence flows over the AR(1) and uncon- 
strained AR(3) models, which are also listed in Table 6.4.1. 

The St Lawrence riverflow model in [6.4.2] is now subjected to rigorous diagnostic tests to 
ensure that the independence, normality and constant variance assumptions arc satisfied. Figure 
7.6.1 shows a plot of the RACF of Section 7.3.2 for the AR(3) model without h. The 95% con- 
fidence limits in Figure 7.6.1 have jagged edges at low lags because the more accurate technique 
of Section 7.3.2, that is a function of both the fined model parameters and the lag, is used to cal- 
culate these limits. Although the value of the RACF at lag 18 is rather large, it actually lies 
within the 1% significance interval. This larger value could be due to inherent random variation 
or to the length of the time series used to estimate it. However, the important values of the 
RACF for the lower lags all lie well within the 95% confidence interval. Therefore, the RACF 
indicates that the chosen model for the St. Lawrence River satisfies the whiteness assumption. 
This fact is also confirmed by the x2 distributed Portmanteau statistic QL in [7.3.6] whose calcu- 
lated magnitude for QL is 13.46 for 18 degrees of freedom and is. therefore, not significant. 

The less important assumptions of normality and homoscedasticity of the residuals are also 
satisfied. The skewness statistic g l  in [7.4.1] has a value of -0.1482 and a SE of 0.3046. 

Because gl is much less than 1.96SE, there is no significant skewness and this indicates that the 
residuals are normally distributed. Likewise, the kurtosis coefficient in [7.4.2] conf i i s  that the 
residuals are Gaussian. In particular, the kurtosis coefficient, g2, has a value of -0.3240 which is 
less than its SE of 0.4974. 

The x statistic from Section 7.5.2 for changes in variance depending on the current level of 
the series has a magnitude of O.ooOo81 and a SE of 0.000341, while the x statistic for trends in 
the variance over time possesses a value of 0.002917 with a corresponding SE of 0.00504. 
Because, in both instances, the SE’s are greater than the x statistics. based upon the information 
used, it can be assumed that the residuals arc homoscedastic. 

The flows used for the St Lawrence River arc in cubic meters per second. However, if the 
flows had been in cubic feet per second and a model had been fit to these data, al l  the AR param- 
eters and SE’s would have been identical with the metric model in [6.4.2]. Only the mcan level 
of the series and 6: would be different. In general, no matter what units of measurement are 

used the AR and the MA parameter estimates and the SE’s will remain the same. while the mean 
level and 6: will be different. 

The type of model fit to the St. Lawrence River data reflects the actual physical situation. 
The Great Lakes all flow into the St. Lawrence River, and due to their immense sizc they are 
capable of over-year storage. If there is an unusually wet or an unusually dry year, the Great 
Lakes dampen the effect of extreme precipitation on the flows of the St Lawrence River. 
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Figure 7.6.1. RACF and 95% confidence limits for the constrained AR(3) model without $2 

fitted to the average annual flows of the St. Lawrence River from 1860 to 1957. 

Because of this, the average annual flows are correlated, and the comct  model is an AR process 
rather than white noise. For a general discussion of the employment of ARMA models in 
hydrology, the reader can refer to Section 3.6. 

7.63 Annual Sunspot Numbers 

Yearly Wolfer sunspot numbers are available from 1700 to 1960 (Waldmeier. 1961) and a 
plot of the series from 1770 to 1869 is shown in Figure 5.4.6. The identification graphs for this 
time series are presented in Figures 5.4.7 to 5.4.10. As explained in Section 5.4.3, these identifi- 
cation graphs in conjunction with diagnostic check output point out that an appropriate model to 
fit to the square roots of the sunspot series is a constrained AR(9) model without $3 to Qa. In 
Section 6.4.3, the MAICE procedure also selects this model as the best overall ARMA model to 
describe the sunspot series. The finite difference equation for the best model is presented in 
[6.4.3] for the series of 100 sunspot values from 1770 to 1869 which is listed as Series E in Box 
and Jenkins (1976). In addition, the calibrated model for the entire sunspot series from 1700 to 
1960 is written in [6.4.4]. 

The constrained AR(9) model in [6.4.4] without Q3 to $a satisfies all the modelling assump- 
tions for the residuals. A plot of the RACF in Figure 7.6.2 shows that the residuals arc uncorre- 
lattd. ~ l l  of the estimated values of the RACF fall within the 5% significance interval. The x2 
distributed portmanteau statistic QL in [7.3.9] has a value of 18.85 for 22 degrees of freedom. 
Therefore, the QL statistic in [7.3.6] also c o n f m s  that the residuals an not correlated. The 
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diagnostic checks for homoscedasticity and normality of the residuals reveal that these assump- 
tions are also fulfilled. The model in [6.4.4], therefore, adequately models the yearly Wolfer 
sunspot numbers. Other types of constrained models were examined, but the AR(9) process with 
$3 to $* constrained to zero is the only model that is found to be satisfactory. 
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Figure 7.6.2. RACF and 95% confidence Limits for the constrained AR(9) 
model without q3 to q8 fitted to the square 

roots of the yearly sunspot series from 1700 to 1960. 

7.7 CONCLUSIONS 

When fitting a time series model, such as an ARMA or ARIMA model, to a time series, 
one can follow the three stage procedure of model identification, estimation and diagnostic 
checking depicted in Figure III.1. The ways in which the AIC can enhance model construction 
are outlined in Figure 6.3.1. As explained in this and the previous two chapters, a variety of usc- 
ful techniques are now available for allowing a practitioner to develop systematically and con- 
veniently an appropriate model for describing a data set The informative identification graphs 
of Section 5.3 permit a user to decide upon fairly quickly one or more tentative models to fit to 
the time series. These models can then be calibrated by using the method of maximum likeli- 
hood estimator presented in Appendix A6.1. When parameters for more than one model have 
been estimated, the AIC of Section 6.3 can be utilized to choose the overall best model. The 
model residuals can then be subjected to rigorous diagnostic checks to ascertain whether or not 
the residuals are white (Section 7.3), normally distributed (Section 7.4) and homoscedastic (Sec- 
tion 7.5). When the residuals arc not white, then one must d e s i g n  the model by adding other 
parameters and, perhaps, eliminating unnecessary ones. The RACF of Section 7.3.2 is the best 
tool available for detecting nonwhiteness and assisting in developing a better model when the 
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residuals are comlated. If residual problems arc caused by non-normality and/or heteroscedasti- 
city, these can often by c o m t e d  by invoking a Box-Cox transformation from [3.4.30] and then 

The average annual riverflows of the St Lawrence River at Ogdensburg, New York (Yevje- 
vich. 1963), and the yearly sunspot numbers (Waldmeier, 1961) are used throughout Part III to 
explain clearly how model building is executed in practice. Some model building results art 
also referred to in Parts II and III for the other annual time series listed in Tables 5.4.1 and 5.4.2. 
For the cast of the SL Lawrence riverflows, model identification plots in Figures 5.4.2 to 5.4.5 
efficiently identify a constrained AR(3) model without as being the best model to fit to the 
flows. In Section 6.4.2, the MAICE procedure and the likelihood ratio test confvm this as the 
most appropriate model to describe the series. Finally, the choice of a constrained AR(3) is rein- 
forced by the diagnostic checks carried out in Section 7.6.2. 

When examining the yearly sunspot numbers, the identification graphs of Figures 5.4.7 to 
5.4.10 do not clearly pinpoint the most suitable ARMA type model to fit to the series. Rather, 
the need for a square mot data transformation as well as the parameters required in the model are 
iteratively decided upon in Section 5.4.3 by examining a range of models. The final selection is 
a constrained AR(9) model without +3 to $8 that is fitted to the square roots of the sunspot 
numbers. In Section 6.4.3, the MAICE procedure also chooses this model from many possible 
candidates. When the constrained AR(9) model undergoes diagnostic testing for whiteness, nor- 
mality and homoscedasticity in Section 7.6.3, the results confum that the model is adequate. 

After iteratively developing a model according to the steps in Figures 111.1 and 6.3.1, one 
can use the calibrated model for practical applications. Two important applications of time 
series models are forecasting and simulation, which are now described in Part IV of the book. 

refiaing the model. 

PROBLEMS 

7.1 

7.2 

7.3 

Select an average annual time series that is of interest to you. Following the three stages of 
model construction and using an available time series program such as the MH Package 
mentioned in Section 1.7, fit the most appropriate ARMA@,q) model to the data set. Over- 
specify the fitted model by adding an additional MA or AR parameter. Estimate the p m m -  
eters of the overspecified model and comment upon the size of the SE's. Employ the likeli- 
hood ratio test of [7.2.1] to ascertain if overfiaing is needed to start with and also to deter- 
mine if the overtittcd model is better than the simpler model. 
An ARMA(2.1) model is written as 

Z, - 0.13~,-1 + 0.362,-2 = (11 - 0.411-1 

where it is assumed that the mean of L, is zero. Can this model be written in a more parsi- 
monious fashion? 
Deliberately fit an overspecified ARMA or ARIMA model to an annual time series by 
assuming the model is ARMA(3,4). Comment upon the size of the SE's for the parameter 
estimates. Try to roughly factor this model to discover parameter dundancy .  Determine 
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the most appropriate model to fit to the time series. 
7.4 Assume that one has an ARMA(l.l) model and L = 5 in [7.3.21 and [7.3.31. Determine the 

entries of the matrix U in [7.3.3] for the distribution of the RACF. 
7.5 Deliberately fit an underspecified ARMA or ARIMA model to a given annual time series. 

Based upon the RACF for this model, explain how the model can be expanded to provide a 
better fit to the series. If necessary, use other tools in your search for an improved model. 

7.6 In Section 7.3.3, three versions of a Portmanteau statistic arc presented for use in whiteness 
tests. By referring to appropriate references compare the relative advantages and draw- 
backs of the thrte statistics. 

7.7 Explain why the autocorrelation function of the squared residuals is capable of detecting 
nonlinear statistical dependence in the residuals of fitted ARMA models. 

7.8 The normality tests of Section 7.4 are described for use with the residual series from a fit- 
ted ARMA model. However, the tests can be employed with any given series such as the 
w, series given in [4.3.3]. If the w, series has a mean, then the mean should be subtracted 
from each w, observation when calculating a given normality test statistic. Using a given 
annual series of your choice, determine if the series is Gaussian using the following tests: 

(i) skewness coefficient, 
(ii) kurtosis coefficient, 
(iii) normality plot. 

7.9 For a residual series obtained by fining an ARh4A model to a yearly time series, check for 
normality using the tests described in Sections 7.4.2 and 7.4.3. 

7.10 Describe three additional normality tests beyond those given in Section 7.4. 

7.11 A general test for homoscedasticity is described in Section 7.5.2. Assuming that one is 
checking for variance change over time and hence K(r )  = t ,  describe in detail using equa- 
tions how the test is carried out. 

7.E Select a yearly hydrological time series to model. Using a time series package, follow the 
three stages of model construction to ascertain the best ARMA or ARIMA model to fit to 

the data. Clearly explain all of your steps and show both identification and diagnostic 
check graphs. 

7.13 In Figure 6.3.1, two main approaches are shown for using the AIC in model construction. 
Follow both of these approaches to find the most appropriate ARMA or ARIMA models 
for fitting to an annual riverflow series and also a yearly water demand series. Include both 
numerical and graphical results with your explanations of how you modelled the series. 
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Within Part Il of the book, two useful classes of nonseasonal models are defined and some 
of their theoretical properties are derived. In particular, the ARMA family of models of Chapter 
3 are defined for fitting to stationary time series while the ARIMA class of models presented in 
Chapter 4 are designed for use with nonstationary data sequences. A sensible and systematic 
approach for fitting these and other kinds of models to a given data set is described in Part III. 
More specifically, by following the identification, estimation and diagnostic check stages of 
model construction explained in Chapters 5 to 7, respectively, one can develop the most 
appropriate model to describe the data set being studied. 

A particular ARMA or ARIh4A model which has been fitted to a time series can serve a 
variety of useful purposes. For example, the calibrated model provides an economic means of 
encoding the basic statistical properties of the time series into a few model parameters. In the 
process of carrying out the model building procedure, one obtains a better understanding about 
the key statistical characteristics of the data set. Besides the insights which are always gained 
when fitting a model to a time series, there are two important types of applications of time series 
models which are in widespread use by practitioners. These application areas are forecasting and 
simulation. The objectives of Part IV are to explain how ARMA and ARIMA models can be 
used for forecasting and simulation, and furnish case studies for demonstrating how forecasting 
and simulation are executed in practice. 

The general purpose of forecasting or prediction is to provide the best estimates of what 
will happen at specified points in time in the future. Based upon the model fitted to a series and 
the most recent observations, one can obtain what are called minimum mean square error 
forecasts of future observations. Because forecasting is concerned with using the fitted model to 
extrapolate the time series into the future, it is often called extrapolation. Moreover, since fore- 
casting, prediction or extrapolation provides an estimate of the future behaviour of a system, it is 
essential in the operation and control of the system. For example, forecasts for a riverflow 
series could be used for deciding upon the long range operating rules of a large reservoir. Fore- 
casting can also be employed for model discrimination. When models from a variety of dif- 
ferent classes are fitted to time series. one can select the model which provides the most accurate 
forecasts. The theory and practice of forecasting with nonseasonal models are presented in 
Chapter 8. 

The overall objective of sirnulation is to use a fitted model to generate possible future 
values of a time series. These simulated or synthetic sequences can be used in two main ways. 
Firstly, simulated sequences can be utilized in engineering design. For instance, when design- 
ing a reservoir complex for generating hydroelectrical power, one can use both the historical 
flows and simulated data for obtaining the most economical design. Simulated sequences are 
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employed in the design process because when the reservoir comes into operation the future flows 
will never be exactly the same as the historical flows. Therefore, one wishes to subject tentative 
designs to a wide variety of stochastically possible flow scenarios. Secondly, simulation can be 
employed for studying the theoretical properlies of a given model. In many cases, it is very 
difficult or, for practical purposes, impossible, to determine precise analytical results for a given 
theoretical property of the model. When this is the situation, simulation can be used for obtain- 
ing the theoretical results to a specified desired level of accuracy. The theory and practice of 
simulating with nonseasonal models are explained in Chapter 9. 

The forecasting and simulation techniques presented in the next two chapters are explained 
in terms of ARh4A and ARIMA models. However, these methods can be easily extended for use 
with other models such as the different seasonal models of Part VI and the transfer function- 
noise models of Part VII. Table 1.6.3 lists the locations in the book where conmbutions to fore- 
casting and simulation are given for a wide range of time series models. 
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CHAPTER 8 

FORECASTING 

WITH 

NONSEASONAL MODELS 

8.1 INTRODUCTION 

In the design, planning and operation of water resources systems, one o h n  ntcds good 
estimates of the future behaviour of key hydrological variables. For example. when opemting a 
reservoir to serve multiple purposes such as hydroelecf5cal power generation, ncreational uses 
and dilution of pollution downstream, one may requirt forecasts of the projected flows for 
upcoming time periods. The objective of forecasting is to provide accurate predictions of what 
will happen in the futurt. 

In practical applications, forecasts arc calculated after the most appropriate time series 
model is fitted to a given sequence of observations. Figure III.1 summarizes how a model is 
developed for describing the time series by following the identification, estimation and diagnos- 
tic check stages of model construction. Figure 6.3.1 outlines how an automatic selection cri- 
terion such as the AIC (Akaike information criterion) can be utilized in model building. After 
obtaining a calibrated model, one can calculate forecasts for one or more time steps into the 
future. Figure 8.1.1 displays the overall procedure for obtaining forecasts. Notice that the origi- 
nal data set may be fvst transformed using an appropriate transformation such as the Box-Cox 
transformation in r3.4.301. Whatever the case, subsequent to constructing a time series model to 
fit to the series by following the procedures of Part III, one can use the calibrated model and the 
most recent Observations to produce forecasts in the transformed domain. If, for example, an ori- 
ginal data set of annual riverflows were first transformed using natural logarithms, then the fort- 
casts from the ARMA model fitted to the logarithmic data would be predictions of the loga- 
rithmic flows. As indicated in Figure 8.1.1, one would have to take some type of inverse data 
transformation of the forecasted flows in the transformed domain in order to obtain forecasts in 
the original domain. These forecasts could then be used for an application such as optimizing 
the operating rules of a reservoir. 

When calculating forecasts, one would like to obtain the most accurate forecasts possible. 
However, the question arises as to how one quantifies this idea of accuracy. One useful criterion 
for defining accuracy is to use what is called minimum mean squarc error. The theoretical defin- 
ition of what is meant by minimum mean square error forecasrs and the method of calculating 
them for ARMA and ARIMA models are presented in the next section. In addition, the method 
for calculating confidence limits for the forecasts is described. 

Forecasting can be used as an approach for model discrimination. A variety of time series 
models can be fitted to the first portion of one or more time series and then used to forecast the 
remaining observations. By comparing the accuracy of the forecasts from the models, one can 
detennine which set of models forecasts the best. In Section 8.3, forecasting experiments arc 
carried out for deciding upon the best types of models to use with yearly natural time series. 



258 

BOX-COX 
transformation 

Chapter 8 

Construct 
t ime series 

model 

Forecasts in I transformed domain 

I inverse 

transformation 
BOX -COX 

I Forecasts in 1 
original 
domain 

Figure 8.1.1. Overall procedure for obtaining forecasts. 

When comparing one step ahead forecasts, some statistical tests are described for determining if 
one model forecasts significantly better than another. 

Chapter 8 deals with forecasting using nonseasonal ARMA and ARIMA models. Forecast- 
ing with other kinds of models is described in other chapters of the book. In Chapter 15, the pro- 
cedures for forecasting with three types of seasonal models are presented. Forecasting experi- 
ments are also given in Sections 15.3 and 15.4 for comparing the forecasting abilities of different 
seasonal models. Procedures for combining forecasts from distinctly different models in order to 
obtain overall better forecasts are described in Section 15.5. Similar approaches could also be 
used for combining forecasts from different nonseasonal models. Finally, Chapter 18 describes 
how one can obtain forecasts using a rranrfer function-noise model. As explained in Chapter 17, 
a transfer function-noise model is a time series model that can describe situations where there is 
a single output and multiple inputs. For example, the output series may be riverflows whereas 
the input or covariate series are precipitation and temperature measurements. Table 1.6.3 
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summarizes where material on forecasting can be found in the book. 
Besides hydrology, forecasting experiments have been carried out in other disciplines to 

compare the forecasting ability of models. In economics, one important forecasting study was 
completed by Newbold and Granger (1974). In their investigation these authors used one hun- 
dred and six economic time series to compare three types of forecasting models. The time series 
were split into two parts and ARIMA, Holt-Winters, and stepwise autoregressive models were 
fitted to the f i s t  portion of the data. The three models were then used to forecast the remainder 
of the data for various lead times. The forecasting ability of the three models was judged on the 
basis of the mean squared error (MSE) of the forecasts. Newbold and Granger (1974) found that 
the ARIMA forecasting procedure clearly outperformed the other two methods for short lead 
t imes but the advantage decreased for increasing lead time. 

Madridakis et al. (1982) reported on a recent forecasting competition. The forecasting abil- 
ity of over twenty models was tested using 1001 time series. The time series were of different 
length, type (i.e., monthly, quarterly, and annual) and represented data ranging from small f m s  
to nations. Different forecast horizons were considered and several criterion were employed to 
compare the forecasts from the various models. In general, no one specific model produces 
superior forecasts for all types of data considered. However, some improvement may be 
achieved if the forecaster selected certain classes of models for forecasting specific types of data. 

Because of the great import of forecasting in water resources engineering as well as many 
other disciplines, there have been many research papers, conference proceedings and books writ- 
ten on forecasting. Most of the water resources and time series analysis books referred to in 
Chapter 1 of this book contain chapters on forecasting. The Hydrological Forecasting Sympo- 
sium (International Association of Hydrological Sciences, 1980) held in Oxford, England, cer- 
tainly c o n f i i s  the usefulness of forecasting in hydrology. For forecasting in economics, readers 
may wish to refer to texts listed in the references under economic forecasting at the end of 
Chapter 1. Within this book, recent practical developments for forecasting in water resources 
engineering are presented. 

8.2 MINIMUM MEAN SQUARE ERROR FORECASTS 

8.2.1 Introduction 

Let z, represent a known value of a time series observed at time t. For convenience of 
explanation, assume for now that the data have not been transformed using an appropriate data 
transformation. In Section 8.2.7, it is explained how the Box-Cox transformation in [3.4.30] is 
taken into account when forecasting. As shown in Figure 8.2.1, suppose that the observations 
are known up until time 1. Given an ARMA or ARIMA model that is fitted to the historical 
series up to time f, one wishes to use this model and the most recent observation to forecast the 
series at time t + 1. Let the forecast for the unknown observation, z,+~, be denoted by 4(l), since 
one is at time f and would like to forecast I steps ahead. The time t is referred to as the origin 
time for the forecast while I is the lead time which could take on values of I = 1.2, .... Conse- 
quently, in Figure 8.2.1, the forecasts from origin t having lead times of I = 1, 2, and 3, are 
denoted by 4(1), 4(2), and f,(3), respectively. The forecast, f,(l), at lead time 1, is called the 
one step ahead forecast and is frequently used in forecasting experiments for discriminating 
among competing models. 
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One would like to produce forecasts which are as close as possible to what eventually takes 
place. Another way to state this is that one would like to minimize the forecast errors. This is 
because larger forecast errors can lead to poor decisions which in turn can cause more excessive 
costs than would be necessary. For example, if a hydroelectric complex were operated ineffi- 
ciently because of poor forecasts, the utility could lose large sums of money. 

To appreciate what is meant by forecast errors, refer once again to Figure 8.2.1. After the 
observation at time f+l becomes known, the one step ahead forecast error from origin t is calcu- 
lated as 

eA1) = * , + I  - W )  

Likewise, the forecast errors for lead time two and three are determined. respectively, as 

el (2) = 2,+2 - 4 (2) 

el(3) = 21+3 - 4 ( 3 )  

In general, the forecast error at lead time I is given as 

e l ( / )  = zl+, - i , ( I )  I = 1.2, ... [8.2.1] 

Decision makers would like to minimize forecast errors in order to keep the costs of their 
decisions as low as possible. However, when calculating forecasts for lead times I = 1,2, . . . , k ,  
how should one define the forecast error that should be minimized? For example, one approach 
is to minimize the mean error given by 
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1 '  
Z = - E e , ( l )  

k 1=1 

26 1 

[8.2.2] 

Another would be to minimize the mean absolute error (MAE) written as 

1 k  

k 1 4  
MAE = - ~ l e , ( l ) l  

A third alternative is to minimize the mean square error ( U S E )  def ied  as 

1 '  
USE = - x e , ( I ) z  

1=1 

[8.2.3] 

[8.2.4] 

One could easily define other criteria for defining forecast errors to be minimized. For instance, 
one could weight the forecast errors according to their time distance from origin f and then use 
these weighted errors in any of the above types of overall errors. As pointed out in the next sub  
section, minimum mean square error forecasts possess many attractive properties that have 
encouraged their widespread usage in practical applications. 

8.2.2 Definition 

these two classes of models can be written in any of the three equivalent forms: 
1. 
2. 
3. 
Any one of these three forms of the model can be used for calculating the type of forecasts 
defined in this section. However, for presenting the definition of what is meant by a minimum 
mean square error (MMSE) forecast when using an ARMA or ARIMA model the random shock 
model, is most convenient to use. 

As explained in Sections 3.4.3 and 4.3.4 for ARMA and ARIMA models, respectively, 

difference equation form as originally defined, 

random shock format (i.e. as pure MA model) 

inverted form (i.e. as a pure AR model). 

From [3.4.18] or [4.3.9], at time f ,  the random shock model is written as 

z, = w(B )af 

= ( 1  + v l B + \ y $ ? 2 +  . . * ) a ,  

=a, + \Yla,-l + v2aI-2 + * . . [8.2.5] 

where y(B) = (1 + v l B  + \y2B2 + . . . ) is the random shock or infinite MA operator for which 
vi is the ith parameter and a, is the innovation sequence distributed as NID(0,ts~). When stand- 
ing at time f + I, the random shock model is given as 

ZI+l = v(B)a,+, 

= (1 + wIB + + . . ' )a,+/ 

= a,+/ + vl"r+l-l + w2a,+1-2 + . . . 
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+ WP, + Wl+la,-l  + W/+2%2 + . . . [8.2.6] 

For simplifying the explanation, the mean of the series is omitted in the above two equations and 
ensuing discussions. However, when there is a nonzero mean for z,, all of the upcoming results 
remain exactly the same. 

Suppose that standing at origin 1,  one would like to make a forecast f , ( I )  of zI+/ which is a 
linear function of current and previous observations 2 , ~ ~ - 1 ~ , - 2 ,  . . . , . This in turn implies that 
the forecast is a linear function of current and previous innovations alrul-1,ur-2, . . . , . Using all 
of the information up to time t and the random shock form of the model in (8.2.61, let the best 
forecast at lead time I be written as 

f , ( l )  = W h  + W;+laI-, + wL2a1-2  + * * * 18.2.71 

where the weights y ~ ; , v ~ ~ , y ~ ~ ~ ,  . .., are to be determined. Notice that the innovations 
U ~ + ~ , U ~ + ~ .  . . . and their corresponding coefficients are not included in I8.2.71 since they are 
unknown. 

The theoretical definition of the mean square error of the forecast is defined as 
E [ Z , + ~  - ,?,(/)I2. By replacing z,+/ and f , ( l )  by the expressions given in [8.2.6] and [8.2.7], 
respectively the mean square error is expanded as 

m,+1 - 4(012 = El(%+/ + W1'11+1-1 + W@1+/-2 + ' * . ) 

- (W;al + W;+lal-l + w;+2(1,-2 + . . . )I2 

After expanding the right hand side by squaring and then taking the expected value of each term, 
the equation is greatly simplified because of the fact that 

More specifically. the equation reduces to 

It can be seen that the above equation is minimized by setting y;+j = y ~ / + ~ ,  j = 0,1,2, . . . , and 
thereby eliminating the second component on the right hand side of [8.2.8]. Consequently, when 
written in random shock form the MMSE forecast is derived as 

4+1 = W/"I + w/+1'1,-1+ W1+2%2 + . * . [8.2.9] 

As noted by Box and Jenkins (1976, Ch. 5 )  the finding in I8.2.91 is a special case of more 
general results in prediction theory by Wold (1954), Kolmogorov (1939, 1941a,b), Wiener 
(1949) and Whittle (1963). By combining the result in r8.2.91 with the random shock model in 
r8.2.61 
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' I + /  = @I+/ + Wl~I+I-1+W2"1+1-2 + * * - + v/-lal+l) 

+ ( W P I  + W/+l%l+ YI+24-2 + . * * 1 
= e l ( / )  + & ( I )  

where e l ( / )  is the error of the MMSE forecast 4(l).  
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[8.2.10] 

8.23 Properties 

The fact that [8.2.10] can be easily derived from the definition of a MMSE forecast, points 
out one of the advantages of using this kind of forecast Fortunately, there are many other pro- 
perties of a Mh4SE forecast that make it very beneficial for use in practical applications and 
some of them are described now. Let 

El[Zl+/l = E[zl+/lzl.zl-l9 * . . I 
denote the conditional expectation of Z,+I given knowledge of all the observations up to time t .  
Then, attractive properties of a MMSE forecast include: 
1. 

This can be verified by taking the conditional expectation of Z,+I in [8.2.10] to get 

The MMSE forecast, & ( I ) ,  is simply the conditional expectation of z,+/ at time t .  

E,[z,+/I = W P I  + w1+1a1-1 + w1+201-2 + * * . = i,(U [8.2.11] 

Keep in mind that when deriving [8.2.11] the expression El[al+k] = O  for k > 0, and 
E,[U~+~] = u , + ~  for k < 0 since the innovations up to time t are known. Specific rules for calculat- 
ing MMSE forecasts for any ARMA or A N M A  model are presented in the next subsection. 

2. 

From [8.2.10], the forecast error from origin t and for lead time l is 
The forecast error is a simple expression for any ARMA or ARIMA model. 

e l ( / )  = al+l+ Wl"I+/-l + . . . + v/-1a1+1 

3. One can conveniently calculate the forecast error variance. 

In particular, the variance of the forecast error is 

~ [ e , ( / ) ~ ]  = V ( I )  = var[e,(l)l 

= E m + /  + WlaI+l-l + v2a1+1-2 + 

= (1 +w: + l+f$ + . . * + W1-1)0, 2 2  

4. 

This is because 
The MMSE forecast is unbiused. 

El[el(ol = E[a,+l+ wl"l+l-l + W2"l+I-2 + 

where E[a,+,] = 0 fork > 0. 

. . .  + vl-lal+,)21 

+ v/-lal+ll = 0 

[ 8.2.121 

[8.2.13] 

[ 8.2.141 
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5. 

From [8.2.12], the one step ahead forecast e m r  is 

e,(U = Zl+l - 2(1) = q + 1  

'Ihe one step ahead forecast error is equal to the corresponding innovation and, therefore, 
one step ahead forecast errors arc uncorrelated. 

[8.2.15] 

Because the innovations are independent, and, hence, uncorrelated, the one step ahead forecast 
errors must also be uncomlated. As explained in Section 8.3, this result is very useful for 
developing tests to determine if one model forecasts significantly better than another. 
6. 

Consider fowasts for different lead times from the same origin t. Let the forecast errors for 
lead times I and l+ j .  where j is a positive integer, be given by e,(l) and e,(l+j). respectively. As 
shown by Box and Jenkins (1976, Appendix A5.1). the correlation between these two forecast 
errors is 

Forecasts for lead times greater than one arc, in general, correlated. 

/-I 

i=o 
CViVj+i 

[ 8.2.1 61 corr [ el ( I )  .e, (I + j  )] = 

Because of the correlation in [8.2.16], forecasts can lie either mainly above or below the actual 
observations when they become known. 
7. Any linear function of the MMSE forecasts is also a MMSE forecast of the corresponding 

linear function of the future observations. 
To explain what this means in practice, consider a simple example. Suppose that 4(1), 4(2), 
4(3) and 2;(4), art four MMSE forecasts. Then, lO&(l) + 8<(2) + 62;(3) + 44(4) is a MMSE 
forecast of 10.~,+~ + 82,+* + 6 ~ , + ~  

8.2.4 Calculation of Forecasts 

Forecasting with ARMA Models 

As explained in the previous subsection, the MMSE fortcast, 4( / ) ,  for lead time I, is sim- 
ply the conditional expectation, E,[z,+~], of z,+/ at origin t. When calculating the conditional 
expectations for an ARMA or AIUMA model one can write the model in any one of its three 
equivalent forms. These thrtc formats arc the difference equation form for the model as origi- 
nally defined. random shock format and the inverted form (sce Sections 3.4.3 and 4.3.4 for 
descriptions of the three forms for the ARMA and A R M 4  family of models. respectively). 

To simplify the notation r e q u i d  when determining MMSE forecasts, let the conditional 
expectations E,[u,+,] and E,[z,+,] be replaced by and [z,+~], respectively. For explaining 
how forecasts arc determined using the three equivalent formats, consider the family of ARMA 
models defined in Chapter 3. For I > 0. the three equivalent formats for writing the MMSE fore- 
casts arc as follows: 
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Forecasts Using the Original Definition. By taking conditional expectations at time f of each 
term of the ARMA model in r3.4.31, the MMSE forecasts are: 

[Z,+/I  = & ( I )  = +l[zI+/-ll+ +2[z,+/-2l+ . . . + +p"z,+/-pl + [a,+/] 

- el[a,+/-lI - e2b,+/-21 - . . . - eg["r+/31 [8.2.17] 

As before, for convenience of explanation, the mean of the series is not written in the model. 
Following specific rules described below for calculating MMSE forecasts, one can easily deter- 
mine each conditional expectation in [8.2.17]. 

Forecasts from the Random Shock Form. One can take conditional expectations at time t of 
the random shock form of the ARMA model in [3.4.18] to determine the MMSE forecasts as: 

[Zr+/l  = & ( I )  = [a,+/] + WI[a,+/-ll + W2[",+/-2I + . ' . [8.2.18] 

where yi is the ith random shock parameter. When there are AR parameters in the original 
ARMA model, the number of innovation terms on the right hand side of [8.2.18] is infinite in 
extent. However, because the absolute values of the random shock parameters die off quickly 
for increasing lag, one can use a finite number of terms on the right hand side of [8.2.18] for cal- 
culating the forecasts up to any desired level of accuracy. Approaches for deciding upon how 
many MA parameters or terms to include in the random shock model are discussed in Section 
3.4.3. 

Forecasts using the Inverted Form. By taking conditional expectations at time r of the 
inverted form of the ARMA model in (3.4.251, the MMSE forecasts are: 

[Z,+/I = & U )  = [a,+/] + q[zl+/-ll + n2IZ,+/-21 + * . . [ 8.2.1 91 

where xi is the ith inverted parameter. When there are MA parameters in the original model, the 
number of xi  parameters on the right side of [8.2.19] is infinite. Nonetheless, since the absolute 
values of the inverted parameters attenuate fairly quickly for increasing lag, only a finite number 
of inverted terms in [ 8.2,19] are required for calculating MMSE forecasts. Guidelines for decid- 
ing upon how many inverted components to include in the inverted form of the model are given 
in Section 3.4.3. In practice, only a moderate number of inverted parameters are needed. 

Forecasting with an ARIMA Model 

generalized nonseasonal AR operator $'(B) defined as 
When forecasting with an ARIMA model, the simplest approach is to f m t  calculate the 

+'@ ) = +(B )Vd (8.2.201 

where Q(B) is the nonseasonal AR operator of orderp, Vd is the nonseasonal differencing opera- 
tor given in [4.3.3], and 

+'(B) = 1 + +'1B + $'2B2 + . . . + $pp+dBP+d 

is the generalized nonseasonal AR operator for which I$'; is the ith nonseasonal generalized AR 
parameter. The ARIMA model from [4.3.4] is then written as 
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+YB )zI = e(s )a, [8.2.21] 

where O(B)  is the nonseasonal MA operator of order q .  By taking conditional expectations at 
time t of [8.2.21], the MMSE forecasts for an ARIMA model are determined using 

111.2.221 

As pointed out in Section 4.3.1, usually the differenced series w, = Vdz, has a mean or level 
of zero. However, suppose this is not the case so that the model in [8.2.21] can be written as 

$’(B )I, = e, + e(B )ar [ 8.2.23) 

where the “deterministic component” O,=h$’( l )  and is the mean of the w, series. For 
d = 0, 1 and 2 the term e0 can be interpreted as the level, slope in a linear deterministic trend, 
and quadratic trend coefficient, respectively. When the ARIMA model has the form of 18.2.231, 
forecasts are calculated recursively for 1 = 1,2, . . . , using 

[ZI+II = 00 + $‘,[Z,+/-lI + w , + / - 2 1 +  . ’ ‘ + $pp+dlz,+~-pdl + [a,+,l 

- e , [~ ,+ / - , i  - e2[~,+,-2~ - . . . - ~ , I u ~ + , - , I  18.2.241 

Rules for Forecasting 

The most convenient equations to utilize when calculating MMSE forecasts are 18.2.171 
and [8.2.22] for ARMA and ARIMA models, respectively. Whatever difference equation form 
of the ARMA or A R M A  model is employed for determining MMSE forecasts, one employs the 
simple rules listed below for the case of j being a non-negative integer to determine the condi- 
tional expectations written in these equations. 

1. 
[Z,-j] = E,[Z,-j] = ZI-j , j = 0,1,2, . . . [8.2.25] 

Because an observation at or before time t is known, the conditional expectation of this 
known value or constant is simply the observation itself. 

[8.2.26] 

The conditional expectation of a time series value after time r is the MMSE forecast that 
one wishes to calculate for lead time j from origin r .  

2. 
[Zr+j] = E,[z,+j] = 2-&) , j = 1.2, . . . 

[8.2.27] 

Since an innovation at or before time t is known, the conditional expectation of this known 
value is the innovation itself. In practice, the innovations are not measured directly like the 
zI’s but are estimated when the ARMA or ARIMA model is fitted to the z, or differenced 
series (see Chapter 6). Another way to determine af is to write [8.2.15] as 

3. 
[U,-jI = E,[a,-jl = 0,-j , j = 0,1,2, * * . 
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0, = z, - &-l(l) 

where f,-l(l) is the one step ahead forecast from origin t-1. 

[8.2.28] 

In the definition of the ARMA or ARIMA model, the uI's are assumed to be independently 
distributed and have a mean of zero and variance of 0,'. Consequently, the expected value 
of the unknown q ' s  after time t is zero because they have not yet taken place. 

4. 
[a,+,] = E,[a,+,] = 0, j = 12, . 

8.25 Examples 

To explain clearly how one employs the rules from the previous section for calculating 
MMSE forecasts for both ARMA and ARIMA, two simple illustrative examples are presented. 
The first forecasting application is for a stationary ARMA model while the second one is for a 
nonstationary ARIMA model. 

ARMA Forecasting Illustration 

ARMA(1,l) models are often identified for fitting to annual hydrological and other kinds 
of natural time series. For example, in Table 5.4.1, an ARMA(1,l) model is selected at the iden- 
tification stage for fitting to an annual tree ring series. 

From Section 3.4.1 an ARMA( 1,l) model is written in its original difference equation form 
for time t+l as 

(1 - 4@)ZI+/  = ( 1  - elB)a,+/ 

or 

z,+/ - $lZI+/-l  = a,+/ - OIal+/-l 

or 

z,+/ = $IZl+ / - l  + a,+/ - e1"1+/-1 

By taking conditional expectations of each term in the above equation, the ARMA(1,l) version 
for [8.2.17] is 

[Z,+/I = $1[z1+/-11+ [a,+/] - el[a,+/-ll [ 8.2.291 

Using the rules listed in [8.2.25] to [8.2.28], one can calculate the MMSE forecasts for various 
lead times I from origin t .  

Lead Time I=1:  

Substitute I = 1 into [8.2.29] to get 

[z,+11 = $ , [ Z I l  + b , + l I  -wa l l  

After applying the forecasting rules, the one step ahead forecast is 
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&( l )  = $lZI  + 0 - e,a, = $lZl  - elf31 

In the above equation, all of the parameters and variable values on the right hand side are known, 
so one can determine i f l ( ] ) .  

Lead Time 1=2: 
After substituting 1 = 2 into [8.2.29], one obtains 

[z,+21 = @1[z1+11+ [a,+,] - ~1[a,+ll 

4(2) = $&l) + 0 - 9,(0) = $14(1) 

Next one uses the rules from [8.2.25] to [8.2.28] to get 

where the one step ahead forecast is known from the previous step for lead time I = 1. 

Lead Time I 2 2: 
When the lead time is greater than one, the forecasting rules are applied to [8.2.29] to get 

G ( l )  = @ I q 1 - 1 )  + 0 - 9,(0) = $ & ( I  - 1) 

where the MMSE forecast 4(l - 1) is obtained from the previous iteration for which the lead 
time is 1 - 1. 

ARIMA Forecasting Application 

In Section 4.3.3, the most appropriate ARIMA model to fit to the total annual electricity 
consumption for the U.S. is an ARIMA(0,2,1) model. From Figure 4.3.10, one can see that the 
series is highly nonstationary and, therefore, differencing is required. 

Following the general form of the ARIMA model defined i n  [4.3.3] and [4.3.4], the 
ARIMA(0,2,1) model is written at time t+l as 

or 

Z,+I - 2zI+i-i+ zl+~-? = a,+/ - %a1+1-1 

After taking conditional expectations of each term in the above equation, the forecasting equa- 
tion is 

[z,+,l - 2[zI+/-ll+ lZ,+,-21 = [a,+/] - ~l[a,+/-ll 
or 

[Z,+/] = 2[Z,+/-Il - k,+/-21+ [a,+/] - el[al+/-ll [ 8.2.301 

By employing the rules given in [8.2.25] to [8.2.30], one can determine the MMSE forecasts for 
lead times I = 1,2, . . . , from origin r .  
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Lead Time I = 1:  

Substitute I = 1 into [8.2.30] to obtain 

[Z ,+ l I  = 2[z,l - [z,-,l+ [a,+11 - e,[a,l 

q i )  = 2z, - zI-l + o - ela, = 22, - z,-l - ela, 

After invoking the forecasting rules, the one step ahead forecast is 

Because all entries on the right hand side of the above equation are known, one can calculate 
<(l). Keep in mind that when fitting a model to a time series z,, the historical z, innovations are 

calculated at the estimation stage. Another way to calculate a, is to write [8.2.15] as 

a, = Z,-&(l) 

where &-](I) is the one step ahead forecast from origin t-1. 

Lead Time I = 2: 

After assigning I = 2 in [8.2.28], one gets 

[z,+21 = 2[z,+,l - [ z , l+  [0,+21 - ~I[a,+ll  

~ ( 2 )  = 2 g i )  - zI + o - e,(o) = 2z;(1) - zI 

In the next step, one uses the rules for calculating conditional expectations in order to obtain 

where the one step ahead forecast is determined in the previous iteration for which I = 1 .  

Lead Time I = 3: 

Substitute I = 3 into [8.2.30] to obtain 

[z,+31 = 2[z,+21 - [ Z , + l I  + [0,+31 - el[a1+21 

q 3 )  = 2q2)  - q i )  + o - e(o) = 2 q 2 )  - q i )  

After applying the rules for calculating conditional expectations, the above equation becomes 

where the one and two step ahead forecasts from origin t are determined in the previous two 
iterations. 

Lead Time I 2 3: 

[8.2.30] to obtain 
When the lead time is greater than or equal to three, the forecasting rules are applied to 

q i )  = 2 q 1 -  1) - q r  - 2) + o - e,(o) = 2 q 1  - 1) - q r  - 2) 

where the M M S E  forecasts for <(I - 1) and f , ( l -  2) are determined in the two previous steps 
having lead times I - 1 and I - 2, respectively. 
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8.2.6 Updating Forecasts 

When using the random shock form of the model, forecasts can be generated using [8.2.91 
or [8.2.11]. The methods for calculating the random shock weights for ARMA and ARIMA 
models are presented in Sections 3.4.3 and 4.3.4, respectively. By using the random shock form 
of the forecasting model, one can develop an easy approach for efficiently updating forecasts. In 
particular, the forecasts and &(I+l) of the f u m e  observation z,+~+~ made from origins f+l 
and t, respectively, are written following [8.2.11] as 

ir+l(O = W P , + l +  Wl+la, + w1+2a,-1 + . * . 

W + l )  = W I + P I  + Y1+2%1+ . * * 

After subtracting the second equation from the first, one finds 

&+](I) = &(I+ 1) + Wla,+l [ 8.2.3 11 

Because of this result, the forecast of z,+~+~ from origin t can be updated to become the forecast 
of z,+,+~ from origin f + 1  by adding ~ p , + ~ .  From [8.2.15], one can see that a,+l is simply the one 
step ahead forecast error from origin t .  

In practice, the updating formula in [8.2.31] can be conveniently used for economizing on 
the number of computations for generating forecasts. Suppose one is at origin r and already has 
forecasts for lead times I = 1,2, .  . . ,L.  Immediately upon obtaining the next observation, z,+~, 
one can calculate the forecast error a,+l = z,+~ - f,(l). This result can then be used to obtain 
forecasts =<(I + 1) + ~ p , + ~  from origin r+l for lead times I = 1.2, . . . , 1 5 1 .  Although 
the new forecast f,+l(L) cannot be calculated using this method, it can be easily determined from 
the forecasts at shorter lead times using the original difference equation form of the model (see 
Section 8.2.4). 

8.2.7 Inverse Box-Cox Transformations 

The overall procedure for determining forecasts from a time series model is displayed in 
Figure 8.1.1. Before fitting a model to a given series, one may wish to transform the series using 
the Box-Cox msformation in [3.4.30] or some other appropriate transformation. As explained 
in Section 3.4.5, the purpose of the transformation is to rectify problems with non-normality 
andor heteroscedasticity in the residuals of the fitted model. Whatever the case, when one uses 
the model consmcted for the transformed series to obtain MMSE forecasts following the 
methods of Section 8.2.4, one determines forecasts in the transformed domain. For example, 
when an ARMA model is built for a logarithmic average annual riverflow series, the forecasts 
from the model are MMSE forecasts of the logarithmic flows. As pointed out in Figure 8.1.1, to 
get forecasts in the untransfonncd domain, one must take some type of inverse transformation of 
the forecasts. 

There are two basic approaches for determining forecasts in the original units of the series 
being forecasted. The first procedure is to take the direct inverse transformation of the forecasts 
produced in the transformed domain. For instance, suppose that the original z, series is 
transformed using natural logarithms. From [3.4.30], this transformation is written as 
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z p ’  = h ( Z ,  + c )  

where the constant c is chosen just large enough to cause all of the entries in zI to be non- 
negative. For an average annual riverflow series, c would be equal to zero. Using the tech- 
niques of Section 8.2.4, one can obtain MMSE forecasts for I/’) from origin t for any desired 
lead times. To get the forecasts in the untransformed domain, one can use the direct inverse log- 
arithmic transformation written as 

Z;(/) = exp(i,’’’(/) - c )  [8.2.32] 

where $’)(I), I = 1,2, . . . , is the MMSE forecast of z,@) in the transformed domain and &(I) is 
the corresponding forecast in the untransformed domain. The symbol for a MMSE forecast is 
not written above the forecast in the untransformed domain because usually the direct inverse 
transformation of a MMSE forecast in the transformed domain does not produce a MMSE fore- 
cast in the untransformed domain. When not using logarithms, the direct inverse Box-Cox 
transformation of the MMSE forecasts in transformed domain is written in the untransformed 
format as 

<(I) = [Xf , ( I )  + l]”*-c where h # 0 [8.2.33] 

Granger and Newbold (1976) call this the naive method since forecasts calculated using [8.2.37] 
or [8.2.38] are not the exact MMSE forecasts in the untransfonned domain. 

The second main approach for obtaining a forecast in the untransformed domain is to calcu- 
late the exact MMSE forecast (Granger and Newbold, 1976). More specifically, the exact 
MMSE forecast in the untransformed domain is determined from the fact that its transformed 
value follows a Normal distribution with expected value &(*)(I) and variance V(I) ,  where V ( I )  is 
calculated using (8.2.131. The expected value of the inverse Box-Cox transformed value is the 
desired MMSE forecast Thus, the MMSE forecast, c(I) ,  is given by 

and 

[8.2.34] 

[8.2.35] 

The required integral in [8.2.34] may be determined numerically by Hermite polynomial integra- 
tion. 

In practice, it is found that the MMSE forecasts are slightly smaller than the corresponding 
naive forecasts. Also, studies with real data have shown that these minimum-mean-square-error 
forecasts do perform better than the naive forecasts. 
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8.28 Applications 

Probability Limits 

Models fitted to two annual time series are used for producing MMSE forecasts. In the 
first application, forecasts are calculated for an ARMA model describing a stationary series. The 
second forecasting example deals with forecasting using an ARIMA model fitted to a nonstation- 
ary series. 

When plotting MMSE forecasts one should always include probability limits so that the 
variability in the forecasts can be properly appreciated. By using the formula for the variance of 
the forecast error in [8.2.13] and assuming normality one can calculate confidence limits. For 
example, the 50% probability limits for the 1-step ahead MMSE forecast from origin I is 

f , ( I )  f 0 . 6 7 4 G  

where V ( I )  is the variance of the forecast error in [8.2.13]. When forecasting from origin t up to 
lead time L, one can calculate and plot the forecasts and 50% probability limits for 
I = 1,2, . . . ,L. Because the random shock parameters in [8.2.13] attenuate to zero for a station- 
ary ARMA model, the forecasting probability limits asymptotically approach constant values for 
increasing 1 .  On the other hand, the probability limits for forecasts from a nonstationq 
ARIMA model diverge for increasing 1. 

ARMA(1,l) Forecasts 

A time series consisting of 700 tree ring indices from 1263 to 1962 is given by Stokes et al. 
(1973). The most appropriate ARMA model to fit to this series is the ARMA(1,l) model written 
in [3.4.15]. Following the rules given in Section 8.2.4, one can calculate MMSE forecasts for 
the calibrated tree ring model. Figure 8.2.2 displays the MMSE forecasts for lead times from 1 
to 20. Notice that later observations in the series are plotted up to 1962. Starting from the origin 
1962, MMSE forecasts are indicated from 1963 to 1982 along with their 50% and !W% probabil- 
ity intervals. 

An example that explains how to calculate MMSE forecasts for an ARMA(I.1) model is 
given at the beginning of Section 8.2.5. Because the model is stationary, the forecasts for 
increasing lead times in Figure 8.2.2 draw closer to the mean of the series and the probability 
intervals run parallel to these forecasts. As would be expected, the best forecast for a future 
observation that is far from the last observation is the mean level. 

ARIMA(OJ,l) Forecasts 

Figure 4.3.10 portrays a graph of the total annual electricity consumption in the U.S.A. 
from 1920 to 1970 (United States Bureau of the Census, 1976). As explained in Section 4.3.3, 
the best ARIMA model to fit to this series is an ARIMA(0.2.1) model with an estimated Box- 
Cox transformation of x = 0.533. Following the approach of Section 8.2.4, MMSE forecasts are 
first determined for the transformed domain where h=0.533. Subsequendy, [8.2.35] is 
employed for calculating the MMSE forecasts shown in Figure 8.2.3 in the untransformed 
domain. An example of how to calculate MMSE forecasts by hand for an ARIMA(O.2.1) model 
without a Box-Cox transformation is given in Section 8.2.5. 
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Figure 8.2.2. MMSE forecasts along with their 50% and 95% probability 
intervals for the ARMA(1,l) model fitted to the Douglas fir tree 
ring indices from Navajo National Monument, Arizona, U.S.A. 

Figure 8.2.3 shows the MMSE forecasts in the untransformed domain calculated using the 
fitted model from 1971 to 1990 along with the 50% and 95% probability intervals. Because the 
series is nonstationary, observe how the forecasts continue the upward trend that is followed by 
the observations plotted on the left side of the figure. Moreover, the nonstationarhy causes the 
probability limits to diverge outwards from the forecasts for increasing lead times. 

8.3 FORECASTING EXPERIMENTS 

8.3.1 Overview 

An important test of the adequacy of a time series model is its ability to forecast well. The 
objective of this section is to employ forecasting experiments to demonstrate that ARMA models 
forecast very well when compared to other types of time series models that can be fitted to 
annual natural time series. This provides a sound reason for recommending the use of ARh4A 
models by practitioners. In Sections 9.8 and 10.6, it is shown that ARMA models are also 
ideally suited for simulating hydrological as well as other types of natural phenomena. 



214 Chapter 8 

Z 
0 
I- 
n 
I 
3 
m 
Z 
0 
0 

- 

> 
I- - 

I- 
0 
W 
-1 

5.0 

u) 

3.0 

X 

r 2.0 
3 
Y 
W 

1 .o 
0 

o OBSERVATION 
+ FORECAST 

w 0.0, 

1950 1960 1970 1980 1990 

YEAR 

Figure 8.2.3. MMSE forecasts along with their 50% and W% confidence 
intervals for the ARIMA(0,2,1) model fitted to the annual electricity 

consumption in the U.S.A. 

In practical applications, one step aheadforecasts are often required for effectively operat- 
ing a large-scale engineering project such as a system of reservoirs. When a new observation 
becomes available, the next one step ahead forecast can be made for deciding upon operating 
rules in the subsequent time period. Furthermore, a theoretical advantage of one step ahead fore- 
casts is that they are statistically independent. This property allows one to develop statistical 
tests for determining if one model forecasts significantly better than another. In the next section, 
statistical tests for comparing one step ahead forecasts arc presented and following this the dif- 
ferent kinds of models used in the forecasting experiments are described. 

To test the forecasting abilities of several stationary nonseasonal time series models, split 
sample experiments are performed in Section 8.3.4. Time series models are fitted to the first 
portion of the data in each of fourteen time series and these models are then employed to gen- 
erate one step ahead forecasts. The forecasts errors are then compared using several loss fimc- 
tions to obtain ordinal rankings of the models. Statistical tests from Section 8.3.2 are then 
employed to test for significant differences in the forecasting performances of the various 
models. The forecasting results in the remaining part of Section 8.3 were originally presented by 
Noakes (1984) and Noakes et al. (1988). 
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8.32 Tests for Comparing Forecast Errors 

Introduction 

In the past, a great deal of effort has been devoted to the development of a wide variety of 
forecasting procedures. These procedures range from naive models or intuitive guesses to 
sophisticated techniques requiring skilled analysts and significant computer resources. At the 
same time, relatively little research has been devoted to developing methods for evaluating the 
relative accuracy of forecasts produced by the various forecasting methods. 

In the forecasting experiments presented in Section 8.3.4, the forecast errors are examined 
from two different perspectives. Firstly, the performances of the various models are judged 
solely on the relative magnitudes of several criteria such as the mean squared error (MSE) or the 
mean absolute percentage error (MAPE) of the forecast errors. These comparisons provide ordi- 
nal rankings of the models but give no indication as to whether forecasts from a particular model 
are significantly better than forecasts from another model in a statistical sense. In order to 
address this question, a number of statistical tests are proposed to compare the performances of 
the models in a painvise fashion and also to test the overall performances of particular models. 

Wilcoxon Signed Rank Test 

In order to ascertain whether the forecasts from a particular model are statistically signifi- 
cantly better than the forecasts generated by an alternative model, some form of statistical test 
must be employed. A nonparametric Wilcoxon signed rank rest for paired data is one test which 
could be employed to test for significant differences in the forecasting ability of two procedures. 
This test was originally developed by Wilcoxon (1945) and is described in Appendix A23.2 in 
this book. 

In this test, the differences in the squares of the forecast errors from two models for the 
same series are compared. These differences are ranked in ascending order, without regard to 
sign, and assigned ranks from one to the number of forecast errors available for comparison. 
The sum of the ranks of all positive differences is then computed as T in "3.2.31 and com- 
pared to tabulated values in order to determine if the forecasts from a one model are significantly 
better than the forecasts from a competing model. 

The results of this test may also be employed to examine the performances of the models 
across all of the series in the study. In this test, the probability associated with each T value is 
calculated by examining the area in the tail of the distribution. Fisher (1970, p. 99) presents a 
combined level of significance test such that 

[8.3.1 J 

where pi is the calculated probability associated with each T and k is the number of series con- 
sidered in the test. 
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The Likelihood Ratio and Correlation Tests 
It is of interest to examine statistically the difference in MSE's of the one step ahead pred- 

ictor for two competing procedures in order to determine if the MSE's are significantly different. 
Thus, if el , ,  and e2, (t = 1.2, , , . , L) denote the L one step ahead forecast errors for models 1 and 
2 respectively, the null hypothesis is 

HdMSE(el,) = MSE(e2,) [ 8.3.21 

where MSE(e) = <e2> and c.> denotes expectation. The alternative hypothesis, Hl, is the nega- 
tion of Ho. 

Granger and Newbold (1977, p. 281) have pointed out that a method originally developed 
by Pitman (1939) could be used to ascertain if one model forecasts significantly better than 
another. In this case, it is necessary to assume that (el,,&) are jointly normally distributed with 
mean zero and are independent for successive values of t .  In practice, the forecast errors may 
not be expected to satisfy all of the assumptions but these assumptions are probably a sensible 
first approximation. The assumptions of independence and zero mean seem quite reasonable if 
the forecasts are based on a good statistical model. As shown by Noakes (1984) and Noakes et 
al. (1988), a new test can be developed for the case in which the means are not known to be zero. 
For Pitman's test, let S, = el.,+e2,, and D, = el., - e2,, . Then Pitman's test is equivalent to testing 
if the correlation, r between S, and D, is significantly different from zero. Thus, provided 
L > 25, H ,  is significant at the five percent level if Irl > 1.96&. Previously, Pitman's test has 
often been used for testing the equality of variances of paired samples (Snedecor and Cochran, 
1980, p. 190). It was pointed out i n  Lehmann (1959, p. 208, problem 33) that in this situation 
the test is unbiased and uniformly most powerful. 

If the means of el, ,  and e2,, are not both known to be zero, a likelihood ratio test can be 
employed. Let (el , ,eL,) be jointly normal with means (p1.p2) and covariance matrix 

where of is the variance of the ith series and oi is the covariance between i and j .  Then the log 

likelihood for ( p 1 , p 2 , 0 ~ , o ~ , o , ~  is given by Rao (1973. p. 448) as 

[8.3.3] L 1 
2 

lo&(.) = ~ I o g " d j ) 1  - -CCdjrs, + L ( p ;  - i ; ) (p j  - Gj)l 

where 

l L  c(; = -xei, 
,=1 

and 
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L - - 
t=1 

Si =LC(ei, ,  - Pi)(ej,, - P j )  

and (IS") = (ai)-'. 

If &, is the maximized log likelihood assuming the null hypothesis is true and Ll is the 
maximized log likelihood assuming the alternative hypothesis is true, then the likelihood ratio 
statistic is given by 

R = 2(Ll-&,) [ 8.3.41 

When Ho is true, it can be shown that R = 2: (Kao, 1973). 

If it is assumed that the m a n s  of the two error series are zero, then ignoring constants, the 
maximized log likelihoods are 

L ^ 2 ^ 2  - 2  

2 
L ,  = --log(o, 0 2  - 012) [ 8.3.51 

and 
L r, = -?log(? - 6;d [8.3.6] 

where 6; and 62 are the estimated forecast error variances for the two competing models, h12 is 
the estimated covariance of the estimated forecast errors and 

[8.3.7] 

The resulting likelihood ratio is then calculated using I8.3.41. 

parameters and so the maximized log likelihood is obtained. Under Ho 
Equation [8.3.3] is easily maximized analytically when there are no restrictions on the 

0: + p; = Is;+ p; [8.3.8] 

and the log likelihood may be maximized numerically over @1,p2,0~,022,0l2) with 
0; = 0: + p: - p?. The conjugate direction minimization algorithm of Powell (1964) with a 
penalty function to ensure that ~ $ 0  is recommended. Thus, the likelihood ratio test statistic, R .  

which is x:  under HO is obtained from [8.3.4]. 

8.3.3 Forecasting Models 

Introduction 
Stationary nonseasonal time series models are of particular interest to hydrologists since 

they often wish to model annual time series that are approximately stationary over a specified 
time period and subsequently use  the fitted models for forecasting and simulation. Furthermore, 
stationary nonseasonal models form the foundations for seasonal (see Part VI) models as well as 
other kinds of models (see Parts VII to IX). 
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When fitting a nonseasonal stationary model, or for that matter any type of stochastic 
model, to a given data set, one can follow the identification, estimation and diagnostic check 
stages of model construction described in Part III as well as elsewhere in the book. Figure III.1 
depicts this systems design approach to model building while Figure 6.3.1 shows how the AIC 
can enhance model construction. All of the different kinds of models employed in the forecast- 
ing studies are carefully developed following this sensible approach to model building. 

The five families of stationary nonseasonal models used in the study are as follows: 
ARMA (see Chapter 3, Part m, and Section 8.2 for definition, model building and forecast- 
ing, respectively), 
FGN (Fractional Gaussian Noise, see Section 10 .43 ,  
FARMA (fractional ARMA, see Chapter 11) and FDIFF (fractioning differencing, special 
case of FARMA models in Chapter 11). 

1. 

2. 
3. 

4. Markov (see this section), 
5. Nonparametric (see this section). 

Following the definition in Section 2.5.3. the second and third models have long memory 
while the remaining ones possess short memory. Additionally, the first three types of models are 
described at other indicated sections in this book while the last two are now outlined. 

Markov and Nonparametric Regression Models 

A number of researchers have proposed various nonparametric models for modelling and 
forecasting hydrological time series (see for example Denny et al. (1974) and Yakowitz (1973, 
1976, 1979a,b, 1985a,b)). These models offer an attractive alternative to the ARMA as well as 
long memory FGN and FARMA models. The flexibility and modest computational requk-  
ments associated with nonparametric models are certainly two important considerations in model 
selection. As well, probability statements can be made concerning forecasted events. In light of 
these attractive characteristics, two nonparametric models are considered in this forecasting 
study. 

A First Order Markov Model: The underlying concepts associated with stationary Markov 
chains are well known and explained in many standard statistical and operational research books. 
The first model considered is a first order Markov process defined as 

[8.3.9] 

Although higher order processes may be required to adequately model the data, the first order 
approximation is a reasonable first step. 

The time series data are first arranged in ascending order. If there are n data, m = integer 
(6) states are selected at equal intervals. For example. if n = 100. then 10 states would be 
selected. The f i t  10 data would then be assigned to the f m t  state and the state mean would be 
the arithmetic mean of these elements. This procedure is repeated until the m state means are 
calculated. 

Based upon this arbitrary selection of states and estimated state means, each datum is reas- 
signed to a specific state according to the Euclidean distance between the observation and the 
state means. That is, X i  is in state v if 
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IX; -c,I S IX; - c k l ,  1 S k  S m  [ 8.3.101 

where the ck's are the state means. A check is then made to ensure that at least n l n  data are 
associated with each state. 

Quasi state transition probabilities are then estimated using the original time series and the 
selected states. Forecasts can then be made using these transition probabilities and the state 
means. 
A Nonparametric Model: Yakowitz (1985a,b) employs nonparametric regression techniques to 
develop a more comprehensive and flexible nonparametric model. Unlike the simple fvst order 
Markov model outlined above, this nonparamemc model allows for higher order dependence. A 
method for forecasting using this new model is also presented by Yakowitz (1985a.b). 

Kernel nonparametric estimators of the density by Rosenblatt (1956, 1971) as well as ker- 
nel nonparametric regression estimators introduced by Watson (1964) have been extensively 
investigated and have also found practical application in fields such as pattern recognition. They 
can be briefly described as follows. Suppose that there are n independent observations, Y ; ,  

i = 1,2, . . . , n with common density fb). Then the estimate of fb) based on the kernel k ( . )  is 
given by 

r8.3.111 

where a, is called a smoothing parameter and k ( . )  is generally taken to be a probability density 
function such as the standard normal. The choice of the kernel, k( . ) ,  is not as crucial as is the 
choice of the parameter a,, to obtain a good estimate. 

For the regression case, suppose that one observes pairs of independent and identically dis- 
tributed variables ( Y i J , )  and that one wishes to estimate the expectation of g ( Y )  conditional on 
the value X =x,  where the pair ( Y J )  has the same distribution as the observations (Y; ,X;) ,  

i = 1,2, . . . , n ,  and g(.) is a real function. The estimate of E[g(Y)IX = X I  is given by (Watson, 
1964) 

[ 8.3.121 

The extension of these estimators to the case where the observations form a dependent but 
stationary sequence has been accomplished by several authors (see, for example, Yakowitz 
(1985a.b). Collomb (1983, 1984), and Bosg (1983)). Suppose that Yl  is a time series process. 
Then [8.3.11] is an estimate of the marginal density function and if Xi = Yi-l  then r8.3.121 is an 
estimate of E ( g ( Y f ) I Y f - l  =y]. The main condition for the use of the estimators [8.3.11] and 
r8.3.121 when Yl is a stationary process is that they satisfy some kind of asymptotic indepen- 
dence such as geometric ergodicity (Yakowitz, 1985a). Note that if the process is Markov, 
E[g(Y, IYl-l = y)] is the optimal estimate of g ( Y l )  given the whole past under a least squares cri- 
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tenon. The main advantage of the estimators is the great flexibility that they provide to model 
nonlinearities when the nature of the departure from linearity is not obvious, as is the case in 
hydrological time series. 

The higher order extensions of [8.3.11] and [8.3.12] are obvious and. hence, are not 
presented here. The choice of the parameter, a,, is critical to obtain a balance between reduction 
of bias and reduction of variance of the estimates. The following procedure is employed to 
determine a, for the models. For each point in the training set, one estimates the conditional 
regression function based on the rest of the training samples and obtains the sum of squares of 
the difference between the observed value and the estimate. This procedure is repeated for a 
range of values for a,, within which the absolute minimum of the sum of squares is found. The 
value of a, which yields the minimum sum of squares is selected. 

8.3.4 Forecasting Study 

Introduction 

To compare the forecasting performance of the various nonseaqonal models mentioned in 
Section 8.3.3, two split sample experiments are performed. Annual river flow, tree ring indices, 
mud varve and annual temperature series are considered in these studies. Nonseasonal models 
are fitted to the first parts of the series and these models are then employed to forecast the 
remaining data. 

Forecasting can, in fact, be used as a means of model discrimination among competing 
models. For a given type of data such as hydrological time series, select the class of models 
which forecut the best according to certain criteria. In economics, authors such as Granger and 
Newbold (1977) and Makridakis and Hibon (1979) have carried out extensive forecasting experi- 
ments to determine the best kinds of models to use with nonsea.onal and seasonal data. 
Although water resources engineers have recognized the importance of forecasting for a long 
time, very few large forecasting studies have been executed. Consequently, the forecasting study 
presented in this section as well as by Noakes et al. (1988) and Noakes (1984) constitutes one of 
the first extensive forecasting studies in water resources. Forecasting experiments with seasonal 
and transfer function-noise models are given in Chapters 15 and 18, respectively. 

A comprehensive approach for carrying out forecasting experiments is depicted in Figure 
8.3.1. In the forecasting study reported here none of the series are first transformed before fitting 
the five models listed in Section 8.3.3 to the first part of the series. Furthermore, when forecast- 
ing the last part of the series, one step ahead forecasts are determined. As shown below both the 
ARMA and nonparametric regression model of Yakowitz forecast better than the other three 
kinds of models listed in the previous section. Finally, as demonstrated by the simulation exper- 
iments canied out in Section 10.6, ARMA models are capable of statistically preserving impor- 
tant historical statistics of annual geophysical time series. 

First Forecasting Experiment 

The annual data sets considered in the first study are listed in Table 8.3.1. The riverflow 
and temperature data are obtained from Yevjevich (1963) and Manley (1953), respectively. The 
most appropriate type of ARMA models to fit to the last two series in Table 8.3.1 are given in 
Table 5.4.1. 
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Figure 8.3.1. Forecasting experiments. 
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Because of the computational effort required to forecast using the FGN and FDIFF models, 
only series with less than 150 data are considered in the first study. The general procedure is to 
truncate the data sets by omitting the last 30 years of data. Models are then calibrated using the 
first portion of the data. These models are then employed to forecast one step ahead MMSE 
forecasts (set Section 8.2) of the last 30 years of data.. For a given model and time series, one 
can calculate the forecasting e m r  for each of the 30 one step ahead forecasts. By summing the 
squared forecast errors, dividing by 30 and then taking the square root of this, one obtains the 
roo1 mean sqwre error (RMSE) for the forecasts. 

The RMSE’s for the 30 one step ahead MMSE forecasts for each of the models entertained 
are given in Table 8.3.2. A summary of these results is presented in Table 8.3.3. The rank sum 
is simply the sum of the product of the rank and the associated table entry. Thus, models with 
low rank sums forecast better overall than models with higher rank sums. In this study, the non- 
parametric model proposed by Yakowitz (1985ab) forecasts well for the time series considered 
while the FDIFF model is the worst model. 

Pitman’s test (see Section 8.3.2)  is employed to test for statistically significant differences 
in the RMSE’s of the forecasts. The five competing procedures are compared in a painvise 
fashion. The correlation values, r .  are presented in Table 8.3.4. For these r values, the 95% 

1’96 = M . 3 5 8 .  The ARMA, Markov, FGN and non- confidence limits are calculated to be f 

parmetric forecasts are all significantly better at the 5% significance level o f f  0.358 than the 
FDIFF forecasts for the series Ogden. The nonparametric forecasts are also significantly (0.05 
level) better than the FGN forecasts for the series Ogden. 

5 

Second Forecasting Experiment 
The data sets employed in the second study are listed in Table 8.3.5.- Except for the Snake 

time series, the tree ring indices are from Stokes et al. (1973). The Snake tree ring indices are 
from Schulman (1956). The most appropriate type of ARMA model to fit to the Navajo series is 
listed in Table 5.4.1 as being ARMA(1,l). 

The RMSE’s of the ARMA, Markov, nonparamehic and FARMA forecasts are presented 
in Table 8.3.6 while a summary of these results is given in Table 8.3.7. In all cases, the Markov 
model has the largest RMSE of the four models considered in this study. The ARMA and non- 
parametric models are essentially equal in performance and are both slightly better than the 
FARMA model. 

The likelihood ratio test described in Section 8.3.2 is employed to test for significant differ- 
ences between the ARMA and Markov forecast errors. In this case, the test statistic, R ,  is calcu- 
lated for both instances, where the means of the forecast e m r s  are assumed to be zero (R  1) and 
non-zero (R2) .  The calculated values are presented in Table 8.3.8. There is virtually no differ- 
ence between R 1 and R 2  so either value may be employed in the test. In this study, the ARMA 
forecasts are significantly (0.05 level) better than the Markov forecasts for the two series 
Eaglecol and Lakeview. Since the RMSE’s of the ARMA models are always less than the 
RMSE’s of the Markov models, the Markov forecasts could never be significantly better than the 
ARMA forecasts. 
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Table 8.3.1. Annual rivefflow and temperature data sets. 

Code names River or data types Locations Periods n 

Gota Gota Sjotorp-Vanersburg, Sweden 1807-1957 150 
Mstouis Mississippi St. Louis, Missouri 1861-1957 % 
Neumunas Neumunas Smalininkai, USSR 181 1-1943 132 
Ogden St. Lawrence Ogdensburg, New York 1860-1957 97 

Temp Temperature Central England 1802-1951 150 

Table 8.3.2. RMSE's for the one step ahead forecasts 
for the annual rivefflow and temperature series. 

Codenames ARMA FGN FDIFF Markov Nonparamemc 
Gota 87.58 95.57 97.66 97.45 92.86 
Mstouis 1508.03 1543.56 1574.85 1625.90 1560.00 
Neumunas 118.30 115.80 116.12 114.70 115.40 
Ogden 473.89 630.55 875.91 450.85 426.90 

Temp 1.21 1.17" 1.17 1.13 0.95 

Indicates smaller of tied values. 

Table 8.3.3. Distribution of the RMSE's for 30 forecasts for the 
annual riverflow and temperature series. 

Ranks Number of times each model has indicated rank 
ARMA FGN FDIFF Markov Nonparametric 

1 2 0 0 1 2 
2 0 1 0 2 2 
3 1 3 0 0 1 
4 0 1 3 1 0 
5 2 0 2 1 0 

Rank sum 15 15 22 14 9 

Pitman's test is employed to compare the ARMA. nonparametric and FARMA forecasts in 
a pairwise fashion. The calculated correlations, r ,  between S, and D, are presented in Table 
8.3.9. The only significant value (0.05 level) is for the series Lakeview when the ARMA and 
nonparametric forecasts are compared. Thus, the ARMA forecasts are significantly better than 
the nonparametric forecasts for this series at the 5% level. In all other cases, there is no statisti- 
cally significant difference in the forecasts produced by the various models. 
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Table 8.3.4. Pitman's correlations, r ,  for painvise 
comparisons of 5 annual models for each of the 5 series. 

Chapter 8 

A vs B 
A vs C 
A vs D 
A v s E  
B v s C  
B vs D 
B vs E 
C v s D  
C v s E  
D vs E 

Gota 

-0.170 
-0.223 
-0.302 
-0.277 
-0.142 
-0.060 
0.063 
0.008 
0.123 
0.178 

Mstouis 
-0.112 
-0.171 
-0.317 
-0.193 
-0.275 
-0.209 
-0.123 
-0.114 
0.083 
0.167 

Neumunas 
0.125 
0.089 
0.102 
0.142 

-0.049 
0.040 
0.041 
0.053 
0.096 

-0.029 

Ogden 
-0.347 
-0.593 
0.076 
0.160 

-0.828 
0.335 
0.453 
0.582 
0.663 
0.08 1 

Temp 
0.112 
0.103 
0.165 
0.241 

-0.092 
0.142 
0.209 
0.143 
0.212 
0.180 

~~ ~ ~~~ 

*Models: ARMA = A, FGN = B, FDLFF = C, Markov = D, Nonparamemc = E. 

Discussion 

Based upon the result of the forecasting studies, the use of FGN and FDIFF models for 
forecasting annual hydrological and tree ring time series is not recommended. The two models 
which should be given serious consideration are the nonseasonal ARMA model and the non- 
parametric model presented by Yakowitz (1985a). Both forecast equally well for the series con- 
sidered in the studies presented in this section. Moreover, Noakes (1989) demonstrates that the 
nonparametric model works well for generating inseason forecasts of salmon returns. 

The performance of the various models is evaluated using the RMSE's of the forecasts and 
some of the statistical tests outlined in Section 8.3.2. This assumes that identical costs are 
assigned to both negative and positive forecast errors of the same magnitude. One recognizes 
that an asymmetric loss function may be more appropriate in certain instances, particularly in 
hydrological applications. For instance, different costs may be associated with inaccurate fore- 
casts that result in either a flood or a drought. However, the RMSE criterion is employed since 
the procedures used for estimating the model parameters involve minimizing the sum of squared 
error terms. Presumably, if the type of loss function to be used to evaluate the forecast perfor- 
mance is known a priori, then the parameter estimation procedures could be adapted to minimize 
the expected loss. Without prior knowledge of the type of loss function, the RMSE criterion 
would appear to be a reasonable compromise (Noakes et al., 1985, 1988). 

8.4 CONCLUSIONS 

By following the model construction procedure of Part HI, one can develop a parsimonious 
ARMA or other type. of model for describing a given time series. As explained in Section 8.2, 
one can then use this model to produce MMSE forecasts of future observations. If one wishes to 
compare the forecasting accuracy of a range of models for a specified kind of time series, one 
can use the general model discrimination procedure outlined in Figure 8.3.1. By using tests from 
Section 8.3.2, one can ascertain if one model forecasts one step ahead forecasts significantly 
better than another. The results of the forecasting experiments of Section 8.3 demonstrate that 
ARMA models forecast annual hydrological and tree ring series just as well or better than any of 
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Table 8.3.5. Tree ring indices data. 
Code names Types of Trees Locations Periods n 
Bigcone Bigcone spruce Southern California 1458-1966 509 
Dell Limber pine Dell, Montana 1311-1965 655 
Eaglecol Douglas fir Eagle. Colorado 1107-1964 858 
Exshaw Douglas fir Exshaw, Alberta 1460-1965 506 
Lakeview Ponderosa pine Lakeview, Oregon 1421-1964 544 
Naramata Ponderosa pine Naramata, B.C. 1415-1965 515 
Navajo Douglas fir Navajo National 1263-1962 700 

Monument, Belatakin, Arizona 
Ninemile Douglas fir Ninemile Canyon, Utah 1194-1964 771 
Snake Douglas fir Snake River Basin 1282-1950 669 

Table 8.3.6. RMSE’s of the last half of the tree ring series forecasted. 
Codenames ARMA Markov Nonparametric FARMA 
Bigcone 
Dell 
Eaglecol 
Exshaw 
Lakeview 
Naramata 
Navajo 
Ninemile 
Snake 

38.52 
36.83 
27.73 
32.70 
16.75 
29.98 
44.27 
38.18 
21.87 

39.01 
37.73 
29.00 
33.58 
17.78 
30.75 
44.46 
38.53 
22.43 

38.33 
37.41 
28.11 
32.51 
17.1 1 
30.16 
44.17 
37.93 
21.74 

38.83 
37.16 
27.60 
32.77 
16.86 
30.18 
44.39 
37.78 
21.78 

Table 8.3.7. Distribution of the RMSE’s for the ARMA, Markov, 
Nonparametric and FARMA models when the last half of the 

tree ring series forecasted. 
Ranks Number of times each model has indicated rank 

ARMA Markov Nonparametric FARMA 
1 3 0 4 2 
2 4 0 2 3 
3 2 0 3 4 
4 0 9 0 0 

Rank sum 17 36 17 20 
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Table 8.3.8. ARMA vs Markov likelihood ratio statistics for 
the last half of the tree ring series forecasted. 

Code names 
Bigcone 
Dell 
Eaglecol 
Exshaw 
Lakeview 
Naramata 
Navajo 
Ninemile 
Snake 

R 1" 

0.587 
2.160 
6.667 
3.036 
9.323 
2.056 
0.176 
0.694 
2.38 1 

R 2' 
0.587 
2.157 
6.665 
3.032 
9.324 
2.053 
0.176 
0.691 
2.381 

" The means of the forecast errors are assumed to be zero. 
The means of the forecast errors are not assumed to zero. 

Table 8.3.9. Pairwise comparison of the ARMA, Nonparametric and 
FARMA models using Pitman's test and forecasting the last 

half of the tree ring series. 
Code names ARMA vs ARMA vs FARMA vs 

Nonparametric FARMA Nonparametric 
Bigcone -3.79E-2 -6.49E-3 -7.52E-2 
Dell 8.83E-2 2.92E-4 8.76E-2 
Eaglecol 3.438-2 4.378-2 4.418-2 
Exshaw -7.958-2 -1.57E-2 -1.578-2 
Lakeview 1.21E-1" -8.88E-3 5.61E-2 
NaJWlUta 7.948-2 - 1.09E-2 -7.258-2 
Navajo - 1.83E-2 -2.14E-3 -2.93E-2 
Ninemile -3.89E-2 1.83E-2 2.238-2 
Snake -3.55E-2 5.36E-3 1.68E-3 

Significant at the 5% level. 

its competitors. For this and many other reasons, ARMA models are highly recommended for 
use in practical applications. 

When forecasting, it is important to use models that provide an adequate fit to the data 
using as few model parameters as possible. For certain types of models, M o l t e r  and Abraham 
(1981) demonstrate that if a nonparsimonious model is employed for forecasting. the variance of 
the forecast errors increases. This problem may not be serious for large samples but for a small 
number of observations the effect of overfimng may not be negligible. 

When using the techniques of Section 8.2 to calculate MMSE forecasts, one assumes that 
the model parameters are known exactly. However, in practice one must estimate the model 
parameters from the data. The uncertainty contained in the parameter estimates could be 
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considered when forecasting. Several authors (Akaike, 1970; Bloomfield, 1972; Bhansali, 1974; 
Box and Jenkins, 1976, p. 267; Baillie, 1979) present results for the variance of the forecast error 
when fitted parameters are used in various time series models under the unrealistic assumption 
that a forecasted data point is independent of the data employed for parameter estimation. 
Extending earlier work of Phillips (1979), Kheoh (1986) plus Kheoh and McLeod (1989) 
develop an expression for the I-step ahead forecast error of an AR(1) model for which the effect 
on the variance of the forecast error when the parameter is estimated from the same data upon 
which the forecast is based is taken into account. In particular, the effect of estimating the 
parameter is to cause a reduction in the variance of the forecast error. 

Forecasting procedures similar to those developed for nonseasonal models. can also be 
extended for use with seasonal and other types of models. In Chapter 15, for example, MMSE 
forecasts are calculated and compared for three different types of seasonal models. Forecasting 
results for transfer-function noise models having one output series and multiple inputs, are 
presented in Chapter 18. 

When one can select a range of models to fit to a time series, one may wish to select the 
model that forecasts most accurately. An alternative approach is to combine the forecasts from 
two or more models in accordance with their relative performances. In this way, one may be 
able to take advantage of the forecasting strengths of each of the models. In Section 15.5.2, 
specific techniques are developed for combining forecasts in an optimal manner from various 
models in order to attempt to improve the overall accuracy of the resulting forecasts. In addi- 
tion, two case studies are presented in Sections 15.5.2 and 18.4.2 for examining the utility of 
combining forecasts. Similar combination techniques could, of course, be used with nonseasonal 
models. 

PROBLEMS 

8.1 For an ARMA(2,l) model, calculate MMSE forecasts up to a lead time of 10. 
8.2 Determine MMSE forecasts for an ARIMA(I,2,1) model up to a lead time of 10. 

8.3 As explained in Section 4.3.3, the most appropriate model to fit to the U.S. electrical 
demand series is an ARIMA(0,2,1) model with X = 0.5. The last two data points in the 
transformed series are 2:’) = 2561 and zI-]  = 2491 while d, = -13.32, 002 = 636.7 and 
d1 = 0.9563. Calculate by hand the MMSE forecasts along with their 50% probability lim- 
its up to five steps ahead from the last observation. Compare your results to Figure 8.2.3. 

8.4 Suppose that an ARIMA(0,l.l) model is written as 

vz, = (I, - O.4f lI - ,  

Generate forecasts for lead times I = 1,2,3 from origin f when the model is written as given 
above, in random shock form and inverted form. 
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8.5 

8.6 

8.7 

8.8 

8.9 

Suppose that the best model to fit to a time series represented by z,, t = 1,2, . . . , n is 

(1 - ~ ) ~ n z ,  = (1 - e,B)a, 

From origin time I calculate the MMSE forecasts for 1 = 1,2, . . . , 6  in both the transformed 
and untransformed domains. 
Fit the most appropriate ARMA or ARIh4A model to a series of your choice. Plot forecasts 
along with 50% probability limits from the last data point up to lead time I = 20. 
Take a yearly series having at least 70 observations and fit an ARMA or ARIMA model to 
the reduced version of this series that omits the last 20 data points. Using the calibrated 
model, calculate one step ahead forecasts and plot them against the known observations. 
Using this graph and other appropriate calculations. comment upon how well your model 
forecasts. 
On December 13, 1978. Makridakis and Hibon (1979) read their paper on an empirical 
investigation of forecasting accuracy before the Royal Statistical Society in London. Sum- 
marize some of the main empirical findings of these authors. At the end of Makridakis and 
Hibons’ paper, comments by attendees are presented. Mention .some of the more interest- 
ing criticisms made about their paper and comment upon how well the authors defended 
themselves. 
Explain how parameter uncertainty can be considered when forecasting with ARMA 
models. 

8.10 why can a nonparsimonious model increase the variance of the forecast errors of MMSE 
forecasts generated by an ARMA model? 
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CHAPTER 9 

SIMULATING 

WITH 

NONSEASONAL MODELS 

9.1 INTRODUCTION 

Two of the most important uses of time series models in engineering are forecasting and 
simulation. In water resources applications, simulated sequences can assist designers in deter- 
mining the appropriate size of a system and estimating the associated benefits and costs. Once in 
operation, reliable forecasts are required to ensure that the maximum benefits are obtained from 
operating the system. Chapter 8 of Part IV of the book deals with forecasting whereas the pur- 
pose of this chapter is to present flexible methods for simulating with ARMA and ARIMA 
models. Table 1.6.3 indicates the locations in the book where explanations are given about the 
theory and practice of both simulation and forecasting for different kinds of models. 

The main objective of forecasting is to use the time series model fitted to a data set to 
obtain the most accurate estimate or prediction of future unknown observations. The goal of 
simufafion is to employ the fitted model to generate a set of stochastically equivalent sequences 
of observations which could possibly occur in the future. These simulated sequences are often 
referred to as synthetic data by hydrologists because they are only possible realizations of what 
could rake place. As a matter of fact, the overall science of fitting stochastic models to hydrolo- 
gic data and using these models for simulation purposes is often called synthetic hydrology. 
Other titles for this field include stochastic and operafionaf hydrology. 

Simulation is now a widely accepted technique to aid in both the design and operation of 
water resources systems. Vogel and Stedinger (1988), for instance, demonstrate that using syn- 
thetic data generated by stochastic streamflow models can lead to improvements in the predic- 
tion of reservoir design capacity estimates. Besides the design and operation of large-scale 
engineering systems, another main use of simulation is to investigate theoretical properties of 
stochastic models. Often it is analytically impossible to derive certain theoretical characteristics 
of a given type of time series model. However, by using simulation one can determine these 
theoretical properties to any desired level of accuracy. In Chapter 10. simulation is used with 
ARMA models to study theoretical problems related to what is called the Hurst phenomenon. 

When carrying out a simulation study, there are certain problems that should be avoided. 
For instance, many current simulation methods that are widely accepted, do not use correct ini- 
tial values. Although the effect of sfarting values is transitory, it could cause systematic bias in 
a simulation study and, therefore, as pointed out by Moran (1959, Ch. 5) and Copas (1966). the 
choice of initial values is important. To attempt to overcome this problem, some researchers dis- 
card the first section of a synthetic time series to supposedly get rid of the effects of initial 
values. However, exactly how many values of the generated series should be rejected and how 
much computer time is wasted by generating data that is not used? 
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As an example of a conservative approach to the effect of starting values, consider the 
simulation study of Brown and Hardin (1973). These authors used deterministic starting values 
for an AR model of order two and then generated a series with a length of 30,000 values. The 
first 15,000 values of the synthetic trace were discarded to supposedly nullify the effects of using 
non-random initial values. 

The simulation proctdures given in this chapter and also by McLeod and Hipel (1978) do 
not r a q u i ~  fixed starting values. They are designed in a manner such that random realizations of 
the underlying stochastic process arc used as initial values. Therefore, the results of a simulation 
study are not significantly biased and it is not necessary to disregard any of the generated data. 

Often it is required to generate k’ time series of length k .  Some researchers resort to pro- 
ducing a single synthetic series of length k’.k and then splitting this long series into k‘ series of 
length k .  If any serial correlation is present, then the results of any simulation study will be 
biased by this rather crude procedure. To overcome this problem of bias, the authors rccom 
mend generating k’ separate time series of length k. If the generating procedures given in this 
chapter art adopted, then each time another series of length k is obtained, new random realiza- 
tions of the stochastic process an used as staning values. 

Figure 9.1.1 displays the overall approach for using a time series model for simulating 
data. If necessary, the given time series can be transformed using the Box-Cox transformation in 
[3.4.30] in order to alleviate problems with non-normality and/or nonconstant variance 
discovered in the original data or the residuals of a model fitted to the untransformed time series. 
Following the three stages of model construction presented in Part In and summarized in Figure 
III.1. one can then develop an ARMA or ARIMA model for describing the transformed series or 
the original series when a Box-Cox transformation is not needed. This fitted model can then be 
used for generating synthetic sequences. When simulating data using a time series model, pro- 
cedures described in Section 9.2 can be employed for generating the uncorrelated a, terms in the 
ARMA or ARIMA model. The generated q ’ s  are used in either the WASIMl or WASIMZ pro- 
cedures of Sections 9.3 and 9.4, respectively, in order to simulate unbiased sequences from 
ARMA models that use proper starting values. If one is using an ARIMA model for simulation 
purposes. then the methods of Section 9.5 must be used to produce the nonstationary sequences. 
Finally, if the simulation model was fitted to the transformed series, then one must take the 
inverse Box-Cox Qansformation of the simulated values to obtain synthetic values that have the 
same units as the original data, as explained in Section 9.6. 

When the approach of Figure 9.1.1 is employed for obtaining simulated sequences, it is 
assumed that the parameters of the model producing the synthetic data are known exactly. How- 
ever, in practice one must estimate the model parameters and the uncertainty contained in the 
parameter estimates is reflected by their standard errors. The WASIM3 procedure of Section 9.7 
can be used for incorporating parameter uncertainty into a simulation study. Following this, 
three practical applications are given in Section 9.8 to portray the effectiveness of the aforemen- 
tioned simulation techniques. 
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BOX-COX 

Construct 
t ime series 

Simulate data in 
transformed domain 

1 Inverse I BOX-COX 

Synthetic data 

Figure 9.1.1. Overall procedun for simulating data. 

9.2 GENERATING WHITE NOISE 

9.2.1 Introduction 
As shown in Figure 9.1.1, when developing a model for use in simulation, the first step is, 

if necessary, to transform the z, series using the Box-Cox transformation in [3.4.30] to obtain the 
series z,(’). If the series is nonstationary, and, for example, the level is increasing over time, one 
can remove the nonstationarity using the differencing operator in [4.3.3] to obtain the stationary 
w, series. As noted in Sections 2.4,3.1,4.1 and elsewhere in the book, often annual hydrological 
time series of moderate length B T ~  stationary. However, usually socio-economic series such as 
the water use. electricity consumption and Beveridge wheat price indices displayed in Figures 
4.3.8, 4.3.10, and 4.3.15, respectively, are nonstationary. Whatever the case. one fits an ARMA 
model from [4.3.4] to the stationary w, series which may be formed by first differencing the 2;’) 

series. 
As an example as to how one would use an ARMA model for simulation, consider the 

cases of an AR( 1) model written following r3.2. I] as 
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WI = QIw,-l+ a, [9.2.1] 

where +I  is the f i s t  order AR parameter and a, is the white noise sequence that is normal and 
independently distributed with mean zero and variance 0; (i.e. NID(0.a;)). For convenience, it 
is assumed that the mean of w, in [9.2.1] is zero. If the w, series were formed by differencing the 
w, series, the mean would bc zero. However, if the z/’) series were stationary and hence 
,I(’) = w,, then the mean would probably be nonzero. In either case, one can use [9.2.1] to simu- 
late the w, series. If there is a nonzero mean, it can simply be added to the simulated values. 

Suppose one wishes to employ [9.2.1] to simulate 10 values of the w, series. Then 

w2 = Q l W l +  02 

Given that is estimated from the data or else known in advance, one would have to have a 
starting value, w l r  and a normal white noise term, u2. to simulate w2. To avoid bias caused by 
using a fixed starting value for w l ,  one can employ WASIM1 or WASIM2 from Section 9.3 and 
9.4, respectively to obtain wl. The white noise term a2 is generated using an approach described 
in this section. Next, one can obtain w3 using 

w3 = h w 2  + 0 3  

where w2 is known from the previous step and a3 is generated by the computer. In general, 

wj = tjlwj-l+aj , j = 2,3, . . . , 10 

to simulate the ten values of w,. Lf the wI were differenced, one would have to use the algorithm 
of Section 9.5 to obtain the ,I(*) series. Finally, the inverse Box-Cox transformation would have 
to be taken to get the simulated unuansfomed 2,’s. 

As shown in Figure 9.2.1, there are two main steps required to generate the q ’ s  which are 
NID(0,o;). The first stage is to use an appropriate random number generator to produce 
independent random variables that follow a uniform distribution on the interval from zero to one. 
Random number generators arc discussed in Section 9.2.2. The next step is to employ a tech- 
nique that transforms the uniformly distributed variables to ones that follow the required distri- 
bution such as a normal distribution. The approach for accomplishing this is presented in Sec- 
tion 9.2.3. A classical text on generating independently distributed random variables is the one 
by Knuth (1969) while the book of Yakowitz (1977) provides a well wriaen and entertaining 
account of this and other topics in computational probability and simulation. 

9.22 Random Number Generators 

Overview 
As indicated in Figure 9.2.1, the first step in generating independently distributed random 

variables that follow the same distribution is to produce independent variables that follow a uni- 
form distribution on the interval (0.1). To obtain uniformly distributed variables one uses what 
is called a random number generator. Following the instructions encoded into a computer 
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program for the random number generator, a digital computer can produce the random numbers. 
A digital computer follows a smctly deterministic process, since it exactly adhens to a 

program’s precise instructions. Nonetheless, it is possible for a computer to generate a sequence 
of numbers {uiJ which appear to be independent values distributed on the unit interval. These 
numbers arc referred to as pselcdo-random numbers. The probability densi~function (p4). f (u) ,  
and the cumulative distribution function, F(u) ,  for a uniformly or rectangular distributed random 
variable, u ,  on the interval (0,l). arc shown in Figure 9.2.2. 

Produce independent 
and 

uniformly distributed 
random variables 
on interval ( O , l )  

1 
Transform these 

to the 
required 

distribution 

Figure 9.2.1. Generating identically and independently 
distributed random variables. 

When employing a digital computer, some discrete approximation must be used in place of 
a continuous random variable such as one following the uniform distribution in Figure 9.2.2. 
Therefore, one may generate the fmt N terms of a decimal expansion of the value of a uniform 
variable. In an experiment for generating uniform variables, let Dj denote the jth decimal of the 
decimal expansion of an outcome. For each k = 0,1,2, . . . ,9,  and j = 12, . . . , the event Dj = k 

has a probability of - = 0.1. 1 
10 

The main idea behind a pseudo-random number generator is that successive numbers hav- 
ing the same length m are created in such a way that in the long run, each digit (i.e. 
0,12 , .  . . ,9) is expected to occur with probability 0.1 at each decimal place. Moreover, the 
Occurrence of a given digit at a specific decimal place is independent of the digits occurring at 
other decimal places as well as previously generated random numbers. 
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U 

(a )  Probability density function 

0 
0 1 

U 

(b) Cumulative distribution function 

Figure 9.2.2. Uniform probability density function and 
cumulative distribution function. 
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Over the years a range of pseudo-random number generators has been developed. One of 
the earliest random number generators is the middle-square random nwnber generator of von 
NCUITUM (1951). One of the problems with this generator is that it has short cycles because 
after a certain length of time the uniform variables produced by the generator repeat themselves 
over relatively short time periods. Consequently, researchers developed generators that would 
have cycle lengths that arc as long as possible. 

Linear Congruentid Random Number Generators 

A particularly good family of pseudo-random numbcr generator having maximum cycle 
length is the linear congruentid random number generutor. The linear congruential generators, 
originally suggested by Lehmtr in 1948, form the most popular and highly studied class of 
methods for generating a sequence of pseudo-random numbers. These techniques are based 
upon the recurrence relationship 

xi = (UX, -~  + c )  (mod m )  [9.2.2] 

where a seed, x,, is an integer 0 S x, < m that is required to start the generator, multiplier a is an 
integer 0 < a < m ;  inmment c is an integer 0 S c < m .  The symbol mod m stands for modulus 
m and, therefore, xi is the remainder after + c is divided by the integer m where m > 0. 
The sequence {xi} formed by allowing i to take on values i = 12,. . . , is often called a linear 
congruential sequence or a random number strcam. In addition, when c > 0 or c = 0, the linear 
congruentid generator is often referred to as a mixed congruential generator and a multiplicative 
congruentid generator, (Wichmann and Hill, 1982), respectively. 

The modulo arithmetic in [9.2.2] guarantees that each entry in {xi] is an integer falling in 
the interval (0.m - 1). Consequently, the set of numbers, {xi/m}, forms a sequence of uniformly 
distributed random variables, {ui}. 

One must carefully select the parameters a. c. m ,  and x, in [9.2.2] for the linear congruen- 
tial method in order to obtain a sequence that follows the distributional properties of independent 
uniformly distributed random variables, has a sequence containing the maximum period length, 
and achieves computational efficiency. The cycle length or period is some integer p such that 
ui = uiV for al l  i 2 0. Clearly, this cycle length cannot be greater than the modulus m. A large 
period length and, hence, large m is required for achieving apparent randomness of the entries in 
the sequence {pi} or, equivalently, {xi]. Hull and Dobell (1962) show that the linear congruen- 
tial sequence {ui) has period m if and only if the following restrictions arc satisfied: 

1. c is relatively prime to m (i.e. c and m have no common factor other than unity). 
2. a - 1 is a multiple of the period p ,  for every prime p dividing m. 

3. a - 1 is a multiple of 4 if m is a multiple of 4. 

Rules for finding the period for any choices of a ,  c and m are presented by Marsaglia 
(1972). Further detailed information regarding the selection of the parameter values in [9.2.2] is 
given by Janson (1966), Knuth (1%9), Dieter (1972), as well as many other authors. 
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In summary, the algorithm for the linear congruential random number generator is as fol- 

Input: Carefully select the parameters a,  c and m in [9.2.2], plus the stamng value x, and 
the length N of the sequence to be generated. 

lows: 
A. 

B. Calculations: 

0. Set i = 1 

1. 

2. 

xi = (UX;-~ + c) (mod m )  

ui = truncated decimal expansion of xi/m (9.2.31 

3. i = i + l  
4. I f i cN.goto1 .  

5. stop. 
C. Output: Sequence {ui} = uI,u2, . . , , U N ,  of independent uniformly distributed random vari- 

ables on the interval (0,l). 

Example: 

illustration for which a = 3, c = 7, m = 16 and x, = 2. Hence, equation [9.2.2] becomes 
To demonstrate how the linear congruential random generator works. consider a simple 

X; = (3~;- l+  7) (mod 16) 

Using this equation, one calculates the sequence for x; as: 

x, = 2 (starting value or seed) 

XI = (3(2) + 7)(m0d 16) = 13(m0d 16) = 13 

x2 = (3(13) + 7)(mod 16) = 46(mod 16) = 14 

~3 = (3(14) + 7 ) ( ~ d  16) = 49(md 16) = 1 

x, = (3(1) + 7 ) ( d  16) = lO(mod 16) = 10 

xs = (3(10) + 7 ) ( d  16) = 37(nr0d 16) = 5 

16 = (3(5) + 7 ) ( d  16) = 22(md 16) = 6 

17 = (3(6) + 7 ) ( ~ d  16) = 25(ntod 16) = 9 

~8 = (3(9) + 7 ) ( m d  16) = 34(md 16) = 2 

~9 = (3(2) + 7)(mod 16) = 13(mod 16) = 13 
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Consequently. the sequence {xi )  is: 

(xi) = 2,13.14,1,10,5.6,92.13, . * * 

By dividing each entry in the xi set of numbers by the modulus, one obtains the ui sequence 
according to [9.2.3] as: 

2 1 3 1 4  1 1 0 5  6 9 2 13 
16 ’ 16 ’ 16 ’ 16 ’ 16 ’ 16 ’ 16.’ 16 ’ 16 ’ 16 ’ 

lUi) = - - - - - - - - - - . . * 

Notice that these two sequences repeat themselves after only eight terms. Because of this, the 
entries in {UJ would not be independent In addition, since the calculated values can only take 

1 3 4 on discrete values that arc integer multiples of - and many of these values such as - and - 
16 16 16 

arc missing, the ui’s arc not uniformly nor continuously distributed. As noted earlier, to mimic 
independence and a uniform distribution, the period has to be as large as possible and, hence, a, 
c, m and x, must be wisely selected. 

Testing Random Number Generators: 

As pointed out by Yakowitz (1977) and others, all feasible random number generators are 
inherently faulty from a purely philosophical viewpoint Nonetheless, when appropriate choices 
of input parameters arc made for the linear congruential random number generator, the generated 
sequences can satisfy standard statistical tests and arc adequate for use in engineering applica- 
tions. Traditionally, one employs separate tests to ascertain if the sequence {ui] is independent 
and also uniformly distributed. When using a random number generator on a given computer 
facility for the first time, one should invoke a range of statistical tests to ensure that the indepen- 
dence and uniform distribution assumptions of the ui’s art satisfied. Furthermore, one wishes to 
employ a random number generator that is also computationally efficient, 

9.23 Generation of Independent Random Variables 

General Approach 

As shown in Figun 9.2.1, sequences following distributions other than the rectangular or 
uniform distribution arc obtained by transforming rectangularly distributed mdom variables to 
the required distribution. For almost all of the models discussed in this book, one assumes that 
the a, innovations arc normally independently distributed as ND(0,o;). Therefore, when simu- 
lating using an ARMA or ARIMA model, one wishes to transform the uniformly distributed 
variables generated using the techniques from the previous section into a sequence which is 
Gaussian or normally distributed and has uncorrelated elements. 

More specifically, suppose one wishes to transform a sequence {ui) of independent uni- 
formly distributed random variables to some other distribution such as a nonnal distribution. Let 
the variable following the other distribution be denoted by w wheref(w) and F(w) represent the 
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probability density function and cumulative distribution function, respectively. A universal ran- 
dom variable generator is available for transforming the uniform random variables to the 
required distribution. Following Yakowitz (1977, p. 41) the main steps in this algorithm are as 
follows: 
A. Inputs: The sequence {ui) of independent uniformly distributed random variables and the 

formula F(w) of the cumulative distribution for the distribution that one wishes the 
transformed variables to follow. Also, one should fu the length, N, of the w sequence to 
be generated. 

B. Calculations: 
0. Set i = 1. 
1. For u = ui. determine w such that 

w =minimum : F @ )  2 u G I  L9.2.41 

2. Assign wj = w .  

3. i = i + l  

4. I f i < N , g o t o l .  

5. stop. 

Output: Sequence = w1,w2, . . . , wN,  which are independent and follow the required C. 

distribution F(w) .  It can be proven that if the u j ’ s  are uniform, the wi’s will follow the dis- 
tribution F(w) .  

Simulating Independent Normal Sequences 

zero and standard deviation of unity is defined by the probability density function 
The probability density function for a standard normal random variable having a mean of 

f ~ )  = (21t)-”~exp(-y~/2) , --a < y < - [9.2.5] 

In shortform notation, the distribution in [9.2.5] is written as N(O.l). If the y’s are also indepen- 
dently distributed, then they an normally independently distributed as N I D ( 0 , l ) .  A normally 
distributed random variable, w ,  having a mean, p,,,, and standard derivation, a,, can be obtained 
from the standard normal variable, y ,  using the transformation 

w = a , y + u y  [9.2.6] 

The notation for the distribution of w is N(p,,,,aZ). If the w’s are normally independently distri- 
buted they are said to be NID(HU.ai). This nonnal distribution is often referred to as the Gaus- 

sian distribution in commemoration of the great German mathematician Karl Gauss. 
A variety of approximate and exact algorithms are available for generating normally distri- 

b u d  random variables from uniformly distributed ones. Box and Muller (1958) provide an 
exact method for generating random variables. In particular, two random variables, uI and u2. 
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that are independent and uniformly distributed on the interval (0.1) (see Section 9.2.2). arc 
transformed to NID(O.1) random variables, y1 and y2, using the relationships 

y1 = (-21nu1)'%os2x14 

y2 = (-2lnu,)'%n2xu2 [9.2.7] 

One then uses the transformation in [9.2.6] to obtain the random variables w1 and wz that an dis- 
tributed as NID(p,,,,a:). The accuracy of the Box-Muller algorithm is determined by the com- 
puter word length as well as the accuracy of the logarithmic and trigonometric routines that are 
available on the computer. 'Ihe calculations required in [9.2.7] can make this algorithm less 
computationally efficient relative to other competing algorithms. 

A highly recommended algorithm for exactly generating NID(0,l) observations from 
independent uniformly distributed random variables is the method of Marsaglia and Bray (1964). 
Marsaglia et al. (1964) and also Knuth (1969, pp. 105-112) provide detailed information about 
how to encode the Marsaglia-Bray algorithm. Knuth (1969) thinks that the Marsagha-Bray algo- 
rithm is more efficient from a computational viewpoint than the other perfect generator of Box 
and Muller (1958). However, the Marsaglia-Bray algorithm is more complicated and, therefore, 
requires a greater programming effort. 

Generating Other Distributions 
As pointed out in the first part of Section 9.2.3, a general approach is available for 

transforming random variables from a random number generator to any required distribution. In 
the previous subsection, for example, techniques are discussed for generating random variables 
that are MD(0,l). Methods are also available for generating independent variables which follow 
dismbutions such as exponential, gamma or Poisson distributions. 

One can generate some types of independently distributed variables directly from the 
NID(0,l) variables. For instance, to generate independent log-normal random variables, the 
procedure is as follows: 
1.  

2. Use the transformation 

Generate NID(0,l) random variables yi ,  i = 1,2, . . . , N .  

vi = e x p h  + a,yi) [9.2.8] 

to obtain vi, i = 1.2, . . . , N, that are log normally distributed having parameters p,,, and a, 
for the mean and standard deviation, respectively, of the NIDk,a:) random variables. 

Another example of generating a certain type of independent random variables directly 
from the NID(0,l) variables is the generation of independent Pearson-type Ill variables. The for- 
mula for the Pearson-type III distribution is 

[9.2.9] 

where 0 5 v < 0, .  . . , p > 1 and T(s) is the gamma distribution. For generating independent 
Pearson-type I l l  random variables, the procedure is as follows: 
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1. 

2. Use the transformation 

Generate NID(0,l) random variables y i ,  i = 12, . . . , N. 

3 
1 vi = p  -- yi ] 

9p +% [9.2.10] 

to obtain vi. i = 1,2, . . . ,N, that are independent Pearson-type lII distributed random vari- 
ables. 
Another approach for generating synthetic data is to use the empirical distribution of the 

given observations or some transformation thereof to simulate possible future occurrences. In 
Section 9.8.3, a case study is employed for explaining how the empirical distribution of the 
estimated innovations of a fitted ARMA model can be used to sirnulate the innovations. 

9.3 WATERLOO SIMULATION PROCEDURE I 

Following the titles used by McLcod and Hipel (1978), the simulation procedures of Sec- 
tions 9.3 and 9.4 are referred as WASIMI (Wuterloo Simulation Procedure I) and WASIM2 
(Waterloo Simulation Procedure 2), respectively. Both of these techniques avoid the introduc- 
tion of bias into a simulated sequence by producing starting values that are randomly generated 
from the underlying stochastic process. WASIMl consists of using the random shock or MA 
form of an ARMA model to simulate the starting values and then using the original ARMA 
model to simulate the remaining synthetic data. 

Let w, be a stationary w, series for time t = 1.2,. . . , n ,  to which an ARMA model is fitted 
as in [4.3.4] to produce the model 

W V w ,  = € W u ,  [9.3.1] 

where 

+(B) = 1 - $,B - QrB* - . . . - $ p P  
is the nonseasonal autoregressive (AR) operator or polynomial of order p such that the roots of 
the characteristic equation o ( B )  = 0 lie outside the unit circle for nonseasonal stationarity and the 
qi ,  i = 1.2, . . . , p ,  are the nonseasonal AR parameters; 

e ( B ) = i - e , B - v 2 -  ... - e p q  

is the nonseasonal moving average (MA) operator or polynomial of order q such that the roots of 
8 ( B )  = 0 lie outside the unit circle for invertibility and Oi.  i = 1.2, . - . , q ,  are the nonseasonal 
MA parameters; the u,’s are identically independently distributed innovations with mean 0 and 
variance of P(O,of)] and often the disturbances are assumed to be normally independently 
distributed [NID(O,o,2)]. 

For simulation purposes, the zero-mean stationary seasonal ARMA model of Chapter 12 
can be considered as a natural extension of the nonseasonal process. Models with a non-zero 
mean (or any other type of deterministic component) are simulatd by fmt generating the 
comsponding zero-mean process and then adding on the mean component. 
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Suppose that the w,’s art expanded in terms of a p u n  MA process as in [3.4.18]. This is 
tenned the random shock forn of an ARMA process and is written as 

[9.3.2] 

where \yo = 1. A method for calculating the yi parameters from the AR and MA parameters is 
presented in Section 3.4.3. If an AR operator is present, y(E) forms an infinite series and there- 
fore must be approximated by the finite series 

[9.3.3] 

It is necessary to choose q’ such that vq, + l,\yq* + 2, * * , art all negligible. Since the model is 
stationary, this can be accomplished by selecting q’ sufficiently large such that the error given 
below is kept as small as desired. 

v(B)=l+ \ylE + \y$’ + * * + v q d  

[9.3.4] 

where yo is the theoretical variance of a given ARMA process with a: = 1 and is calculated 
using the algorithm of McLeod (1975) presented in Appendix A3.2; error is the chosen error 
level (ex. error = 

To obtain a synthetic series of k observations, first generate k + q’ white noise terms 
u++1p-q,+2, . . . ,agpl,u2. . . . , uk. Next, calculate 

w, = u, + y110,-1 + y12U,-’ + . . . + ylq‘U,*’ [ 9.3.51 

where r = 1,2, . . . , r. and r = max@,q). The remaining w, are easily determined from [9.3.1] as 

[9.3.6] w, = +lwl-l + $2wI-2 + . . + q p ~ , - p  + U, - ela,-, - . - equI9 

where r = r+l,r+2, . . . ,k. 
The use of [9.3.6] avoids the truncation error present in [9.3.3]. Nevertheless if an AR 

operator is present (i.e., p > 0). there will be some systematic e m f  in the simulated data due to 
the approximation involved in [9.3.5]. However, this bias can be kept to a tolerable level by 
selecting the “error” tern in [9.3.4] to have a specified minimum value. Of course, if the model 
is a pure MA(q) model, then set q’ = q and [9.3.5] is exact and can be utilized to generate all of 

An inherent advantage of the WASIMl simulation technique is that the only restriction on 
the white noise terms is that they an IID(0,o;). Although in many situations it is often appropri- 
ate to employ NID(0,a:) innovations, this simulation method does not prcclude considering 
other types of distributions. For instance, after modelling a relatively long hydrological time 
series, the residuals from the historical data could be used to form an empirical distribution func- 
tion for generating the white noise. This approach is illustrated in the application in Section 
9.8.3. In other situations, it may be warranted to simulate the white noise by employing Johnson 
vuriufes (Johnson, 1949; Hill, 1976; Hill et al., 1976) which have been applied to hydrological 
data by authors including Sangal and Biswas (1970). Stcdinger (1980) and Kottegoda (1987). 
Atkinson and Pearce (1976) discuss the computer generation of Beta, Gamma and normal 

the synthetic data. 
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random variables, while Delleur et al. (1976) suggest some distributions which can be employed 
in hydrology. Techniques for generating independent normal and other random variables are 
pointed out in Section 9.2.3. 

9.4 WATERLOO SIMULATION PROCEDURE 2 

9.4.1 W A S M  Algorithm 

WASlM2 (Waterloo Simulation Procedure 2 )  is b a d  upon a knowledge of the theoretical 
autocovariance or autocomlation function (ACF). Following McLeod (1975), a method for cal- 
culating the theoretical ACF for any ARMA process is prtscntcd in Section 3.4.2 and Appendix 
A3.2. Simulation approaches based upon knowing the theoretical ACF's of the underlying 
processes can also be used for simulating using other types of stochastic models. For example, 
in Section 10.4.6, the theoretical ACF of a fractional Gaussian noise model is used in the simula- 
tion technique for that model. 

Suppose that it is required to generate k terms of an ARMA(p.q) model with innovations 
that are NlD(0,o~). The following simulation procedure is exact to simulate wI,w2, . . . , wk, for 
all stationary ARMA(p,q) models. 
1. Obtain the theoretical autocovariance function 7, for j = 0,1,. . . ,p-1 by using the algo- 

rithm of McLeod (1975) with 0,' = 1. (See Section 3.4.2 and Appendix A3.2.) 

Following the approach of Section 3.4.3, determine the random shock coefficients vj for 
j = 12,. . . , (4-1) in [9.3.3]. 

Form the covariance mamx Ao,' of wp.wp- l , .  . . , wl,ap,up-l, . . . 

2. 

3. 

[9.4.1] 

In the above equation, the (id) element and dimension of each partitioned matrix are indi- 
cated. The values of 6,,, are 1 or 0 according to whether i=j or i # j ,  respectively. When 
i - j < 0, then 7,-, = 7,-; and y;-, = 0. 

Determine the lower triangular mamx M by Cholesky decomposition (see Ralston (1965. 
p. 410). Healy (1%8). or Hornbeck (1975)) such that 

4. 

A = M M '  [9.4.2] 

Generate e l ,e2 , .  . . ,ep,, and ap+1pp+2,. . . ,at where the el and al sequences are 5. 

NID(O,& 

6. Calculate w1,w2,.  . . , w,,, from 
I 

w ~ + ~ - ,  = C m l j e j ,  t = 12,. . . , p  

where m,j  is the t j  entry in the matrix M. 

j =  1 

[9.4.3] 
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7. Determine up-q+l,up-q+2, . . . ,up. from 

P+r 

j=1 
up+l-l = Cml+pje i  , t = 1.2, . . . ,q 

Obtain W ~ + ~ , W ~ + ~ ,  . . . , wk, using 8. 

[9.4.4] 

w1 = $,wl-l + $2w1-* + . * + 4pw,-p + 01 - O p 1 - 1 -  O2Ul-2 - . * * - Op1-q 

t = p + 1 9 + 2 , .  . . ,k [9.4.5] 

9. If another series of length k is required then return to step 5. 

For a particular ARMA model, it is only necessary to calculate the matrix M once, no 
matter how many simulated series arc synthesized. Therefore, WASIM2 is economical with 
respect to computer time required, especially when many time series of the same length are gen- 
erated. 

Often the white noise disturbances can be assumed to be NID(0,o;) and it is desirable to 
have as much accuracy as possible in order to eliminate bias. For this situation, the authors 
recommend using WASIM2 for a pure AR model or an ARMA process. When simulating a pure 
MA process with innovations that are NID(0.o:). the WASIMl and WASIMZ procedures are 
identical. 

9.4.2 Theoretical Basis of WASIM2 

In Step 3 of the WASIM2 algorithm, one forms the covariance matrix Ao: of 
W ~ , W ~ - ~ ,  . . . , w l , a p q - l ,  . . . ,ap-l+l, which are contained in a vector W. Next, one determines 
the lower triangular mabix M for A in [9.4.2]. Following Steps 6 and 7, the starting values con- 
tained in the vector W can be generated using 

W = M e  [ 9.4.61 

where the el's contained in the vector e are NID(0.o;). In order to simulate exactly the starting 
values contained in W, the covariance mamx of W must be Ao:. This can be easily proven as 
follows: 

Vur[M el = E[M e(M e)Tl 

= E[M e eTMT] = MVur(e)MT 

= 0:M MT = Ao: [9.4.7] 

where 0: is a diagonal mamx for which each diagonal entry is 0,'. 

9.43 ARMA(1,l) Simulation Example 
The purpose of this section is to show in detail for a specific model how calculations are 

made in the WASIh42 algorithm. Suppose one wishes to simulate 10 values with an ARMA(l.l) 
model using WASIM2. For convenience, assume that the mean of the wl series in [9.3.1] is zero. 
If the mean were nonzero, it could be added to each of the simulated values. 
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The calculations for an ARMA(1,l) model using WASlM2 arc as follows: 
1. For an ARMA(l.l) model p = 1 and, hence. one only has to calculate yo at step 1. From 

[ 3.4.1 61 

1 + e:-29,el 
'lo= 1-9: 0,' 

Letting 0,' = 1 

1 + e:-241~e~ 

1 -$? 
YO = 

2. Using the identity in (3.4.211 one can calculate the random shock coefficients. Only yo = 1 

is required for an ARMA( 1 ,I) model. 
The mamx A in [9.4.1] is 3. 

Then Aa; is the covariance mamx for (wl,ul). 

In this step, one obtains the Cholesky decomposition mamx M for A such that 4. 

A = M M T  

For the case of an ARMA(1,l) model 

By equating ( i J )  entries in the matrices on the left and right hand sides of the above equa- 
tions, one can calculate! mil, rn21 and m z .  In partkular, for the (1,l) element: 

m:1 = Y o  

mll  =dx 
Therefore. 

For the (1 2) entry: 

m11m21= 1 

Therefore, 
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1 1 
m21=-= 

for the (22) element: 

m21 + m a  = 1 

m11 x 
2 2  

Therefore. 
2 2 1 

Y O  
mu = 1 -m21 = 1 - - 

Therefore, 

Hence, 

5. The techniques of Section 9.2.3 can be used to generate (el& and ( ~ 2 . ~ 3 , .  . . ,aid where 
the sequences are NID(o,~,Z). 
The starting value w1 is calculated using [9.4.31 as 6. 

w1 = mllel = *l 

7. The initial value for a1 is found using [9.4.4] to be 

8. Use the given definition of the ARMA(1,I) model in [9.4.5] to get ~ 2 . ~ 3 ,  . . . , w10 More 
specifically, 

w2 = Q ~ ~ ,  + a2 - elal 

where the starting values for w1 and a1 are calculated in steps 6 and 7. respectively. The 
values for u2 and also u3, a& . . . , alo are determined in step 5. Next 

w3 = Q~~~ + a3 - e1u2 

where w2 is calculated in the previous iteration and a3 and a2 are generated at step 5. By 
following the same procedure 
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If w, has a mean level, this can be added to the above genented values. Notice that the 
starting values w1 and uI are randomly generated from the underlying ARMA(l.1) process. 
Therefore, the simulated sequence is not biased bccause of futed starting values. 

9.5 SIMULATION OF INTEGRATED MODELS 

9.5.1 Introduction 

As discussed in 2.4 and elsewhere in the book, for annual geophysical time series of a 
moderate length (perhaps a few hundred years), it is often reasonable to assume that a stationary 
model can adequately model the data. In Section 10.6 and also in Hipel and McLeod (1978). for 
example, stationary ARMA models are fitted to 23 time series which are measured from six dif- 
ferent natural phenomena. Nevertheless, certain types of time series that are used in water 
resources could be nonstationary. The average annual cost of hydro-electric power and the total 
annual usage of water-related recreational facilities constitute two types of measurable processes 
which possess mean levels and variances that could change significantly over time. Other exam 
ples of nonstationary annual series are given in Section 4.3.3. In general, time series that reflect 
the socio-economic aspects of water resources planning may often be nonstationary, even over a 
short time span. Consequently, in certain situations it may be appropriate to incorporate a non- 
seasonal differencing operator into the nonseasonal model in order to account for the nonsta- 
tionarity by following the approach of Section 4.3. 

As explained in Chapter 12, if a seasonal ARIMA or SARIMA model is fit to seasonal 
data, usually both nonseasonal and seasonal differencing are required to account for the nonsta- 
tionarity. Consider the cast of average monthly observations. If the monthly mean and perhaps 
variance change from one year to the next for each specific month, then fitting a nonstationary 
SARIMA model to the data may prove to be reasonable. For example, the average monthly 
water demand for large cities tends to increase from year to year for each month. For the 
aforementioned situations, the simulation procedures for integrated models presented in this sec- 
tion could be useful. 

As pointcd out in Part VI, when considering seasonal hydrological data. such as average 
monthly riverflows. the individual monthly averages may have constant mean values but the 
means vary from month to month. Consequently, the time series of all the given data is by 
definition nonstationary but it still may not be appropriate to employ a nonstationary SARIMA 
model to describe the data. Rather, the given natural time series is firstly deseasonalid to pro- 
duce a stationary nonseasonal data set and subsequently a nonseasonal model is fit to the desea- 
sonalized data. For example, prior to fitting a nonseasonal ARMA model to the data, it is a corn- 
mon procedure to standardize average monthly riverflow time series to eliminate seasonality (see 
Chapter 13). The WASIMl and WASIMZ simulation procedures of this chapter can be used 
with the deseasonalizcd models of Chapter 13 and the periodic models of Chapter 14. However, 



Simulating with Nonseasonal Models 31 1 

for both of these types of seasonal models, one does not have to difference the data and, hence, 
the methods of Section 9.5 do not have to be used when using them for simulation. 

Nonseasonal ARlMA and SARIMA models are presented in Chapters 4 and 12, respec- 
tively. For completeness of presentation of this simulation chapter, simulating with both types 
of models is discussed below. 

9.53 Algorithms for Nonseasonal and Seasonal ARIMA Models 

Although caution should be exercised when modelling nonstationary data, it is evident that 
situations may arise when it is suitable to invoke diyerencing. Any seasonal ARIMA model 
from [ 12.2.71 that contains a differencing operator is termed an infegrored model. Suppose that 
it is required to simulate k values of 1:’) by using an integrated process. A stationary w, series is 
related to the nonstationary z,@) series by the equation 

w, = VdVPzI(’), t = d’+l,d’+2, . . . , k r9.5.11 

where s is the seasonal length (s = 12 for monthly data); Vd = (1 - B)d  is the nonseasonal dif- 
ferencing operator of order d in [4.3.3] to produce nonseasonal stationarity of the dth differences 
and usually d = 0, 1 or 2; Vp = ( 1  - BS)D is the seasonal Uferencing operator of order D in 
[ 12.2.31 to produce seasonal stationarity of the Dth differenced data and usually d = 0, 1 ,  or 2, 
and for nonseasonal data D = 0; d’ = d + sD. 

Because of the differencing in [9.5.1], the d’ initial values wI.w2, . . . , wd,, which determine 
the “current level” of the process, are assumed known. Given the d‘ initial values, the time 
series integration algorithm forms the integrated series 2:’) for t = d’+l,d’+2, . . . ,k. The 
integrated series is derived theoretically from the relationship 

Z:’) = sdspw,  [9.5.2] 

where S = V-’ = 1 + B + B 2  + . *  * , is the nonseasonal summation operator, 
S, = V;’ = 1 + BS + Bh + . . . , is the seasonal summation operator. 

When employing [9.5.2] to obtain an integrated series, the methods of the previous sections 
are utilized to determine the w, sequence. Then the integration algorithm that is developed 
presently in this section, is used to evaluate [9.5.2]. The situation where it is required to simu- 
late data from a nonseasonal model containing a differencing operator, is fmt considered. This 
is followed by a discussion of the generation of synthetic data from a general seasonal model 
that possesses a seasonal differencing operator and perhaps also a nonseasonal differencing 
operator. 

Nonseasonal Model: 

The integration algorithm for a nonseasonal ARIMA model (i.e. s = D = 0)  is as follows: 

Determine the starting value Vd-i~l(’) by differencing the given initial values 
Fori  = 1.2,. . . ,d: 

1.  

z p , z p ,  . . . , zp. 
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2. Calculate Vd-‘z,(’) for r = d+l,d+2, . . . , k, by employing the identity 

v d - i z , ( k )  = v d + l - i  z/*) + vd-’z,(-’) [9.5.31 

Seasonal Model: 

consists of performing the nonseasonal integration. 
For i = 1.2,. . . , d :  

For a seasonal model, the integration algorithm is subdivided into two parts. The first stage 

Determine the stamng value V d 4 V F z d ’ ,  by differencing the given initial values 

Calculate Vd-’V:z,(’) for r = d’+l.d’+2, . . . , k, by using the equation 

z p , z p ,  . . . , zp. 

V d - ‘ V D r  S I  (A) = v d & - ; v F z , @ )  - v d  - i v D z  I 1- (11‘ [9.5.4] 

In the second stage the seasonal integration is performed. For i = 1,2, . . . , D : 
Determine the starting values Vrz/’) for r = d’,d‘-1, . . . , d’ = s, by differencing the given 
initial values zl(’)).zj’), . . . , zj?.). 

Calculate V:-’ZI(~) for t = d’+l6’+2, . . . , k by using the equation 

v;-iz,W = V D - i t l  s ZI (1) + v f - i  21 (1) -s [9.5.5] 

9.6 INVERSE BOX-COX TRANSFORMATION 

As shown in Figure 9.1.1, before fitting a time series model to a given time series, one may 
wish to transform the data using the Box-Cox transformation in [3.4.30]. The main purposes of 
the Box-Cox transformation are to make the residuals of the fitted ARMA or ARIMA model (see 
Section 3.4.5) to be normally dismbuted and homoscedastic (have constant variance). Subse- 
quent to simulating data sequences using the fitted model and following the techniques from the 
previous sections of this chapter, one must take the inverse Box-Cox transformation in order to 
obtain synthetic data that have the same units as the original time series. 

From r3.4.301 the Box-Cox transformation of the original z, series is 

[9.6.1] 

where the constant c is chosen to be just large enough to cause all of the entries of the zl series to 
be positive. When the data are nonstationary, one may also wish to difference the zp) series to 
obtain the w, series in [4.3.3]. Of course, if the z, or ,I(*) series are alrtady stationary, the wI 

series is the same as z,(’). Whatever the case, after following the methods of the previous sec- 

tions of Chapter 9 to obtain the simulated 2:’) sequences, one must take the inverse Box-Cox 
transformation to get the synthetic zl data. The inverse Box-Cox transformation is written as 
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[hz,‘” + 111’1 - c , # 0 
= [ exp[z/k)] - c ’ x = o  [9.6.2] 

where 2:’) stands for the simulated sequence obtained directly from the ARMA or ARIMA 

model. If the zl@) sequence possesses a mean level, one can add the transformed mean to each of 
the generated zI values calculated using [9.6.2]. 

9.7 WATERLOO SIMULATION PROCEDURE 3 

9.7.1 Introduction 

In simulation studies, one usually employs a calibrated ARMA model to simulate possible 
future sequences of the time series to which the model is fitted. One could, of course, assume a 
given theoretical model having specified parameter values and then use this model in a simula- 
tion study. However, when fitting the model to the series, one obtains maximum likelihood esti- 
mates (MLE’s) and standard errors (SE’s) for the model parameters (see Section 6.2 and Appen- 
dices A6.1 and A6.2). Because the time series used to calibrate the ARMA model is only one 
finite realization of the underlying stochastic process that generated this observed sequence, the 
population values of the model are not known. The MLE’s of the model parameters constitute 
the best estimates of the population values given the available information. The uncertainties or 
variations of these estimates are reflected by their SE’s. As explained in Appendix A6.2, the 
SE’s are calculated as the square roots of the diagonal entries in the variance-covariance matrix 
for the estimated parameters. 

The WASIM3 (Waterloo Simulation Procedure 3 )  algorithm can be used in simulation stu- 
dies where it is required to incorporate paramerer uncertain@ into the analysis. Suppose that it 
is necessary to generate k‘  synthetic traces of length k .  When generating each series of length k ,  
different values of the model parameters are randomly selected if WASIM3 is employed. The 
WASIM3 procedure is explained in this book only for a nonseasonal ARMA model, since exten- 
sion to the seasonal case is straightforward. In terms of Figure 9.1.1, the WASIM3 algorithm is 
used prior to taking the inverse Box-Cox transformation discussed in Section 9.6. Following the 
presentation of the WASIM3 algorithm in the next subsection, it is explained how parameter 
uncertainty is incorporated into reservoir design. Section 9.7.4 discusses how practitioners can 
deal with model uncertainty. 

9.73 WASIM3 Algorithm 

Suppose that the historical time series containing N values is modelled as an ARMA@,q) 
model as in [9.3.1] that has an estimated mean level of i. The Gaussian white noise nsiduals 
have an estimated variance denoted by 6:. Let the vector of the estimated ARMA parameters be 
given by 

r9.7.11 

(stc Section 6.2). The vector of the true model parameters is denoted by 
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[9.7.2] 

The mean level of the true model is p while the variance of the white noise is 0,'. 

If a non-informative prior distribution is used for the model parameters, then p. p and IS,' 

P=N(fi.V$ [9.7.3] 

where V t  is the estimated variance covariance matrix of p which is usually calculated at the esti- 
mation stage of model development (see Appendix A6.2) and N means normally distributed. 

are approximately independent with posterior distributions given by 

ua 2 = N [ A 2  o,,- 

[9.7.4] 

[9.7.5] 

The findings given in [9.7.3] to [9.7.5] are based upon large sample theory. Nevertheless, 
these results can be used to obtain some idea of the importance. if any, of panmeter uncertainty 
in a particular situation. It should be noted that if an informative prior distribution were used, 
the variances of the parameters would be less and hence the panmeter uncertainty would also 
decrease. 

The following algorithm for WASIM3 can be used to allow for parameter uncertainty when 
k' series of length k are to be generated from an ARMA(p,q) model. 

Set i = 1. 

Randomly generate values for p, p and a,' using the posterior distributions given in (9.7.31, 

[9.7.4] and [9.7.5], respectively. Denote the generated parameter values as pi, p, and cr,'.,. 
Refer to the book by Janson (1966) for a method to obtain random values from a multivari- 
ate normal distribution. 
Use WASIM2 (or WASIM1) for an ARMA@,q) process with parameters pi, pi ,  and o,',,, 
to simulate a synthetic series of length k that is represented by ~{~),zZz(i), . . . ,zL(i). If the 
model contains a Box-Cox transformation. the inverse transformation in [9.6.2] is required. 
Set i = i + 1. If i S k' then repeat steps 2 and 3 to obtain another possible realization of the 
time series. When i > k'. the WASIM3 procedure is terminated. 

9.73 Parameter Uncertainty in Reservoir Design 
In this section, an algorithm is presented for estimating the expected utility of a reservoir 

design given the specified ARMA@,q) model for the riverflow data and a posterior distribution 
p(p,&ts,') for the parameters. For a given riverflow time series z1,z2,. . . , z k ,  and a particular 
reservoir design D ,  the (vector-valued) net benefit function is given by 
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NB =NB(Zl , .  . . ,zk; D )  

and the utility is 

U = U(NB) 

The expected utility of D is then given by 

. . . , Z k ;  D)) 

315 

[9.7.6] 

[9.7.7] 

p(Zl&~ . . . zk lp@to:)~(p$vo~) 

dzldz2. . . dZkdPldP2. . ' dP,+,d@o,' [9.7.8] 

The best design, Do, maximizes the value of u(D) .  

After an ARMA model is fit to the given time series of historical riverflows, the following 
algorithm may be used to estimate u ( D )  and a confidence interval (or Bayesian probability inter- 
val) for u ( D ) .  

1. Set i = 1, T ,  = 0, Tz = 0. Let k' be the number of series of length k that are to be generated. 
For example, k' may have a value of 10.000. 
Generate a synthetic time series, ~l (~) , zZ( i ) ,  . . . , z i i ) ,  using the WASIM3 algorithm. 

Calculate ui = U ( N B ( Z , " ) J ~ ( ~ ) ,  . . . ,$; D ) ) .  set T l  = Tl + ui ,  and set T2 = T2 + u?. 

Set i = i + 1 and go to step 2 if i 5k'. Go to step 5 if i > k'. 

2. 

3. 

4. 

5. Set 
- 1  

[ 9.7.91 
= FT' 

and let 

[9.7.10] 

The calculated P provides an estimate of u ( D )  and a 95% confidence interval (or Bayesian 
probability interval) for u ( D )  is given by iif 1.96s;. Although the aforesaid algorithm is 
explained for a nonseasonal ARMA(p,q) model, the same approach is valid for seasonal models. 
The number of generated synthetic mces (i.e. k') can be increased if more accuracy is required 
or decreased when less accuracy is needed. 
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9.7.4 Model Uncertainty 
In the synthetic hydrology approach to reservoir design and operation, an ARMA model 

may bc fit to a historical riverflow time series and then used to simulate other possible realiza- 
tions of the riverflows. Two sources of possible error may arise. The model selected may be 
inappropriate or the estimated parameters may be inaccurate. The procedures of Part ID 
emphasize techniques for selecting an appropriate model followed by efficient parameter estima- 
tion and diagnostic checking for possible model inadequacies. It is thus reasonable to suppose 
that the selected model is at least approximately valid and that the best possible estimates arc 
obtained for the model parameters by using the method of maximum likelihood (see Section 
6.2). On the other hand, if a possible inappropriate model is fit to the data and no checks of 
model adequacy arc done, a seriously inadequate model may be chosen. It is demonstrated in 
Section 10.4.6, for example, that the use of fractional Gaussian noise models may give poor fits 
to annual riverflow time series when compared to ARMA models. If the methods of Part III arc 
used with a hydrologic time series of at least 50 observations, the selection of an inappropriate 
model is not likely to occur. The reader may wish to refer to Section 5.2 for further discussions 
of modelling philosophies and different kinds of uncertainties. 

Given that the best possible model is identified for fitting to a series and efficient parameter 
estimates are obtained, the WASIM3 algorithm can be used for simulation purposes in order to 
take parameter uncertainty into account This parameter uncertainty is caused by the finite sam- 
ple length of the time. series to which the model is fitted. 

9.8 APPLICATIONS 

9.8.1 Introduction 
Three applications are presented to illustrate the advantages and usefulness of the simula- 

tion procedures presented in this chapter. The first example demonstrates that the employment 
of WASIM2 in simulation studies avoids bias that is due to fixed starting values. In the second 
application, it is shown how the model residuals from the historical data can be used in conjunc- 
tion with WASIMl for generating synthetic data. Finally, the third example demonstrates how 
parameter uncertainty can be incorporated into a simulation study by using WASIM3. 

9.83 Avoidance of Bias in Simulation Studies 
The rescaled cldjusted range (RAR) and the Hurst co@cient K defined in r10.2.91 and 

[10.3.4], respectively. are two statistics that are important in problems related to the Hurst 
phenomenon. In Chapter 10 the controversies surrounding the Hurst phenomenon are presented 
and it is demonstrated that ARMA processes are superior to fractional Gaussian noise models for 
explaining the Hurst phenomenon as well as modelling annual hydrological time series. In par- 
ticular, it is shown in Section 10.6 that ARMA models statistically preserve the historical RAR 
or equivalently K. Accordingly, ARMA models are important tools for utilization in hydrologi- 
cal studies. 

If the underlying process is an ARMA model, it can be shown theoretically that the RAR is 
a function only of the sample size and the AR and MA parameters (Hipel, 1975, Appendix B). 
In Section 10.6, it is demonstrated how to obtain the empirical cumulative distribution function 
(ECDF) for the RAR when the generating process is a specified stochastic model. In particular, 
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consider the ECDF for a Markov model (i.e. ARMA(1.0) process) with the AR parameter hav- 
ing a value of 0.7. When the WASIM2 technique is employed to generate 10,OOO sequences of 
length 30, the value of the 0.95 quantile for the ECDF of the RAR is 12.15. The 95% confidence 
interval for this value is calculated to be from 12.09 to 12.19 (see Conover (1971. p. 11 1) for the 
method to calculate the confidence interval for a quantile). 

If random realizations of the stochastic process arc not utilized as starting values, sys- 
tematic bias can be introduced into a simulation study such as the development of the ECDF for 
the RAR. For the Markov model with an AR parameter having a magnitude of 0.7, 10,OOO 
sequences of length 30 were generated and for each sequence the mean value of zero was used as 
a starting value. In addition, exactly the same disturbances that were utilized in the simulation 
study using WASIM2, were employed for the biased study. The value of the 0.95 quantilc for 
the biased ECDF of the RAR is 12.01. The 95% confidence interval for this quantile value is 
from 11.97 to 12.05. Notice that the confidence interval for the biased result does not intersect 
with the corresponding interval for the unbiased study. Consequently, futed initial values should 
not be used in the development of the ECDF for a specified statistic and generating mechanism. 

9.83 Simulation Studies Using the Historical Disturbances 
When using WASIMI, it is not necessary to assume that the model residuals are 

NID(0,o;). In fact, it is not required to determine any theoretical distribution for the distur- 
bances to follow. Rather, in certain situations it may be advantageous to use the residuals from 
the historical data to form an empirical distribution for generating the innovations. For example, 
when a relatively large sample is available, it may be desirable to use the empirical distribution 
of the residuals for simulation studies, no matter what theoretical distribution the empirical 
results may most closely resemble. In other instances, it may be difficult to determine which 
theoretical distribution to fit to the disturbances and, consequently, it may be profitable to 
employ the empirical distribution of the residuals. However, it should be pointed out that when 
the historical disturbances are employed, it is not possible to have a generated disturbance that is 
more extreme than any of the calculated residuals. Nevertheless, because of the form of the 
difference equation for an ARMA model in [9.3.1] that is fit to correlated data, it is possible that 
values of the generated data may be more extreme than those in the given time series. 

A riverflow time series is considered to demonstrate how the empirical distribution for the 
residuals can be used in practice. The average annual flows of the Gota River in Sweden arc 
available from 1807 to 1957 in a paper by Yevjevich (1963). A model is fit to this data by fol- 
lowing the identification, estimation, and diagnostic check stages of model construction 
presented in detail in Part III of the book. The identification stage reveals that it may be 
appropriate to estimate an AR model of order two. The parameter estimates and corresponding 
SE’s listed in Table 9.8.1 were calculated using the unconditional sum of squares method 
referred to in Section 6.2.3. At  the estimation stage, the white noise residuals {dl,d2, . . . , d , d  
are determined using the backforecasting technique of Box and Jenkins (1976. Ch. 7). Diagnos- 
tic checks performed on the residuals c o n f m  that the modelling assumptions are satisfied. In 
particular, by calculating confidence limits for the residual autocorrelation function using the 
technique of Section 7.3.2, the residuals are shown to be white noise. 
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Table 9.8.1. Parameter estimates for an ARMA(2,O) model 
fit to the Gota River data. 

-0.274 0.078 

To obtain synthetic data using the Gota model, the WASIMl method is employed and the 
white noise terms are chosen by selecting at random an element of the set {dlrd2,. . . , d , d .  
After one of the historical innovations is utilized, it is put back into the set of historical distur- 
bances. Therefore, selection is done with replacement and this method is equivalent to using the 
empirical distribution of the residuals for the generation of the white noise terms. 

As an example of a simulation study using the Gota model, consider the development of 
the ECDF for the Hurst coefficient K. The historical disturbances and the WASIM1 technique 
are used to generate 10,OOO sequences, where each sequence contains 150 values. By calculating 
K for each of the 10,OOO haces, the ECDF for K can be obtained as shown in Table 9.8.2 for a 
series length which is the same as the historical time series. 

The historical value of K for the Gota River is calculated to be 0.689. Notice that the 
observed K value does not lie in the tails of the ECDF for K in Table 9.8.2. The probability that 
K for the Gota model is greater than the historical K is 0.281. In Section 10.6, this procedure is 
applied to 23 natural time series and by invoking a particular statistical test, it is demonstrated 
that ARMA models do statistically preserve the Hurst coefficient K, or equivalently the RAR. 

Table 9.8.2. ECDF of K for the Gota model. 
Values of K for Empirical 

Quantiles White Noise 
0.025 
0.050 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
0.950 
0.975 

0.556 
0.57 1 
0.590 
0.613 
0.630 
0.645 
0.658 
0.671 
0.686 
0.703 
0.725 
0.744 
0.757 
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9.8.4 Parameter Uncertainty in Simulation Experiments 
An average annual riverflow series having a length of % years is modelled to show how 

parameter uncertainty can be brought into a practical simulation study. The ycarly riverflows of 
the Mississippi River at St Louis, arc available from 1861 to 1957 in an article by Yevjevich 
(1%3). By following the three stages of model development, the best process for modelling the 
Mississippi flows is found to be an ARMA(0,l) model. The MLE for the M A  parameter O1 is 
-0.306 with a SE of 0.097. 

By using W A S M l  (or equivalently WASIMZ), the Mississippi model is employed to gen- 
erate 10,OOO series of length %. The RAR is calculated for each of the 1O.OOO traces. The 
expected value or mean of the RAR for the 10,OOO series is 13.439 with a standard deviation of 
0.030. 

The Mississippi model is used with WASLM3 to generate another 10,OOO series of length 
%. The innovations am different than those used for the simulation study with WASIM1. For 
each trace of length 96, the value of the M A  parameter used in WASIM3 is determined by the 
equation 

[9.8.1] 

where r = 1.2.3. . . . ,lO,OOo; E, - N/D(O,l). Because the RAR is not a function of the mean 
level of the process or the variance of the model residuals, it is only necessary to randomly vary 
the MA parameter for this particular simulation study. The expected value of the RAR for the 
10,OOO synthetic data sets is 13.443 with a standard deviation of 0.031. A comparison of the 
results for the simulation experiment using a constant MA parameter with those utilizing a vary- 
ing model parameter, reveals that there is no significant difference between the two expected 
values of the FUR.  Hence, for this particular study, parameter uncertainty is not a crucial factor. 

el = -0.306 + O.OWE, 

9.9 CONCLUSIONS 

Improved simulation procedures are available for generating synthetic traces from ARMA 
and ARIMA models. Because random realizations of the underlying stochastic process are used 
as starting values, bias is not introduced into the simulated sequences. Furthermore, these tech- 
niques can be used in conjunction with models containing differencing operators or data that has 
been bansformed by a Box-Cox transformation. The overall procedure for utilizing the simula- 
tion techniques are depicted in Figure 9.1.1 while detailed explanations are presented in Sections 
9.2 to 9.7. Three representative applications of the simulation methods arc given in Section 9.8. 

If the WASIM1 method of Section 9.3 is utilized, it is not necessary that the distribution of 
the residuals be Gaussian. As shown by an example in Section 9.8.3, the empirical distribution 
of the residuals can be used for generation purposes. In addition, WASIM1 is exact for a pure 
M A  process. On the other hand, the WASIM2 technique of Section 9.4 is an exact simulation 
procedure for any ARMA model. The only restriction with W A S W  is that the residuals arc 

When incorporating parameter uncertainty into a simulation study, the WASM3 procedure 
of Section 9.7 is the proper method to implement. If it is deemed necessary to consider parame- 
ter uncertainty in reservoir design, one can employ the algorithm given in Section 9.7.3 for link- 
ing WASIM3 with the design problem. As discussed in Section 9.7.4, to circumvent difficulties 

NID(O,O,z). 
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with model uncertainty, it is recommended that a proper ARMA model be fit to the given data 
set by following three stages of model development presented in Part 111. 

In Section 9.5, it is explained how the simulation techniques can be used with integrated 
models. The simulation methods can be extended for use with the three types of seasonal 
models of Part VI. For example, by writing the seasonal ARIMA model in the unfactored form 
shown in (12.2.1 I], one can directly employ the simulation methods of Chapter 9. 

As explained in Section 9.7.3, simulation can be used in reservoir design. Simulation can 
also bc employed for studying the theoretical properties of a given type of stochastic model. In 
Section 10.6, simulation is employed to demonstrate that ARMA models preserve statistically 
two important historical statistics called the Hurst coefficient and the rescaled adjusted range 
(also see Section 9.8). This forms the basis for the explanation of what is called the Hurst 
phenomenon. The Hurst phenomenon and related developments in long memory modelling are 
presented in Chapters 10 and 1 1 ,  respectively. in Part V of the book. 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

PROBLEMS 
Explain why it is not “completely correct” to employ statistical tests for checking 
the statistical properties of sequences generated by a random number generator. 
Briefly outline at least two statistical tests for determining whether or not a random 
number generator produces independent observations. List the relative merits and 
disadvantages of these tests. 

Briefly describe at least two statistical tests for checking if a random number gen- 
erator produces uniformly distributed variables. Compare the relative advantages of 
these tests. 
In Section 9.2.3, a universal random variable generator is presented for transforming 
independent uniform random variables to independent random variables following 
any required distribution. Prove that this algorithm is correct. 

(a) Provide a numerical example to demonstrate how the mixed linear congruen- 
tial random number generator works. 

(b) Use a numerical illustntion to explain how the steps of the multiplicative 
linear congruential random number generator are carried out. 

Describe detailed guidelines regarding the choice of the coefficients u. c and m in 
the linear congruential random number generator in [9.2.2]. 

In Section 9.2.3, references are given for the Marsaglia-Bray algorithm which can be 
used to generate random variables that are NID(O.1). After refemng to these refer- 
ences, describe the main steps in this algorithm. Discuss the main advantages and 
drawbacks of the Marsaglia-Bray algorithm. 

Three algorithms for generating NID(0,l) random variables from independent uni- 
formly distributed random variables are the central-limit algorithm, Teichroew 
method and Box-Muller generator (see, for example, Knuth (1969)). Briefly 
describe how each algorithm works and point out any overlap in the techniques. 
Compare their relative advantages and disadvantages from both theoretical and com- 
putational viewpoints. 
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9.9 

9.10 

9.11 

9.12 

9.13 

9.14 

9.15 

Describe an approach for generating independent gamma random variables. 
Draw a flow chart to outline how one can employ simulation in reservoir design. 
Suppose that one wishes to simulate 10 values from an ARMA(2,2) model using 
WASIMl. Write down how each of these 10 values are calculated using the 
WASIMl algorithm. 

(a) Suppose that one wishes to use WASIM2 to simulate 10 values from an 
ARMA(2.1) model. Show all the calculations for generating this data. 

(b) Prove that the random starting values in part (a) are from an ARMA(2,l) pro- 

Refer to appropriate references for explaining how to simulate from a multivariate 
normal distribution. Describe in detail how this is done within the WASIM3 algo- 
rithm. 
Suppose that one wishes to simulate 10 values of a series to which an 
ARIMA(l,l,l) model was fitted to the square roots of the observations. Write down 
all of the detailed calculations for producing simulated values in the untransformed 
domain. 

cess. 

(a) Using annual time series from your field of interest, carry out a simulation 
experiment to demonstrate that ARMA models statistically preserve the histor- 
ical autocorrelation function at lag 1. 
Incorporate parameter uncertainty into the sirnulation experiment executed in (b) 
Part (4 .  

REFERENCES 

DATA SET 

Yevjevich. V. M. (1963). Fluctuation of wet and dry years, 1, Research data assembly and 
mathematical models. Hydrology Paper no. 1, Colorado State University, Fort Collins, Colorado. 

GENERATING INDEPENDENT RANDOM VARIABLES 

Atkinson. A. C. and Pearce, M. C. (1976). The computer generation of beta, gamma and normal 
random variables. Journal of the Royal Statistical Society, Series A ,  139(4):43148. 
Box, G .  E. P. and Muller, M. E. (1958). A note on the generation of random normal deviates. 
Annals of Mathematical Statistics, 29:610-6 11. 
Dieter, V. (1972). Statistical interdependence of pseudo-random numbers generated by the linear 
congruential method. In Zaremba, S . ,  editor, Applications of Number Theory to Numerical 
Analysis, pages 289-318. Academic Press, New York. 



322 Chapter 9 

Hill, I. D. (1976). Algorithm AS 100, normal-Johnson and Johnson-normal transformations. 

Hill, I. D., Hill, R. and Holder, R. L. (1976). Algorithm AS99, fitting Johnson curves by 
moments. Applied Statistics, 25(2): 180- 189. 

Hull, T. and Dobell, A. (1%2). Random number generators. SIAM Review, 4230-254. 

Janson, B. (1966). Random Nwnber Generators. Victor Pettersons, Bokindustri, Akiebolag, 
Stockholm. 
Johnson, N. (1949). Systems of frequency curves generated by methods of translation. Bwme- 
Pika. 36: 149-176. 

Knuth, D. E. (1%9). The Art of Computer Programming. Addison-Wesley, Reading, Mas- 
sachusetts. 
Lthmer, D. H. (1949). Mathematical methods in large scale computing units. In Proceedings of 
the Symposium on Lurge Scale Digital Calculating Machinery, pages 141-146. Harvard Univer- 
sity Press. 
Marsaglia, G. (1972). The structure of linear congruential sequences. In Zaremba, S . ,  editor, 
Applications of Number Theory to Numerical Analysis, pages 249-286. Academic Prcss, New 
York. 
Marsaglia. G. and Bray, T. A. (1964). A convenient method for generating normal variables. 
SlAM Review, 6:260-264. 

Marsaglia, G., MacLaren, G. M. M. and Bray, T. A. (1964). A fast procedure for generating nor- 
mal variables. Communications of the Associan’on of Computing Machinery, 7:4-10. 

von Neumann, J. (1951). Various techniques used in connection with random digits. NBS 
Applied Mathematics Series, (12):36-38. 

Weckmann, B. A. and Hill, I. D. (1982). An efficient and portable pseudo-random number gen- 
erator. Applied Statistics, 31:188-190. 

Yakowitz, S .  J. (1977). Computational Probability and Simulation. Addison-Wesley, Reading, 
Massachusetts. 

ApplKd SrOti~ric~, 25(2):190-192. 

HYDROLOGICAL SIMULATION RESEARCH 

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. 
Holden-Day, San Francisco, revised edition. 
Delleur, J. W.. Tao, P. C.. and Kawas, M. L. (1976). An evaluation of the practicality and com- 
plexity of some rainfall and runoff time series models. Water Resources Research, 12(5):953- 
970. 

Hipel, K. W. (1975). Contemporary Box-Jenkins Modelling in Water Resources. PhD thesis, 
University of Waterloo, Waterloo, Ontario. 

Hipel, K. W. and McLeod, A. I. (1978). Reservation of the rescaled adjusted range. 2. simula- 
tion studies using Box-Jenkins models. Water Resources Research, 14(3):5O9-5 16. 



Simulating with Nonseasonal Models 323 

Kottegoda, N. T. (1987). Fitting Johnson S, curve by the method of maximum likelihood to 
annual maximum daily rainfalls. Water Resources Research, 23(4):728-732. 

McLeod, A. I. and Hipel, K. W. (1978). Simulation procedures for Box-Jenkins models. Water 
Resources Research, 14(5):%9-975. 

M o m ,  P. A. P. (1959). On the Theory of Storage. Methuen. London. 
Sangal, B. P. and Biswas, A. K. (1970). The three-parameter lognormal distribution and its 
application in hydrology. Water Resources Research, 6(2):505-5 15. 

Stedinger. J. R. (1980). Fitting log normal dismbutions to hydrologic data. Water Resources 
Research, 16:48 1-490. 

Vogel, R. M. and Stedinger, J. R. (1988). The value of stochastic streamflow models in overyear 
rcscwoir design applications. Water Resources Research, 24(9): 1483- 1490. 

INITIAL VALUES 

Brown, T. J. and Hardin, C. (1973). A note on Kendall’s autoregressive series. Journof of 
Applied Probability, 10:475478. 

Copas, J. B. (1966). Monte Car10 results for estimation of a stable Markov time series. Journal 
of the Royal Statistical Society, Series A ,  129: 1 10- 1 16. 

STATISTICS AND NUMERICAL ANALYSIS 

Conover, W. J. (1971). Practical Nonparametric Statisfics. John Wiley, New York. 
Healy, M. J. R. (1968). Algorithm AS6, mangular decomposition of a symmetric mamx. Jour- 
nal of the Royal Statistical Society, Series C (Applied Statistics), 17:195-197. 

Hornbeck. R. W. (1975). Numerical Methods. Quantum Publishers, New York. 
Ralston. A. (1965). A First Course in Numerical Analysis. McGraw-Hill, New York. 



324 Chapter 9 



Long Memory Modelling 

PART V 

LONG MEMORY MODELLING 

325 

The Hurst phenomenon cnated one of the m s t  interesting, controversial and long-lasting 
scientific debates ever to arise in the field of hydrology. The genesis of the Hurst phenomenon 
took place over forty years ago in Egypt Just after World War II. a British scientist by the name 
of H a d d  Edwin Hurst became deeply involved in studying how the Nile River could be 
optimally controlled and utilized for the benefit of both Egypt and Sudan. As DktorGenera l  
of the Physical Department in the Ministry of Public Works in Cairo, Egypt, Hurst was particu- 
larly interested in the long-term storage requirements of the Nile River. In addition to annual 
riverflow series, Hurst analyzed a wide variety of other yearly geophysical time series in order to 
examine the statistical properties of some specific statistics that are closely related to long term 
storage. These statistical studies led Hurst to develop an empirical law upon which the defini- 
tion of the Hurst phenomenon is b u d .  

The fact that the Hurst phenomenon arose from scientific work carried out in Egypt pro- 
vided the controversy with an aura of mystery and intrigue. Was the Hurst phenomenon more 
difficult to solve than the riddle of the Sphinx? Indeed, a range of explanations has been put for- 
ward for solving the Hurst phenomenon. Furthermore, in the process of studying the Hurst 
phenomenon, many original contributions have been made to the fields of hydrology and statis- 
tics. 

In Chapter 10, the Hurst phenomenon is defined and both theoretical and empirical work 
related to this phenomenon are described. One spinoff From research connected to Hurst’s work 
is the development of a stochastic model called fractional Gaussian noise (FGN). This model 
possesses long memory (see Section 2.5.3) and was designed for furnishing an explanation to 
the Hurst phenomenon. As demonstrated in Chapter 10, this long memory model fails to solve 
the Hunt riddle. Nevertheless, the introduction of FGN into the field of hydrology initiated 
major theoretical and practical developments in long memory modelling by not only hydrolo- 
gists but also by statisticians and economists. Probably the most flexible and comprehensive 
type of long memory model is the fractional autoregressive-moving average or FARMA 
model presented in Chapter 11. In fact, the FARMA family of models is a dinct extension of 
the ARMA class of models defined in Chapter 3. 

If FGN modelling cannot provide a reasonable solution to the Hurst phenomenon, then 
wherein Lies the answer? The solution to Hurst’s riddle is put foward in Section 10.6 of the next 
chapter. Simulation experiments demonstrate that when the most appropriate ARMA models are 
fitted to a wide variety of annual natural time series. a statistic called tbe H u n t  coefiicient is 
“statistically preserved” by the calibrated ARMA models. Therefore, although the Hurst 
coefficient and other related statistics are not directly incorporated as model parameters in the 
design of an ARMA model, these statistics can still be indirectly accounted for or modelled by 
ARMA models. 
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10.1 INTRODUCI'ION 

Since the original empirical studies of Hurst (1951), the Hursr pknomenon has caused 
extensive research with accompanying academic controversies right up to the present time. The 
objectives of this chapter arc to review and appraise research related to Hurst's work and demon- 
strate how the Hurst phenomenon can be explained. The views presented in this chapter, as well 
as research by Hipel (1975). McLeod and Hipel (1978a) and Hipel and McLeod (1978a 1978b). 
constitute a fresh approach to the study of the Hurst phenomenon and the related problem of the 
preservation of historical statistics by stochastic models. 

In Section 10.2. some statistics related to long term storage requirements of a reservoir arc 
defined using the idea of a cumulated range. Subsequently, the various types of Hurst coeffi- 
cients that have been developed for use in formulae involving the rescaled adjusted range (RAR) 
are given and compartd in Section 10.3.1. Because of the flexible statistical properties of the 
RAR, it is suggested that this is the Hunt statistic of primary concern in water resource applica- 
tions related to storage. 

The roles of both identically independently distributed 0) variables and correlated ran- 
dom variables for explaining problems related to the Hurst phenomenon are thoroughly investi- 
gated in Sections 10.3.2 and 10.3.3. respectively. Simulation studies arc used to demonstrate 
that the RAR is nearly independent of the type of underlying distribution of the random variables 
and is also a function of the sample size. Of particular importance for correlated processes are 
stochastic models that can be easily fitted to natural time series and at the same time retain 
relevant historical statistical characteristics of the data such as the RAR and other related statis- 
tics. The ARMA models of Chapter 3 constitute one family of stochastic or timc series models 
which possess the potential for continued extensive utilization in hydrology. The fractional 
Gaussian noise (FGN) model of Section 10.4 is a process that was developed mainly within the 
hydrological literature (Mandelbrot and Wallis, 1968, 1%9a to e) as a means for possibly 
accounting for the Hurst phenomenon. Although some of the inherent drawbacks of this model 
are discussed, significant contributions are formulated toward the further statistical maturity of 
the FGN modcl in Section 10.4. 

As explained in Part III. when any type of time series model is being fitted to a given time 
series. it is recommended to follow the identification. estimation and diagnostic check stages of 
model construction. Within Section 10.4, useful model building techniques arc presented for 
allowing FGN models to be applied properly to data sets. More specifcally, in Section 10.4.3 an 
efficient maximum likelihood estimation (MLE) procedure is derived for use at the estimation 
stage. Simulation studies reveal that the MLE approach is superior to a previous estimation 
method. A technique for calculating the model residuals is given in Section 10.4.4, SO that the 
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statistical properties of the residuals can be tested by specified diagnostic checks. If, for exam- 
ple, the residuals fail to pass the whiteness criterion. another type of model should be chosen in 
order to satisfy this important modelling assumption. Next, a procedure is presented in Section 
10.4.5 for calculating minimum w a n  square error (MMSE) forecasts for a FGN model. Follow- 
ing this, an exact simulation procedure is given in Section 10.4.6 for simulating FGN. This new 
simulation method eliminates the need for approximating FGN by other types of stochastic 
p roc e s sc s . 

The FGN model is an example of what is called a long memory process defined in Section 
2.5.3. On the other hand, the ARMA models of Chapter 3 posscss short memory. For discrim- 
inating between the long memory FGN models and the short memory ARMA models, the 
Akaike information criterion (AIC) defined in Section 6.3.2 can be employed. For the six annual 
riverflow time series considered in Section 10.4.7, the AIC selects the ARMA model in prefer- 
ence to the FGN model in each case. 

To investigate statistical properties of the RAR and the Hurst coeficienr K, simulation 
experiments an carried out in Section 10.5. Within Section 10.5.2, simulation studies are exe- 
cuted using white noise while in Section 10.5.3 the simulation studies involve synthetic data 
generated from both long and short memory models. 

A major challenge in stochastic hydrology is to determine time scries models that preserve 
important historical statistics such as the RAR, or equivalently, the Hurst coefficient K. By fol- 
lowing the identification, estimation, and diagnostic check stages of model developmenf ARMA 
models are determined for 23 geophysical time series in Section 10.6. Simulation studies are 
then performed to determine the small sample empirical cwnulun've distribution function 
(ECDF) of the R4R or K for various ARMA models. The ECDF for these statistics is shown to 
be a function of the time series length N and the parameter values of the specific ARMA model 
being considered. Furthermore, it is possible to determine as accurately as desircd the distribu- 
tion of the RAR or K. A theorem is given to obtain confidence intervals for the ECDF in order 
to guarantee a prescribed precision. Then it is shown by utilizing simulation results and a given 
statistical test that ARMA models do preserve the observed RAR or K of the 23 geophysical 
time series. Consequently, ARMA models provide an explanution for the Hurst phenomenon. 
Finally, various estimates for the Hurst coefficient are estimated and compared in Section 10.7 
for the 23 given time scries. 

The FGN model defined in this chapter is one example of a long memory model. Another 
example is the mixed Gamma ARMA(l.1) model proposed by Sim (1987). A flexible class of 
long memory models based on sound theoretical foundations is the fractional auoregressive- 
moving average or FARMA family of models. In reality, FARMA models constitute direct exten- 
sions of ARMA and AFUMA models. Within Chapter 11, FARMA models arc defined and 
model construction techniques are presented. 

10.2 DEFINITIONS 

voirs and an needed for explaining the Hurst phenomenon in Section 10.3.1. 
The definitions presented in this section reflect long tern storage requirements of reser- 

Consider a time series tlrz2, , . , ,zN. Define the krh general partial s u m  as 
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k 

I= 1 
s 'k  = s'k-1 + ( z k  - a?,) = cz' , -akz;J, k = 1.2,. . . ,N [10.2.1] 

1 N  

N i=l 

R'N = h f ~  - m'N 

where S'o equals 0, SN = - Zzi is the mean of the first N terms of the series, and a is a constant 

satisfying 0 5 a S 1.  The general (cumulative) range R',, is defined as 

[ 10.2.21 

where hf" = ma~(O.f1.f2, . . . , S'N) is the general surplus, and m'N = ~nin(O.f~S'~,  . . . , S'N) is 
the general dejicit. Thus. R'N is the range of cumulative departures of the random variables 
zl,z2, . . . , z N ,  from OUT,. When random variables such as zl,+. . . . , z N ,  an employ4 in summa- 
tion operations, they arc often referred to as summands. The rescaled general range R;J is given 
as 

- 
R;J = R'NID'N [ 10.2.31 

where D'N = N-" C(zi - az;V)2 is the general standard deviation. c: 1'" where D'N = N-" C(zi - az;V)2 is the general standard deviation. c: 1'" 
The constant a can be thought of as an adjustment factor, or in storage theory, it can be 

interpreted as the degree of development of reservoir design. Two special cases for a are of par- 
ticular importance in water resources. For a = 0 (no adjustment) the kth general partial sum s'k 

is replaced by the crude partial sum S,, which is defined by 

(10.2.41 

where So = 0. The crude range RN is defined analogous to R'N as 

RN = M N  -mN [ 10.24 

where MN = max(0S1,S2.. . . , S N )  is the crude surplus, and mN = m i n ( 0 , S 1 S 2 ,  . . . , S N )  is the 
crude deficit. Similarly, the rescaled crude range is 

- 
RN = RNID, [ 10.2.61 

1R 

where DN = N-~R \:z?] is b e  crude deviation. 

When a = 1 (maximum adjustment or development), the krh adjusted partial sum s * k  is 
given by 

k 

i= 1 
s * k  = S*k-l + ( z k  - T N )  = ZZ, - k f N  , k = 1,2, . . . ,N 

where S*o = 0 and S*N = 0. The adjusted range R*N is defined as 

[ 10.2.71 
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R*N = M*N - m*N [ 10.2.81 

where M*N = max(0S*lS*2, . . . ,S*,) is the adjusted s ~ r p l u ~ ,  and 
m*N = min(OS*1$*2, . . . , S * N )  is the odjucted deficit. Finally, the rescaled adjusted range is 

[ 10.2.91 
- 
R*N = R*NID*N 

where D*N = Nln C(zi - F N ) ~  is the sample standard deviation. Figurc 10.2.1 graphically 1’” 
illustrates the concepts of s*k, M * N ,  m*N. and R*N. 

0 

Figure 10.2.1. Adjusted range. 

The statistics described in this section are extremely useful in reservoir design. If the z, art 

average annual volumes of riverflow, then Czi is the inflow into a reservoir in k years, and akFN 

is the outflow at a level of development a The f k  in [10.2.1] represents the storage aftcr k 

years. Also, R’N is the minimum reservoir capacity rtquirtd to satisfy a constant draft of 
without experiencing shortages or spills over the period spanned by the inflow sequence 
z1.z2, . . . , zN. When a = 1, the water in the river would be used to its full potential. 

k 

i= 1 
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The time series zl ,zz , .  . . .zN is said to be covariance srationury (ste Section 2.4.2) if the 
mean 

p = Eb,l [ 10.2.101 

yk = E[(z, - p)(zf-& - [10.2.11] 

and the theoretical autocovariancefunction (ACF) 

both exist and do not depend on r .  The statistical properties of any covariance stationary Gaus- 
sian time series are completely determined by its mean p. variance y@ and theoretical autocorre- 
lation function (ACF), 

P = ykf’10 [ 10.2.121 

The physical interpretations of the stationary assumptions arc discussed in Section 2.4 and also 
by Klemes (1 974). 

Oftcn it seems reasonable to assume that recent values of a time series contain more infor- 
mation about the present and future than those in the remote past, Accordingly, it is assumed 
that the theontical ACVF is swnmable as defined by (Brillinger, 1975) 

[10.2.13] 

As is also mentioned in Section 2.5.3, a covariance stationary time series model is said to have a 
short or a long memory according to whether the theoretical ACVF (or equivalently the theoreti- 
cal ACF) is summable. Thus, the FGN model has a long memory (for the model parameter H in 
the range 0.5 < H < l), whereas the ARMA models have a short memory. For a specified range 
of a model parameter d ,  the FARMA models of Chapter 1 1  also possess long memory. 

10.3 HISTORICAL RESEARCH 

10.3.1 Tbe Hunt  Phenomenon and Hunt  Coefficients 

Hurst (1951, 1956) stimulated interest in the RAR statistic by his studies of long-term 
storage requirements for the Nile River. On the basis of a study of 690 annual time series 
comprising streamflow, river and lake levels, precipitation, temperature, pressure, fxe ring, mud 
vane, sunspot and wheat price records, Hurst implied that R*N varies with N as 

- 
[10.3.1] 

where h is the generalized Hurst coefficient. The above equation can be written in the general 
form 

R*N = uNh [ 10.3.21 

when a is a coefficient that is not a function of N. It should be noted that Hunt did not expli- 
citly state the generalized Hurst law of [10.3.2] in his research papers. However, by choosing 
the coefficient a to have a value of (1/2)*. Hurst in effect estimated h by the Hurst coefficienr K 
in the empirical equation 

- 
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[ 10.3.31 

By taking logarithms of [10.3.3], an explicit relationship for K is then 

[ 10.3.41 

Employing series that varied in length from 30 to 2OOO ycars, Hurst found K to range from 0.46 
to 0.96 with a mean of 0.73 and a standard deviation of 0.09. 

Assuming a normally independently distributed 0) process, Hurst (1951) utilized some 
coin-tossing experiments to develop the theoretical asymptotic relationship for the expected 
value of the adjusted range as 

E[R*N] = (dvyd2)’R 

or 

E [ R * ~ ] / ( y d l ”  = 1.253314”’ [10.3.5] 

Using the theory of Brownian motion, Feller (1951) rigorously established the above asymptotic 
formula for any sequence of IID random variables possessing finite variance. It follows from a 
standard convergence theorem in probability theory (Rao, 1973, p. 122) that for large N, 

E(#*N) = 1.2533N“ [ 10.3.6) 

Even though Hurst studied the RAR for small N and not for the adjusted range, the form of 
[10.3.5] prompted him to use K in [10.3.4] as an estimate of h and also to assume K to be con- 
stant over time. However, for 690 geophysical time series, Hurst found K to have an average of 
0.73, while the asymptotic, or limiting, value of K given by [10.3.6] is 0.5. This discrepancy is 
referred to as the Hunt phenomenon. The search for a rcasonable explanation of the Hurst 
phenomenon and the need for methods whereby the statistics related to Hurst’s work can be 
incorporated into mathematical models have intrigued researchers for decades. 

In addition to K, other estimates of the generalized Hurst coefficient h in [10.3.2] have 
been formulated. Based upon the structure of [10.3.61, Comide (1975, 1978) suggested estimat- 
ing h by the Y H  that is given in the following equation: 

FN = 1.2533N (10.3.71 

The average value of YH for the 690 series considered by Hurst is 0.57 rather than 0.73. 

Siddiqui (1976) proposed a method of evaluating h if the underlying process is assumed to 
be an ARMA process. The estimate of Siddiqui is the result of a comparison between an asymp- 
totic result for calculating E ( ~ * N )  for ARMA processes and the form of [10.3.2]. Siddiqui’s 
estimate of h and the statistic YH of Gomide (1975. 1978) arc calculated in Section 10.7 for the 
23 geophysical time series considered in Section 10.6. Appropriate conclusions arc drawn 
regarding the behaviour of these statistics in relationship to K and whether they exhibit the Hurst 
phenomenon. For the case of a white noise process, Siddiqui’s estimate of h is identical with 
Gornide’s statistic YH in [ 10.3.71. 
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For NID random variables, Anis and Lloyd (1976) have suggested a specific estimate of h 
that is a function of the sample s ix .  By taking logarithms of [10.3.2) for the expected value of 
the RAR. the following equation is obtained. 

lOgE[F*N] = l o p  + hlogN [ 10.3.8) 

Anis and Lloyd (1976) defined the local Hurst exponent h ( N )  as the derivative 

h(N) = ~00gE[~**Nl)~W0gN) [ 10.3.9) 

The exponent h(N)  can be tabulated approximately from the equation 

[10.3.10] 

w h m  E(F**,) is calculated exactly by using the formula of Anis and Lloyd (1976) that is also 
given in [10.3.15]. It should be noted that previously Salas-La Cruz and Boes (1974) had 
defined an exponent similar to h ( N )  for the general range where 0 5 a S 1. 

Because the entries for the expected value of the RAR on the right-hand side of [10.3.10] 
are calculated directly from a theoretical formula, h ( N )  is not a function of the data and is, there- 
fore, not a statistic. Nevertheless, it would perhaps be possible to fit some type of stochastic 
model to a given time series and then to derive the RAR terms in [ 10.3.101 by using simulation. 
Most likely, this type of procedure may not be a worthwhile venture, and hence h ( N )  probably 
will have limited use in practical hydrological problems. 

Anis and Lloyd (1976, p. 115, Table 1) list values of h ( N )  for N ranging from 5 to lo6. 
Although the magnitude of h ( N )  asymptotically approaches 0.5 for increasing N, at lower values 
of N, the h ( N )  is significantly larger than 0.5. For instance, when N possesses values of 5.40, 
100, 200, and 500, then h ( N )  has magnitudes of 0.6762, 0.5672, 0.5429, 0.5315, and 0.5202, 
respectively. 

In the development of an estimate for the parameter H in FGN models, Mandelbrot and 
Wallis (1%9d) assumed a form of the Hurst law that is identical with [10.3.2). For a given time 
series z 1 j 2 , .  . . ,zN, let F*/(t,r) denote the RAR of the subseries Z,J ,+~ ,  . . . ,z,, and let 
r' = r - t + 1. When examining scatter plots (or "pox diagrams") of logR-*/(t,r) versus log/ 
for a number of selected values o f t  and r .  Mandelbrot and Wallis (1%9d) were using for each 
subseries a Hunt law given by 

R*,,(r,r) = u(r')" [10.3.11] 

Wallis and Matalas (1970) have suggested the G Hurst estimator for estimating the parameter H 
in FGN models and also h in [ 10.3.11]. This procedure estimates h by calculating the slope of 
the regression of the averaged values of lo@,(t,r) on log/ for specified values o f t  and r .  

When Hurst originally formulated [10.3.3] there is no doubt that he was attempting to 
derive an empirical law that would be valid for a wide range of geophysical phenomena. In par- 
ticular, an equation such as [10.3.3] would be extremely useful for reservoir design if the 
phenomenon being modelled were average annual riverflows. However, the distribution of K 
plus the other types of Hurst exponents summarized in this section are a function of the sample 
size N. For example, the empirical cumulative distribution functions of K for various values of 

- 
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N for certain types of ARMA processes arc given in Section 10.5.3. In addition, as shown in 
Section 10.6, when K is estimated for 23 given geophysical timt series, K seldom has exactly 
the same value for any given pair of data sets. Because of the aforementioned facts, the empiri- 
cal law of Hurst in [10.3.3] loses much of its simplicity and also its potential for being a univer- 
sal law. This inherent lack of universality of Hurst’s law may be due to the fact that the general 
form of r10.3.31 resembles the asymptotic formula given in i10.3.61, whereas in practice it is 
necessary to deal with small and moderate sample sizes. 

Because the RAR possesses many attractive statistical f eams ,  Hurst perhaps should have 
concentrated his efforts on studying the properties of i*N rather than those of K.  he RAR 
statistic is independent of the magnitude of the mean level and standard deviation of a time 
series. If the data arc modelled by an ARMA process, E*N is only a function of the sample s i x  
N and the autoregressive (AR) and moving average (MA) parameters and is independent of the 
variance of the innovations (Hipel. 1975, Appendix B). From [10.3.4] it can be Seen that K is 
simply a transformation of E*N and, therefore, also ~OSSCSSCS the aforementioned properties of 
the RAR. Nevertheless, the formulation of K in [ 10.3.41 as a function of R*N only introduces an 
U M C C C S S ~  transformation and docs not give K any additional advantageous statistical proper- 
ties that arc not already possessed by the RAR. It is therefore recommended that future research 
should concentrate on the R 4 R  rather than on the various types of Hurst exponents discussed in 
this section. 

Since the concept of the Hunt coefficient is so entrenched in the literature, it is widely 
quoted in the remainder of this chapter. However, the reader should be aware that the statistic of 
primary concern is the RAR. Even the use of the G Hurst statistic (Wallis and Matalas, 1970), 
which was primarily developed as an estimate for the parameter H in FGN models, is question- 
able. It is demonstrated later in this chapter that a MLE of H is a more efficient procedure to 
employ. 

10.32 The Hurst Phenomenon and Independent Summands 

Besides the results of Feller (1951). Hurst’s work influenced other researchers to develop 
theoretical derivations for statistics related to the cumulative range. Because of the mathemati- 
cal complexity in deriving theoretical formulae for the moments of statistics C O M C C ~ ~ ~  with the 
range, a large portion of the research was devoted to the special case of independent summands. 
Anis and Lloyd (1953) developed a formula for the expected value of the crude range for stan- 
dard NID variates. Anis (1955) derived the variance of MN and subsequently a method for 
obtaining all the moments of MN (Anis 1956). 

Solari and Anis (1957) determined the mean and variance of the adjusted range for a finite 
number of NID summands. Feller (1951) had noted that the sampling properties of the adjusted 
range wen superior to those of the crude range. The results of Solari and Anis (1957) for the 
variance of M*N substantiated the conclusion of Feller when this variance was compared to that 
of MN (Anis. 1956). 

Moran (1964) initiated a new line of development when he observed that the expected 
value of cumulative ranges could easily be derived from a combinatorial result known as 
Spitza’s lemma. He showed that for moderate N, distributions with very large second moments 
about the mean could cause the E(MN) to increase more quicWy than N“*. This, in turn, implied 
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that the crude range would do likewisc. 

and Salas-La CNZ (1973) showed that asymptotically 
For independently, stably distributed summands with h e  characteristic exponent v. Boes 

E(E*N) = NIm [ 10.3.121 

where 1 < v S 2. The general stable distribution with characteristic exponent v is defined for 
1 < v S 2 in terms of its characteristic function 

M u )  = E(e") [10.3.13] 

bY 

r10.3.141 

where i = (-1)". p is the location parameter for the random variable 2,; 6 is the scale parameter 
for the random variable 2,; and p is the measure of skewness. For 0 = 0 and v = 2, the normal 
distribution is obtained. Stable distributions with characteristic exponent 1 < v < 2 generate 
more extreme observations than the normal distribution. Granger and Orr (1972) have suggestd 
that economic time series are best modelled by a stable distribution with characteristic exponent 
1.5 c v < 2. From [10.3.12] it could be suggested that a stable diseibution with v = 1.37 
(approximately) for geophysical time series could explain Hurst's findings. However, because 
for the case of stable distributions with 1 < v < 2 the sample variance is not a consistent estima- 
tor of the scale parameter 6, it does not follow that [10.3.12] will hold for the RAR. In fact, 
simulation experiments reported later in this chapter show that the expected value of the RAR 
for independently stably distributed summands with characteristic exponent v = 1.3 very nearly 
equals the expected value of the RAR for NID summands. 

All of the aforesaid research was influenced by the original work of Hurst. However, 
mathematicians have for a long time been investigating the crude range of independent sum- 
mands independently of Hurst's empirical research. Anis and Lloyd (1976) give a brief survey 
of mathematical studies of the crude range. Further references can also be found in a paper by 
Berman (1964). 

Unfortunately, none of the foregoing theoretical investigations discussed in this section 
have dealt with the RAR. However, for a NID process. Anis and Lloyd (1976) have successfully 
proved the following exact equation to be the expected value of the RAR: 

1 Iogco(u) = ip.u + $IU I" 1 + iS(u/lu 1)tan[(n/2)v] I 

r10.3.151 



336 Chapter 10 

10.33 The Hunt Phenomenon and Correlated Summands 

Inlroduction 

When Hurst (1951) theoretically derived [10.3.5] for the adjusted range, he assumed nor- 
mality of the process. he developed that equation as an asymptotic relationship relationship, and 
he assumed independence of the time series. As was pointed out by Wallis and Matalas (1970). 
these thne facts respectively caused the following thrce possible explanations of the Hurst 
phenomenon: (1) nonnormality of the probability distribution underlying the tim series, (2) 
transience (i.e., N is not large enough for the Hurst coefficient to attain its limiting value of 0.5). 
and (3) autocorrelation due to nonindependence. 

For independent summands, nonnormality of the underlying process has largely been 
discounted as a possible explanation of the Hunt phenomenon. If a very large sample is being 
considered, the asymptotic expression in r10.3.61 has been shown to be valid for ID random 
variables. For samples of small and moderate lengths, simulation studies later in this chapter 
(see Table 10.5.1) reveal that the RAR is very nearly independent of the distribution of the ran- 
dom variables. Because the Hurst coefficient K is definitely a function of N for independent 
summands (see, for example, Table 10.5.2 for the NID case), then transience constitutes a plausi- 
ble explanation to Hurst’s dilemma (also see Salas et al. (1979)). 

For the autocorrelated case, Wallis and O’ConneU (1973) correctly concluded that transi- 
ence is obviously connected with the autocorrelation structure of the generating process, and, 
therefore, these two effects must be considered simultaneously when attempting to account for 
the Hurst phenomenon. As is illustrated by simulation studies in Sections 10.5 and 10.6 for 
ARMA models, both transience and autocorrelation form an explanation of the Hurst 
phenomenon. In this section, the roles of both short memory and long memory processes for 
explaining and modelling the Hurst phenomenon arc examined. 

Hunt (1951) actually conjectured that K had a value of 0.73 and not 0.5 because of per- 
sistence. This is the tendency for high values to be followed by high values and low values by 
low values which are referred to by Mandelbrot and Wallis (1968) as the Noah and Joseph 
effects, respectively. Persistence is caused by the dependence of naturally occumng time series 
as exhibited in their serial correlation structure. For reservoir design this means that for a given 
value of N the size of a resemoir that releases the mean flow each year would need to be larger 
than the capacity corresponding to an uncomlated series of inflows. 

Short Memory Models 

models the following asymptotic formula is valid: 
Barnard (1956) and M o m  (1959) observed that for the standard short memory time series 

E ( ~ * N )  = CINtR [10.3.16] 

where u is a coefficient that dots not depend on N. Mandelbrot and Van Ness (1968) proved 
that for large N, [10.3.16] holds for any short memory time series model. Siddiqui (1976) 
demonstrated that for any model with a summable theoretical ACVF, 
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[ 10.3.171 

It has been argued by some authors that because short memory models, such as the ARMA 
processes. imply a limiting value of K equal to 0.5 and since the observed K in annual geophysi- 
cal time series is about 0.7, shon memory models arc not appropriate models for synthetic 
streamflow generation. It should therefore be emphasized that asymptotic results arc only 
relevant in that they provide an approximation to the exact results for the m e  (finite) series 
length. 

Anis and Lloyd (1976) showed that [10.3.15] also holds exactly for symmetrically com- 
lated normal summands. But such a time series has a long memory, since its theoretical ACVF 
is not summable. Because [10.3.15] is also valid for short memory NlD random variables, this 
fact provides a counterexample to the claim of some researchers that long memory models arc a 
necessary explanation of the Hurst phenomenon. Conversely, Klemes (1974) has shown that 
zero memory nonstationary models could produce the Hurst phenomenon. By simulation experi- 
ments with white noise, he varied the mean level in different manners and showed how K 
increased in value due to this type of nonstationarity. Klemes also demonstrated by simulation 
that random walks with one absorbing banier, which often arise in natural storage systems, could 
cause the RAR to have certain properties related to the Hurst phenomenon. 

Hurst (1957) was the first scientist to suggest that a nonstationary model in which the mean 
of the series was subject to random changes could account for higher values of the Hurst coeffi- 
cient K and hence the Hurst phenomenon. Similar models have been studied by Klemes (1974) 
and Potter (1976). As generalizations of the models of Hurst (1957). Klemes (1974) and Potter 
(1976), the shifing level processes were developed by Boes and Salas (1978). Further research 
in shifting level processes is provided by Salas and Boes (1980), Ballerini and Boe (1985), and 
Smith (1988). The basic idea underlying a shifting level process is that the level of the process 
randomly shifts to different levels which last for random time periods as the process evolves 
over time. 

In a four page commentary, D’Astous et al. (1979) demonstrated that the annual precipita- 
tion data employed by Potter (1976) may not justify the concept of a shifting level time series. 
Using simulation and the segmentation scheme suggested by Potter (1976) for isolating shifting 
levels, they showed that an ARMA(1,l) process can mimic this type of changing level. If h e  
mean level of a time series changes due to known natural or human intervention, then the inter- 
vention model of Chapter 19 can be used to model the data. 

Matalas and Huzzen (1%7) performed statistical experiments to determine whether K is 
preserved by Markov models. For values of the lag 1 autocomlation coefficient p1 ranging from 
0 to 0.9, they calculated the E(K) based upon 104 simulations for particular values of N and pl. 
For values of N and pI, compatible with what occurs in annual riverflows if those flows are 
assumed Markov. they found K to have an average of about 0.7. Because a m a n  of approxi- 
mately 0.7 for K occurs in natural time series, they implied that perhaps the small sample pro- 
perties of K arc preserved by a Markov model. Nevertheless, a later simulation study of Wallis 
and Matalas (1970) suggested that the observed sample lag 1 autocorrelations for flows in the 
Potomac River basin were too low for a fvst order AR process adequately to preserve the Hurst 
K. However, a Markov model may not necessarily be the best short memory model to fit to a 
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given time series. Rather. it is recommended to select the proper ARMA model by adhering to 
the identification, estimation, and diagnostic check stages of model consmction, as explained in 
Part III of this book. In some cases, the appropriate model may indeed be a Markov model. In 
Section 10.6, it is demonstrated that, for 23 geophysical time series ranging in length Erom 
N = 96 to N = 1164. properly fitted ARMA models do adequately preserve K. 

Several other authors have also suggested that short memory models may preserve K. 
Gomide (1975) has completed further simulation studies of the RAR for Markov models. 
O’Connell (1974a.b) advocated employing an ARMA(l.1) model to approximate the long 
memory FGN model and thereby perhaps to preserve K. To accomplish this, the AR parameter 
must have a value close to unity, so that the ACF of the process will attenuate slowly and hence 
approximate the theoretical ACF of the FGN process. In practice, this approach may not be 
viable. The proper ARMA model that is fit to the data may not be ARMA(1.1). and even if it is 
ARMA(l,l), an efficient MLE of the parameters may not produce an estimate of the AR parame- 
ter that is close to 1. This parameter estimation problem is acknowledged by O ’ C o ~ e l l  (1976). 
In addition, it is no longer necessary to approximate FGN by a short memory model such as an 
ARMA(l.1) model because as is shown in Section 10.4.6 it is now possible to simulate FGN 
exactly. 

Long Memory Models 

A long memory model known as FGN was introduced into the hydrological literature by 
Mandelbrot and Wallis (1%8,1969a to e) to explain the Hurst phenomenon. In Section 10.4, the 
FGN model is defined and new developments in FGN modelling are presented. Other research 
on stochastic processes related to FGN is given by authors such as Taqqu (1979) and Cox 
(1984). In Chapter 11, the theory and practice of the long memory FARMA class of models is 
presented. 

10.4 FRACTIONAL GAUSSIAN NOISE 

10.4.1 Introduction 

The connection between FGN and Hurst’s law is the parameter H in FGN that is often 
estimated using the Hurst coefficient K in [10.3.4]. The FGN model was fust proposed by Man- 
delbrot (1%5). and a mathematical derivation was given by Mandelbrot and Van Ness (1%8) 
and Mandelbrot and Wallis (1969~). The literature concerning the FGN model has been surn- 
marized by authors such as Wallis and O’Co~el l  (1973), O’COMC~~ (1974b. Ch. 2), Hipel 
(1975). Lawrancc and Kottcgoda (1977) and McLeod and Hipel (1978a). Consequently, only the 
main historical points of practical interest are discussed in Section 10.4.2. Following a brief his- 
torical description and definition of FGN in the next section, new advancements arc presented- 
These include efficient parameter estimation, model diagnostic checking. forecasting, and exact 
simulation. In an application section, FGN models arc compared to ARMA models when both 
types of models are fitted to six average annual riverflow series. 
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10.43 Definition of FCN 

In the development of FGN processes, Mandelbrot (1965) considered a continuous time 
process BH(t) that satisfies the self-similarity property such that for all r and E > 0. 

that the sequential range Of B H ( f )  wu incrtasc proportionally to N ~ ,  where the sequential range 
is defined by 

B H ( ~  + T )  -BH( t )  has exactly the samt disbibution [BH(t + ZE) - B ~ ( f ) ] / 8 .  It Can be Show 

where r is continuous timc and H is the model parameter. When the process BH(t) is Gaussian, 
it is called fractional Brownian motion. Discrete timc f i a c t i o ~ l  Gaussian noise (FGN)  is 
defined for discrete time r by the increments 

[10.4.2] 

FGN is what Mandelbrot and Wallis (1969~) consider to be a model of Hurst's geophysical time 
series. 

Mandelbrot and Van Ness (1968) and Mandelbrot and Wallis (1969a,b,c) have derived a 
number of properties of FGN. First, the parameter H must satisfy 0 < H < 1. The sample mean 
and variance of FGN arc consistent estimators of the m e  mean and variance, and FGN is covari- 
ance stationary. The expected values of the crude and adjusted ranges for FGN are the asymp- 
totic relationships 

E ( R N )  = a H ~ H ,  o < H < 1 [ 10.4.31 

2, = BH(f + 1) - B H ( t )  

and 

E ( R * N )  = bHNH,  0 < H < 1 [ 10.4.41 

where aH and bH an coefficients that do not depend on N .  It can also be shown that for large N 
(Rao, 1973, p. 122), 

E ( E * ~ )  = U N ~  [ 10.4.51 

Although the above asymptotic formulae arc c o m t  mathematically, they may possess limita- 
tions with respect to modelling Hurst's findings. Of foremost importance is the fact that Hurst 
examined i * N  for small N and not the asymptotic expected values of RN, R*N, and &*N. 

Behaviour of any of the range statistics for large N does not necessarily infer the structure of 
R*N for small and moderate N. Even though i10.4.31 to [10.4.5] arc asymptotically valid, in 
reality the Hurst coefficient is a function of N and is not a constant as is the parameter H in 
FGN. For example, as is shown by simulation experiments for NID random variables in Table 
10.5.2, the expected value of the Hurst coefficient K is significantly larger than 0.5 for small N .  

1 A sequence of NID random variables is equivalent to a FGN process with H = - 
2 '  

- 

The theoretical ACF at lag k of FGN is given by 
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For large lags, [ 10.4.61 may be approximated by 

P k  = H ( W  - I)kW-2 

The N x N  cornlation matrix for FGN is given as 

CNW) = [ ~ ~ i - j ~ l  

Chapter 10 

[ 10.4.61 

[ 10.4.71 

[ 10.4.81 

where po = 1 and p k  is calculated from [10.4.6] for k 2 1. The Cholesky decomposition mealy, 
1968) of CN(H) is determined such that 

CN(H)  = MM' [ 10.4.91 

where M is the N x N  lower triangular matrix having mu as a typical element. The matrix M is 
used for carrying out diagnostic checks. and simulating with FGN in Sections 10.4.4 and 10.4.6, 
respectively. 

An examhation of [10.4.6] and [10.4.7] reveals that pk + 0 as k + -, but pt is not s u m -  
1 1 
2 2 

able if - < H c 1. Therefore, for - < H < 1, the FGN process has long memory. When 
1 
2 

0 < H S -, FGN constitutes a short memory process. 

1 
2 

For many geophysical phenomena, the estimates for H are greater than - but less than 1. 

Because the FGN model is not summable for H in this range, the statistical effect of past events 
on present bchaviour attenuates very slowly. Therefore. long term persistence, as described by 
the theoretical ACF, is synonymous with - < H < 1. Some hydrologists claim that the form of 

the theoretical ACF for - < H < 1 is explained by the physical existence of an extremely long 

memory in hydrologic and other processes. Buf as was pointed out by Klemes (1974), making 
inferences about physical features of a process based on operational models can be not only inac- 
curate but also misleading. Klemes correctly states that " ... it must be remembered that the 
mathematical definition of FGN did not arise as a result of the physical or dynamic properties of 
geophysical and other processes but from a desire to describe an observed geometric pattern of 
historic time series mathematically ... Thus FGN is an operational, not a physically founded 
model." Klemes demonstrates that the Hunt phenomenon could be due to zero memory nonsta- 
tionary models and also spccific types of storage systems. However, although physical interpre- 
tations that use operational models should be formulated and interpreted with caution, one cri- 
terion that is essential is that the statistical properties of any historical time series be incor- 
poratcd properly into the stochastic model. 

The appropriateness of long memory processes for modelling annual riverflow and other 
typcs of natural time series has been questioned previously by various hydrologists 
(Scheidegger, 1970; Klemes, 1974). Moreover. later in Section 10.4.7, it is shown that the FGN 
model can fail to provide an adequate statistical fit to historical annual riverflows. 

1 
2 

1 
2 
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The FGN model for a time series I,, t = 1,2 ,... 4'. can be specified in terms of the three 
parameters p, y,,, and H ,  where E[z,]  = p, Vur[r,] = ~b. and the theoretical ACF of z, is given by 
[10.4.6]. From these specifications, improved estimation and simulation procedures can be 
developed. Complete Fortran computer algorithms for these methods are given by Hipel and 
Mckod (1978b). 

As explained in Part III in the book, when determining a long memory or a short memory 
model or in general any type of stochastic process for modelling a given data set, it is recom- 
mended to adhen to the three stages of model development The first step consists of identify- 
ing, or choosing. the type of model to fit to the time series. If circumstances warrant the employ- 
ment of a FGN process. then at the estimation stage, efficient MLE's of the model parameters 
can be procured by using the technique developed in Section 10.4.3. It is also shown in Section 
10.4.4 how the model residuals of FGN can be calculated after the model parameters have been 
estimated. If diagnostic checks of the residuals reveal that modelling assumptions such as resi- 
dual whiteness, normality, and homoscedasticity (i.e., constant variance) are not satisfied, then 
appropriate action can be taken. For example, a Box-Cox transformation (see Section 3.4.5) of 
the data prior to fitting a FGN process may rectify certain anomalies in the residuals. In some 
cases, a short memory model such as an ARMA process may provide a better statistical fit while 
at the same time preserve important historical statistics such as the RAR. The AIC (see Section 
6.3) is recommended as a means of selecting the best model from a set of tentative models that 
may consist of both short memory and long memory processes. 

10.43 Maximum Likelihood Estimation 

In addition to the mean and variance, an estimate of the parameter H forms the only link 
that a FGN model has with the real world as represented by the historical data. Previously, vari- 
ous estimates for H have been formulated. Some researchers employ K in [10.3.4] as an esti- 
mate of H.  Wallis and Matalas (1970) recommend the G Hurst statistics as an estimate of H. 
Unfortunately, little is known about the theoretical distribution of this estimate, and the G Hurst 
statistic in effect constitutes only an ad hoc method of calculating H. Young and Jettmar (1976, 
p. 830, equation 4) suggest a moment estimate for H based on an estimate of the historical ACF 
at lag 1 and [10.4.6]. They also develop a least squares estimate for H that is formulated by 
using the sample ACF and [10.4.6] (Young and Jettmar, 1976, p. 831, equation 6). However, 
McLeod and Hipcl (1978b) question the theoretical basis and efficiency of Young and Jemnar's 
least squares estimate for H. 

An alternative approach to estimating the parameters of a FGN model is to employ max- 
imum likelihood estimation. The method of maximum likelihood procedure is widely used for 
the estimation of parametric models, since it often yields the most efficient estimates (see Sec- 
tion 6.2). Dunsmuir and H m a n  (1976) show that the MLE's of the parameters of time series 
models o k n  yield optimal estimates under very general conditions, which include the FGN 
model as a special case. 

Given a historical time series zl.z2, . . . , z,, the log likelihood of p, yoyo. and H in the FGN 
model is 
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logL*(p,y& = l loglCN(H)I - (2y&'S(cLH) - (N/2)loglo [ 10.4.101 

when C,(H) is the correlation matrix given by [10.4.8]. The function S W )  in [10.4.10] is 
determined by 

2 

Sufi) = (2 - Pl)T[c")l-l(~ - PI) [ 10.4.1 11 

where Z' = (z1.z2, . . . , zN) is a 1xN vector and 1' = (1.1, . . . ,1) is a 1xN vector. For fixed H, 
the MLE of and yo wc 

i = IZ [CN (H )I-' WI IT [CN (H 11-9 [10.4.12] 

and 

TO = N-'S(C;fi)  [ 10.4.131 

Thus, the maximized log likelihood function of H is 

[ 10.4.141 

The inverse quadratic interpolation search method can then be used to maximize 
lo&,,(H) to determine H ^ ,  the MLE of H. The variance of A, given by Var(H^), is approxi- 
mately 

1 
2 

logt,,(H) = -lOglCN(H)I - N/2log[S(I;Jf)]/N 

[ 10.4.151 

The variance in [10.4.14] can be evaluated by numerical differentiation. If the computer algo- 
rithms given by Hipel and McLeod (1978b) are utilized, the computer timc required for these 
calculations is not excessive provided that N is not too large (not larger than about 200). The 
standard error (SE) of the MLE of H is simply the square root of V a r ( i )  in [ 10.4.151. 

In order to compare the statistical efficiency of the maximum likelihood and G Hurst esti- 
mation procedures, a simulation study is performed. For H = 0.5, 0.6, 0.7. 0.8, and 0.9 and for 
N = 50 and 100, 500 simulated series for each FGN model are generated by using the exact 
simulation technique given in Section 10.4.6. For each synthetic trace, the MLE H and the G 
Hurst estimate obtained by using GH(1O) as defined by Wallis and Matalas (1970) arc deter- 
mined. Because GH( 10) and H arc functionally independent of the mean and variance, it is sim- 
plest to set the mean equal to zero and to assign the variance a value of unity when generating 
the synthetic data by using the method of Section 10.4.6. The mean square errors ( M E )  of the 
maximum likelihood and GH(10) estimators for a particular value of N arc 

[ 10.4.161 
1500 

5oo ;=I 
M S E ~ ( H J V ) = - ~ ( ~ ~ ~  - H ) ~  

and 
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[10.4.17] 

where Hi is the MLE of H for the ith simulated series of length N having a particular true value 
of H and GHi is the magnitude of GH(l0) for the ith simulated series of length N with a speci- 
fied true value of H. 

The MSE criterion constitutes a practical o v d  measure for assessing the accuracy of an 
estimate. The MSE is equal to the square of the bius of the estimate plus the variance of the esti- 
mate. Because a biased estimator may in certain cases have smaller overall MSE, the 
“unbiasedness” of an estimate alone is not necessarily the most important requirement of an 
estimate. The relative efficiency (RE) of the GH (10) estimate in comparison with the MLE f i  is 

[10.4.18] 

The entries in Table 10.4.1 confinn that the MLE procedure is significantly more accurate than 
the G Hurst method. 

RE(H JO = [MsEu(H &)II[MSEGH (H&N)I 

Table 10.4.1. Percentage relative efficiency of GH(1O) versus A. 

As explained in Section 6.3, the AIC is useful for discriminating among competing 
paramepic models (Akaike, 1!974). For the FGN model, the AIC is given by 

AlC = -2I0gLmu(H) + 4 [10.4.19] 

When comparing models, the one with the smallest AIC provides the best statistical fit with the 
minimum number of model parameters. 

10.4.4 Testing Model Adequacy 

After fitting a statistical model to data, it is advisable to examine the chosen model for pos- 
sible inadequacies which could seriously invalidate the model. The residuals of the FGN model 
with parameters p, y,,, and H can be defined by 

e = M-’(z - p1) [ 10.4.201 

where er = (el,e2, . . . , eN)  is the vector of model residuals. If the chosen model provides an 
adequate fit, the elements of e should be white noise that is NID(0,l). Accordingly, for any pm- 
posed FGN a suggested diagnostic check is to test the residuals for whiteness by employing suit- 
able tests for whiteness (stc Sections 7.3 and 2.6). For instance, the cumulative periodogram test 
of Section 2.6 could be utilized to check for residual whiteness. Other appropriate tests could be 
invoked to test whether the kss important assumptions of normality (scc Section 7.4) and 
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homoscedasticity (sce Section 7.5) of the residuals arc also satisfied. 

10.43 Forecasting with FCN 

In Section 8.2. minimum mean square error (MMSE) forecasts an defined for use with 
ARMA models. One can, of course. also determine MMSE forecasts for FGN models. More 
specifically, Noakes et al. (1988) develop a formula for calculating one step ahead fortcasts for a 
FGN model by employing the standard regression function (Anderson, 1958). First, to obtain 
the covariance matrix. rN, one can substitute the MLE for H from Section 10.4.3 into [10.4.6] 
and then divide [10.4.8] by the estimated variance from 110.4.131. The one step ahead forecast is 
then given by 

EIZN+IIZNJ =P+Y;r,-'(ZN-P1) [ 10.4.211 

where ZPN = ( z , j Z ,  . . . , zN), and fN = (yN,yNeI, . . . ,yl). Rather than inverting rN. let 

r,x, = (Z, - PI)  [ 10.4.221 

and solve for XN. The solution of this system of equations is obtained using a Cholesky decom- 
position (Healy, 1%8) of rN such that 

MM'X, = (Z, - PI)  [ 10.4.231 

where M is a NxN lower triangular mamx. The one step ahead forecast of Z N + l  is thus 

E ( Z N + ~  IZNI = P + YNXN [ 10.4.241 

Successive one step ahead forecasts can be obtained using the following procedure. Given 
M, the covariance matrix for ZN+, may be written as 

= M*M* [ 10.4.251 

where M* is a (N+l)x(N+l) lower triangular matrix. The Cholesky decomposition of rN+l is 
calculatcd by noting that 

m=yN [ 10.4.261 

and 

a = d Z  
Thus, the forecast of ZN+2 is given by 

[ 10.4.271 
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[10.4.28] 

where XN+1 is obtained from 

M*M*XN+I  = [ 10.4.291 

10.4.6 Simulation of FGN 

Historically, researchers have not developed an exact technique for simulating FGN. 
Insttad, short memory approximations of FGN models have been utilized to generate synthetic 
traces. The methods used for obtaining approximate realivitions of FGN include (1) type 1 
(Mandelht  and Wallis, 1%9c), (2) type 2 (Mandelbrot and Wallis, 1969~). (3) fast FGN (Man- 
delbrot, 1971), (4) filtered FGN (Matalas and Wallis, 1971), (5) ARMA(1.1) (O’Connell. 
1974a.b). (6) broken line (Rodriguez-1- et al., 1972; Mejia et al., 1972; Garcia et al., 1972; 
Mandelbrot, 1972). and (7) ARMA-Markov (Lettenmaier and Burges, 1977) models. 

Various papers have been written that include surveys and appraisals of one or more of the 
short memory approximations to FGN (see Lawance and Kottegoda. 1977; Lcttenmaier and 
Burges, 1977; O’Connell, 1974b; and Wallis and O’Connell, 1973). Although the underlying 
drawback of all these approximate processes is that the simulated data does not lie outside the 
Brownian domain (see Mandelbrot and Wallis (1968) for a definition of Brownian domain), 
additional handicaps of some of the models have also been cited in the literature. For instance, 
Lawrance and Kottegoda (1977) mention that the lack of a suitable estimation procedure for the 
parameters of a broken line process is the greatest deterrent to the utilization of that model by 
hydrologists. 

When generating synthetic traces from a short memory approximation to FGN or any other 
type of stochastic model, proper simulation procedures should be adhered to. If more than one 
simulated time series from a certain model is needed, then it would be improper to first simulate 
one long synthetic time series and then to subdivide this longer trace into the required number of 
shorter time series. Rather, it would be more efficient to generate the shorter series indepen- 
dently so that the resulting estimates from each of the shorter series would be statistically 
independent. Furthermore, the standard errors of the particular parameters being estimated by 
the simulation study can be calculated if the estimates an statistically independent, but if they 
are correlated, the standard errors are not easily estimated. These and other guidelines for use in 
simulation are discussed in detail in Chapter 9. 

Instead of the employment of short memory approximations for simulating FGN, it is pos- 
sible to generate exact realizations of E N .  This procedure is analogous to the WASIM2 
approach for simulating using ARMA models given in Section 9.4 and is based upon a 
knowledge of the theoretical ACF. Suppose that a FGN series z1.z2, . . . , z N ,  with parameters p, 
yo, and H is to be simulated. Firstly, by utilizing an appropriate standard method, generate a 
Gaussian white noise sequence el,e2,. . . ,eN, that is NID(0,l) [see Section 9.2.31. Next, calcu- 
late the N W  correlation matrix C,(H). using [10.4.8]. Then, the Cholesky decomposition of 
C N ( H )  is carried out to obtain the lower triangular matrix M in [10.4.9]. Exact realizations of 
FGN arc calculated from 
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zl =CI+ zm,iei (yo)'' [ 10.4.301 [;: ] 
for r = 1,2, . . . , N. and for 0 < H c 1 ,  where zI is the FGN time series value that is N@.yO). and 
mIi is from the mbix M in [10.4.9]. If the model parameter H is in the range 0.5 < H < 1 ,  then 
the synthesized data will lie outside the Brownian domain. 

The computer algorithm for exactly simulating FGN is listed in standard Fortran by Hipel 
and McLeod (1978b). This algorithm requires only about -N(N + 2) storage locations to simu- 

late a FGN series of length N. T I U S ,  a modest requirement of about 5OOO words is required to 
handle a series of length 100. 

1 
2 

10.4.7 Applications to Annual Riverflows 

Information concerning six of the longest annual riverflow time series given by Yevjevich 
(1963) is listed in Table 10.4.2. For each of these time series, the MLE of H in the FGN model 
and its SE are calculated. Table 10.4.3 lists the MLE and SE's (in parentheses) of H (see Sec- 
tion 10.4.3) and also the Hurst K (see [10.3.4]) and GH(10) (Wallis and Matalas. 1970) esti- 
mates for each of the time series. 

In Table 10.4.3, notice the difference between the three estimates of the FGN parameter H 
for each of the data sets. For instance. H for the Gota River has a magnitude of 0.839 with a 
corresponding SE of 0.073. Both the GH(1O) and K estimates for the Gota River are more than 
two times the SE less than the MLE of H. 

The parameter estimates for the proper ARMA models that are fitted to the time series in 
Table 10.4.2 arc given later in Table 10.6.3. Both the Danube River and the Rhine River time 
series are simply white noise. If a time series is MD, the theoretical value of H for a FGN 
model is 0.5. For both the Danube River and the Rhine River, Table 10.4.3 reveals that the MLE 
of H is closer to 0.5 than either the GH(10) or the K estimate. In addition, for each of the two 
data sets, H is easily within one SE of 0.5. 

In order to determine whether a short memory or a long memory model should be selected 
for each of the six time series, the AIC can be utilized (see Section 6.3). Table 10.4.4 lists the 
values of the AIC for the FGN models by using H and the best fiaing ARMA model. For each 
of the six cases, the AIC for the ARMA model has a magnitude less than that for the FGN 
model. Therefore. on the basis of a combination of best statistical fit and model parsimony, the 
ARMA model should be chosen in preference to the FGN process for the time series considered. 

The Gota River is instructive for portraying possible problems that may arise when using 
FGN models in practice, since it appears that no FGN model can give an adequate fit to this time 
series. After a FGN model has been fit to a given data set, it is recommended to implement 
appropriate diagnostic checks for testing model adequacy. It is of utmost importance that the 
residuals of FGN given by [10.4.20] be white noise. Accordingly, plots of the cumulative 
periodogram from Section 2.6 for the residuals of the FGN models for the Gota River obtained 
by using H, GH(lO), and K are displayed in Figures 10.4.1 to 10.4.3, respectively. 'Ihe 1%,5%, 
10% and 25% significance levels are indicated on the plots. As is shown in the figures, the 
cumulative pcriodogram test is significant in all three cases at the 1% level, although the depar- 
ture from whiteness is not as great for the FGN model when using H as it is for the other two 
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Data Set 
Mstouis 

Neumunas 

Danube 

Rhine 

Ogden 

Gota 
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H GH(1O) K 
0.674 0.580 0.648 
(0.082) 
0.591 0.520 0.660 
(0.067) 
0.548 0.560 0.633 
(0.063) 
0.510 0.592 0.614 
(0.058) 
0.949 0.868 0.894 
(0.047) 
0.839 0.523 0.689 
(0.073) 

Table 10.4.2. Average annual riverflow time series. 
Code Name R i V t r  Location Period N 
Mstouis Mississippi St. Louis, Missouri 1861-1957 96 
Neumunas Neumunas SmaliniLai, U.S.S.R. 1811-1943 132 
Danube Danube Orshava Romania 1837-1957 120 
Rhine Wine Basle, Switzerland 1807-1957 150 
Ogden St. Lawrence Ogdensburg, New York 1860-1957 97 
Gota Gota Sjotorp-Vanersburg, Sweden 1807- 1957 150 

Data Set 
Mstouis 
Neumunas 
Danube 
Rhine 
Ogden 
Gota 

FGN Models ARMA Models I 
1400.0 1395.8 
1207.5 1198.2 
1666.7 1389.0 
1531.8 1529.8 
1176.9 1172.1 
1350.6 1331.0 

Table 1 
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cases. Therefore. the whiteness diagnostic checks indicate that because of the dependence of the 
model residuals the FGN processes provide a poor statistical fit to the given data. Hence, it 
would be advisable to consider another typc of process to model the annual riverflows of the 
Gota River. 

When selecting a process to describe a given time series, it is highly desirable that impor- 
tant historical statistics such as the ACF at various lags (especially at low lags for nonseasonal 
models) be preserved. The inability of the thrcc FGN modcls for the Gota River to pass the 
diagnostic check for residual whiteness precludes the preservation of historical statistics by these 
models. The sample ACF of the Gota River is shown in Figure 10.4.4, while the theoretical 
ACF of FGN. obtained by using H and K, arc displayed in Figures 10.4.5 and 10.4.6, respec- 
tively. To calculate the theoretical ACF for FGN in Figures 10.4.5 and 10.4.6, the values of H 
and K for the Gota River in Table 10.4.3 arc substituted into [10.4.6]. Because the theoretical 
ACF of FGN obtained by using the GH(1O) estimate is not significantly different from 0.5, the 
plot of this theoretical ACF would be very close to white noise and is, thereforc, not given. 
Nevertheless. comparisons of Figure 10.4.4 with Figures 10.4.5 and 10.4.6 reveal visually that 
the historical sample ACF is not preserved by the K i N  models. 

In contrast to the inability of a FGN process to model the Gota rivertlows, an ARMA 
model does provide an adequate fit to the data By following the identification, estimation, and 
diagnostic check stages of model construction presented in Part III, the best type of ARMA 
model to describe the Gota riverflows is an ARMA process with two AR parameters (denoted by 
ARMA(2,O)). The ARMA(2,O) process provides a slightly better fit than an ARMA model with 
one MA parameter (denoted as ARMA(0,l)). The AIC also selects the ARMA(2,O) model in 
preference to the ARMA(0,l) model. In addition, the ARMA(2,O) model passes rigorous diag- 
nostic checks for whiteness, homoscedasticity, and normality of the model residuals. 

By knowing the parameter estimates of an ARMA model, it is possible to calculate the 
theoretical ACF by employing a technique described in Appendix A3.2. Figure 10.4.7 is a plot 
of the theoretical ACF for the ARMA(2,O) model for the Gota River data. A comparison of Fig- 
ures 10.4.7 and 10.4.4 demonstrates that the ARMA model preserves the historical ACF espe- 
cially at the important lower lags. Notice that the value of the ACF for lags 1 to 4 are almost 
identical for these two plots. 

In addition to the use of graphical aids to determine whether historical statistics are 
preserved, a more rigorous procedure can be followed. In Section 10.6 a statistical test is used in 
conjunction with Monte Carlo techniques in order to determine the ability of a class of models to 
preserve specified historical statistics. It is demonstrated that ARMA processes preserve the 
RAR or equivalently K. This procedure could also be adopted for statistics such as various lags 
of the ACF to show quantitatively whether or not these statistics are preserved by the calibrated 
models. 

The inability of a FGN process to preserve the ACF and perhaps other historical statistics 
in some practical applications could be due to the inherent mathematical structure and underly- 
ing propenies that wen discussed previously. Another obvious drawback of FGN is the depen- 
dence of the model on only a few parameters. In addition to the mean and variance, an estimate 
of the parameter H forms the only actual link between the theoretical model and the real world 
as presented by the data This renders FGN processes highly inflexible. On the other hand, in 
ARMA modelling the form of the model is tailored specifically to fit a given set of data. At the 
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Figure 10.4.1. 
FREQUENCY 

Gota River residual cumulative periodogram for the FGN model using A. 

FREQUENCY 
Figure 10.4.2. Gota River residual cumulative periodogram for the FGN model using GH(1O). 

FREOUENCY 

Figurc 10.4.3. Gota River residual cumulative periodograrn for the FGN model using K. 
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Figure 10.4.4. Sample ACF of the Gota River. 
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Figure 10.4.5. Theoretical ACF of the Gota River for the FGN model using i. 
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Figure 10. Theoretical ACF of the Gota River for the FGr. model using K .  
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Figure 10.4.7. Theoretical ACF of the Gota River for the ARMA(2.0) model. 
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identification stage, the general s t~c t l l l t  of the data is determined by observing the shape of the 
ACF and other graphs described in Section 5.3. An appropriate number of AR and MA parame- 
ters arc selected in order that the scleckd ARMA model fits the data as closely as possible using 
a minimum number of parameters. Rigorous checks are performed to insure that the white noise 
component of the model is not correlated. If all the modelling assumptions arc satisfied, this 
guarantees that important historical statistics such as the ACF, the RAR. and K will be preserved 
reasonably well by the model. 

10.5 SIMULATION STUDIES 

10.5.1 Introduction 

When studying statistics such as the RAR and K, information is required regarding fust, 
second, and perhaps higher order moments of the statistics. In general, it would be most adban- 
tageous to know the exact distribution of the statistic under study. Three approaches arc avail- 
able to obtain knowledge regarding the mathematical properties of a specified statistic. One 
method is to derive an a c t  analytical expression for the moments and perhaps the distribution 
of the statistic. Except for special cases of the lower order moments of a statistic, this precise 
procedure is often analytically intractable. Only after extensive research, Anis and Lloyd (1976) 
were able to derive in [ 10.3.151 the exact expression for the expected value of the RAR for NID 
summands. 

A second approach is to develop asymptotic formulae for the distributional properties of a 
given statistic. This approximate procedure may yield results that are useful in certain situations, 
while in other circumstances the output may suffer from lack of accuracy, especially for small N. 
Feller (1951), for example, proved an asymptotic relationship that is valid for the expected value 
of the adjusted range and also the RAR of IID random variables (see [10.3.5] and [10.3.6], 
respectively). Siddiqui (1976) derived asymptotic expressions for calculating the expected value 
of the RAR for any short memory process. 

In the third approach, simulation is used to determine as accurately as desired the distribu- 
tional attributes of a given statistic. In Section 10.6, Monte Car10 procedures ~IE utilized to 
obtain the empirical distribution of the RAR and K. Although some researchers may argue that 
simulation may be relatively costly with respect to computer usage, the fact of the matter is that 
answers are needed now to help solve present day engineering problems. In addition, because of 
the vast mathematical complexity that is often requind to prove exact analytical solutions, simu- 
lation results may help to economize academic endeavours by delineating the more promising 
avenues of research that could also be scrutinized analytically. Finally, it should be borne in 
mind that in comparison with an exact analytical solution, simulation provides a straightforward 
but equally correct resolution to the problem of the distributional characteristics of a particular 
statistic. The theory and practice of simulating with ARMA models arc discussed in detail in 
Chapter 9 while an exact simulation method for use with FGN is given in this chapter in Section 
10.4.6. 

The simulation investigations of this section deal primarily with the estimated mean and 
variance of a certain statistic. Suppose that independent simulations of a time series 
z1.z2, . . . , zN, arc obtained and that a statistic T = T(rlrz2, . , . , z ~ )  is calculated in each simulated 
series. The empirical mean of T is then given by 
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where Ti is the value of 
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[10.5.1] 

T in the ith simulation. If each successive realization of the sequence 
z1,z2, . . . , zN, is independent of previous realizations so that the Ti art statistically independent, 
then the vurionce of T can be estimated by 

[ 10.5.21 

By the central limit theorem. Twill be diseibuted very nearly normally with mean equal to E f )  
and with variance approximately equal to VT/i. Thus. the standard deviation and confidence 
intervals of the expected value being estimated an d y  obtained. 

~f 17 white noise series of length N an being simulated, then it is correct to simulate a sin- 
gle time series of length EN and then subdivide it into i series with N values in each series. 
However, if a correlated series is being simulated, the aforementioned procedure should not be 
followed. For instance, if i FGN series with 0.5 c H < 1 are being formulated by first generat- 
ing a long series of length FN and then subdividing this into subsequences of length N, then 
the multing Ti will in general be correlated. Therefore, the resulting estimate for E(T) in 
[ 10.5.1] will be less precise (ix., have larger variance), and the estimate of the variance of T in 
[ 10.5.21 will be underestimated, so that correct standard deviations and confidence intervals for 
E(T) will not be available. 

10.53 Simulation of Independent Summands 

Tbe Rescaled Adjusted Range 

Mandelbrot and Wallis (196%) reported simulation experiments which indicated that the 
expected value of the RAR for IID summands is virtually independent of the underlying distribu- 
tion. However, as was pointed out by Taqqu (1970). the simulation study of Mandelbrot and 
Wallis (196%) contained a serious programming error in the calculation of the RAR. Accord- 
ingly, another study of the robustness of the expected value of the RAR with respect to the 
underlying distribution is required. 

A simulation study is performed for various types of white noise series varying in length 
from N = 5 to N = 200. For each value of N, the number of series of length N that am generated 
is N= 10,OOO. The expected values of the RAR are determined by using [10.5.1] for the follow- 
ing independent summands: (1) normal, (2) gamma with shape parameter 0.1, (3) symmetric 
stable with characteristic exponent a = 1.3. and (4) Cauchy. The simulation results for E(i*N) at 
specific values of N for the aforementioned summands are listed in Table 10.5.1. The standard 
deviations of the estimated values of E ( ~ * N )  are determined by using the square root of [ 10.5.2) 
and am given in parentheses below the estimates in Table 10.5.1. The exact values of E ( ~ * N )  

for NID random variables are calculated by using the formula of Anis and Lloyd (1976) that is 
written in [ 10.3.151. Comparisons of columns 2 and 4 to 7 reveal that the expected value of the 
RAR is indeed rather insensitive to the underlying distribution for the values of N that are con- 
s ided .  Even for Cauchy summands, the expected value and variance of the RAR are quite 
similar to the NID case. The asymptotic results of Feller (1951) for E ( i * N )  of IID summands 
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are determined by using [10.3.6] and are tabulated in Table 10.5.1. A perusal of the asymptotic 
and other entries in the table discloses that the approximation given by Feller's results improves 
with increasing N. 

Anis and Lloyd (195) developed analytical formulae for the expected value of the crude 
and adjusted ranges of independent gamma random variables. For highly skewed independent 
gamma summands, the local Hunt coefficient for the crude and adjusted ranges posscsscd values 
grtatcr than 0.5 for N less than 1OOO. However, the results of Table 10.5.1 indicate that the 
expected values of the RAR for ID summands are approximately independent of the underlying 
distribution even if that distribution is gamma Therefore, as was confirmad by O'Connell 
(1976), Anis and Lloyd's (1975) results do not hold for the RAR. In addition, Hunt studied K 
for the RAR and not the ARis and Lloyd local Hurst coefficient for the crude and adjusted 
ranges. 

Tbe Hurst Coefficient 

As was mentioned previously. the Hurst statistic of primary import is the RAR. Neverthe- 
less, because the Hurst coefficient K has b ten  extensively investigated during the past quarter of 
a century, this fact may insure the survival of K as an important hydrological statistic for some 
time to come. Therefore, some statistical properties of K and other exponents are investigated. 

Fust, it should be noted that because of the research results of ANs and Lloyd (1976) in 
[10.3.15], K can be evaluated analytically for NID summands. Let K' be the Hurst coefficient 
calculated by using 

K ' =  Io~E(R*N)/(Io~N - l0g2) [ 10.5.31 

is determined exactly by using [10.3.15]. It follows from Jensen's inequality where 
(Rao, 1973, p. 57) that for finite N, 

E ( K )  < K' [ 10.5.41 

In Table 10.5.2, the magnitudes of K' from [ 10.5.31 are listed for the length of series N ranging 
from 5 to 200. When 10,ooO series are generated for NID random variables for each N, then the 
expected value of K can be estimated by utilizing [ 10.5.11, while the standard deviation of E ( K )  
can be calculated by using the square root of [10.5.2]. In Table 10.5.2, the estimated values of 
E(K) for various time series lengths are catalogued. The standard deviation of each estimate is 
contained in the parentheses below the estimate. A comparison of columns 2 and 3 in Table 
10.5.2 demonstrates that the inequality in [10.5.4] is valid. However, the difference between 
E(K) and K' is negligible. Therefore, [10.5.3] provides a viable means for estimating the 
expected value of K for NID summands. In addition, the Hunt coefficient K is obviously a 
function of the sample size, and for increasing N the coefficient K attenuates toward its asymp- 
totic value of 0.5. However, for small and moderate values of N, the statistic K is significantly 
larger than 0.5. 

The coefficient K constitutes one method of estimating the generalized Hurst coefficient h 
in [10.3.2]. Another approach is to evaluate h by using the estimate YH of Gomide (1975) that 
is given in [10.3.7]. By taking logarithms of [10.3.7], an explicit expression for YH is 
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Table 10.5.1. Expected values of the RAR for some IID summands. 
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Analytical Results 
Anis and Lloyd 

1.9274 

3.0233 

3.8812 

4.61 11 

5.2576 

5.8443 

6.385 1 

6.8895 

7.3640 

7.8133 

8.6502 

9.4210 

10.1392 

10.8143 

11.4533 

12.9243 

14.2556 

15.4806 

16.62 14 

(1976) 
Feller 
(1951) 

2.8025 

3.%33 

4.8541 

5.6050 

6.2666 

6.8647 

7.4147 

7.9267 

8.4075 

8.8623 

9.708 1 

10.4860 

11.2100 

11.8900 

12.5331 

14.0 125 

15.3499 

16.5798 

17.7245 

N o d  

1.9273 
(0.0027) 
3.0302 

(0.oOw 
3.8826 

(0.0084) 
4.6047 

(0.0100) 
5.2540 

(0.01 16) 
5.8770 

(0.0131) 
6.4214 

(0.0 145) 
6.8920 

(0.0158) 
7.3595 

(0.0169) 
7.7785 

(0.0 180) 
8.6246 

(0.0198) 
9.4453 

(0.0215) 
10.1349 
(0.023 3) 
10.8208 
(0.0248) 
11.4775 
(0.0262) 
1 2.96 17 
(0.0299) 
14.1956 
(0.0323) 
15.41 98 
(0.0349) 
16.5938 
(0.0376) 

Simulation Results* 

Gamma 

1.985 1 
(0.0018) 
3.0330 

(0.0039) 
3.8356 

(0.0056) 
4.5141 

(0.007 1) 
5.1213 

(0.0085) 
5.6709 

(0.0097) 
6.1707 

(0.0 109) 
6.6605 

(0.0121) 
7.0938 

(0.01 32) 
7.5012 

(0.01 41) 
8.3061 

(0.01 59) 
9.0632 

(0.0178) 
9.7327 

(0.01 94) 
10.4068 
(0.0209) 
10.9769 
(0.0224) 
12.4280 
(0.0255) 
13.6864 
(0.0285) 
14.8752 
(0.03 15) 
15.9992 
(0.0337) 

Stable 

1.9264 
(0.0022) 
2.9699 

(0.0047) 
3.7571 
(0.0064) 
4.4408 

(0.0075) 
5.0044 

(0.0088) 
5.5681 

(0.0098) 
6.0090 

(0.0106) 
6.5037 
(0.0 1 18) 
6.9010 

(0.0125) 
7.3 184 

(0.0132) 
8.0670 

(0.0148) 
8.7242 

(0.0158) 
9.3732 

(0.0172) 
9.9544 

(0.0 183) 
10.5593 
(0.0 1 %) 
11.8353 
(0.0220) 
13.0622 
(0.0240) 
14.1069 
(0.0261) 
15.138 1 
(0.028 1) 

Cauchy 

1.9506 
(0.0026) 
3.0556 

(0.0056) 
3.8987 

(0.0079) 
4.6214 

(0.0098) 
5.2889 

(0.01 15) 
5.8767 

(0.0130) 
6.3974 

(0.0143) 
6.9075 

(0.0155) 
7.3934 

(0.0166) 
7.8540 

(0.0178) 
8.6263 

(0.0195) 
9.4454 

(0.021 1) 
10.1336 
(0.0232) 
10.8857 
(0.0248) 
1 1.4546 
(0.0258) 
12.%19 
(0.0292) 
14.2636 
(0.0323) 
1 5.497 1 
(0.0354) 
16.6259 
(0.0376) 

*The parenthetical values are standard deviations 
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Table 10.5.2. Hurst coefficients for NID summands. 

K+ 
0.7161 

0.6874 

0.673 1 

0.6638 

0.6571 

0.6519 

0.6477 

0.6442 

0.6413 

0.6387 

0.6344 

0.6309 

0.6279 

0.6254 

0.6233 

0.6189 

0.6154 

0.6127 

0.6103 

ietical va 

W)* 
0.7032 
(0.00 16) 
0.6750 
(0.0013) 
0.6629 
(0.001 1) 
0.6540 

(0.0010) 
0.6469 
(0.0009 
0.6420 
(0.0008) 
0.6385 
(0.0008) 
0.6365 

(0.0007) 
0.6335 

(0.0007) 
0.6305 
(0.0007) 
0.6270 

(0.0007) 
0.6235 
(0.0006) 
0.6213 
(0.0006) 
0.6186 
(0.0006) 
0.5 156 
(0.00W 
0.6129 
(0.0005) 
0.6100 

(0.0005) 
0.6070 

(0.0005) 
0.605 1 

(0.0005) 

:s arc Stan 

YH' 
0.3375 

0.43 15 

0.4591 

0.4725 

0.4805 

0.4859 

0.4897 

0.4926 

0.4948 

0.4967 

0.4994 

0.5014 

0.5029 

0.5040 

0.5049 

0.5066 

0.5078 

0.5086 

0.5092 

ud deviations. 
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YH = 0 o g F N  - iogi.2533)nogiv [10.5.5] 

Although the expected value of YH could be determined from simulation experiments, an alter- 
native analytical procedure is to substitute E ( E * ~ )  from [10.3.15] forE*N in [10.5.5] and then to 
estimate YH by YH' by using [10.5.5]. In Table 10.5.2, the values of YH' arc tabulated for dif- 
ferent time series lengths. It is obvious that YH' is a function of the sample size and that YH' 
provides a closer approximation to the limiting value of 0.5 than does K. 

10.53 Simulation of Correlated Summands 

Long Memory Models 

By utilizing [10.4.30], it is possible to simulate exactly synthetic traces of FGN. Btcause 
only short memory approximations to FGN processes wen previously available for simulation 
purposes, the exact method should prove useful for checking former FGN simulation studies and 
also for exploring new avenues of research for long memory models. Of particular importance 
are Monte Carlo studies to investigate the statistical properties of FGN processes. Consider, for 
example, the bchaviour of the RAR for FGN models. For time series varying in length from 
N = 5 to N = 200 a total of 10,OOO simulated sequences are generated for each value of N. 
Because the RAR statistic is not a function of the mean and variance of a FGN process, it is con- 
venient to assign the mean a value of zero and the variance a magnitude of 1 when performing 
the simulations using [10.4.30]. By utilizing [10.5.1] and [10.5.2], the expected values of the 
RAR and variances, respectively, are calculated. Table 10.5.3 records the estimates of I ~ ( R * ~ )  
and the comsponding standard deviations in brackets for FGN models with H =0.7 and 0.9. 
From an inspection of the enmes in Table 10.5.3, it is obvious that E ( R f N )  increases in magni- 
tude for larger N. Furthermore, at a given value of N the expected value of the RAR is greater 
for a FGN model with H = 0.9 than it is a for a FGN process with H = 0.7. 

Sbort Memory Models 

In Chapter 9, improved procedures are given for generating synthetic traces using ARMA 
models. In piuticular, the WASIMl (see Section 9.3) and WASIM2 (Stxtion 9.4) procedures are 
recommended for use with ARMA models. When either WASIMl or WASIMZ is employed, 
random realizations of the process under consideration arc used as starting values. Since fixed 
initial values arc not utilized, systematic bias is avoided in the generated data. 

As a typical example of a short memory process. consider the Markov model of Section 
3.2.1 given by 

2, = 0121-1 +at [10.5.6] 

where t equals 12, . . . , N, 8 ,  is the AR parameter, and (I, is the white noise that is NID(0,o;). 
By using WASIM2, a total of 10,OOO synthetic sequences arc generated for specific values of N 
for Markov processes with 0 ,  = 0.3.0.5 and 0.7. Because the RAR is independent of the vari- 
ance of the innovations, a value such as unity may be used for a: in the simulation study. In 
Tables 10.5.4 to 10.5.6. the expected values of the RAR and corresponding standard deviations 
in parentheses am given for the three Markov models. Comparisons of the third columns in 
these tables reveal that the expected value of the RAR increases for increasing N and 01. 
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Table 10.5.3. Expected values of the R4R for FGN models. 

FGN Models* 
~ 

H a . 7  

1.9682 
(0.0026) 
3.2716 

(0.0062) 
4.3946 
(0.0091) 
5.3972 

(0.01 16) 
6.335 1 
(0.0141) 
7.2066 
(0.0 165) 
8.0515 

(0.01 88) 
8.8767 

(0.0205) 
9.6650 

(0.0227) 
10.4007 
(0.0247) 
1 1.8233 
(0.0280) 
13.2003 
(0.0322) 
14.5205 
(0.0356) 
15.7709 
(0.0389) 
16.924 1 
(0.0420) 
19.8877 
(0.0494) 
22.6178 
(0.0571) 
25.2291 
(0.0638) 
27.7601 
(0.0701) 

H 4 . 9  
2.0100 

(0.0025) 
3.503 1 
(0.0061) 
4.8751 
(0.0094) 
6.1579 

(0.01 25) 
7.405 1 
(0.0155) 
8.6032 

(0.0 187) 
9.7839 

(0.02 16) 
10.943 1 
(0.0241) 
12.0926 
(0.027 1) 
13.2284 
(0.0298) 
15.3575 
(0.0352) 
17.4965 
(0.0413) 
19.5945 
(0.0461) 
21.6075 
(0.05 18) 
23.5818 
(0.0573) 
28.5 197 
(0.0700) 
33.2646 
(0.0831) 
38.0410 

42.6710 
(0.1080) 

( O . @ W  

al values m standard viations. 
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Table 10.5.4. Expected values of the RAR for a Markov model 

- 

N 
- 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

60 

70 

80 

90 

100 

125 

150 

175 

200 

~~ 

Asymptotic 

3.8192 

5.401 1 

6.6150 

7.6383 

8.5390 

9.3550 

10.1045 

10.8022 

11.4575 

12.0772 

13.2299 

14.2900 

15.2766 

16.2033 

17.0798 

19.0958 

20.9 184 

22.5944 

24.1545 

Simulated* 
1.9875 

(0.0026) 
3.3410 

(0.0062) 
4.4633 

(0.0089) 
5.4261 

(0.01 14) 
6.2853 

(0.0135) 
7.0666 

(0.0156) 
7.7976 

(0.0175) 
8.5022 

(0.0188) 
9.1493 

(0.0205) 
9.7347 

(0.0221) 
10.8709 
(0.0242) 
1 1.9207 
(0.0273) 
12.9177 
(0.0296) 
13.8181 
(0.0317) 
14.6243 
(0.0335) 
16.6970 
(0.0380) 
18.5288 
(0.0424) 
20.1758 
(0.0459) 
21.7339 
(0.0491) 

bcd values arc standard deb ations. 
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Table 10.5.5. Expected values of the RAR for a Markov model 

- 

N 
- 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

60 

70 

80 

90 

100 

125 

150 

175 

200 

Asymptotic 

4.854 1 

6.8647 

8.4075 

9.708 1 

10.8540 

11.89OO 

12.8426 

13.7294 

14.5622 

15.3499 

16.81 50 

18.1622 

19.4163 

20.5941 

21.7080 

24.2703 

26.5868 

28.7 170 

30.6998 

2.0194 
(0.0025) 
3.5438 

(0.0061) 
4.8738 

(0.0092) 
6.0432 

(0.0 120) 
7.1131 

(0.0147) 
8.0779 

(0.0171) 
8.9858 

(0.0194) 
9.8655 
(0.02 12) 
10.6837 
(0.0233) 
11.4170 
(0.0252) 
12.8455 
(0.0283) 
14.1721 
(0.0320) 
15.4320 
(0.0350) 
16.5726 
(0.0376) 
17.5991 
(0.O400) 
20.2124 
(0.0459) 
22.5342 
(0.05 15) 
24.6356 
(0.0562) 
26.6039 
(0.0603) 
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Table 10.5.6. Expected values of the RAR for a Markov model 

- 

N 
- 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

60 

70 

80 

90 

100 

I23 

150 

I75 

!00 

- 

Asymptotic 

6.67 13 

9.4346 

11.5550 

13.3425 

14.9 174 

16.3412 

17.6505 

18.8692 

20.01 38 

2 1.0964 

23.1 100 

24.9616 

26.685 1 

28.3038 

29.8348 

33.3564 

36.5401 

39.4678 

42.1928 

Simulated* 
2.0435 

(0.0025) 
3.7235 

(0.0059) 
5.2915 

(0.0091) 
6.7304 

(0.01 23) 
8.0874 

(0.0154) 
9.3309 

(0.01 84) 
10.51 17 
(0.0212) 
1 1.6603 
(0.0235) 
12.7462 
(0.0262) 
13.7239 
(0.0286) 
15.6339 
(0.033 1) 
17.419 1 
(0.0378) 
19.1225 
(0.04 19) 
20.6666 
(0.0454) 
22.0685 
(0.0490) 
25.6001 
(0.0570) 
28.7578 
(0.0648) 
3 1.6509 
(0.07 16) 
34.3412 
(0.0772) 

*The parenthetical values an standard dev itions. 

36 1 
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It is also possible to compare the estimated expected value of the RAR for a Markov model 
to an analytical large-sample approximation that is given by Siddiqui (1976) as 

[10.5.7] 

In Tables 10.5.4 to 10.5.6. the output from [10.5.7] for the Uuce Markov models are catalogued. 
A perusal of these tables demonstrates that Siddqui’s approximation for E(E*N) is not too accu- 
rate for the cases considered, and the precision dccrcascs for increasing 

2 1R E(R+N) = ((W/2)[(1 - $M - $1) u 

10.6 PRESERVATION OF THE RESCALED ADJUSTED RANGE 

10.6.1 Introduction 

A major challenge in stochastic hydrology is to determine models that preserve important 
historical statistics such as the rescaled adjusted range (RAR), or equivalently the Hurst coeffi- 
cient K ,  The major finding of this section is that ARMA models do statistically preserve the his- 
torical RAR statistics or equivalently the Hurst coefficients denoted using K’s. This interesting 
scientific result is what solves the riddle of the Hunt Phenomenon. 

After fitting ARMA models to 23 annual geophysical time series, simulation studies are 
carried out to determine the small sample empirical cumulative distributionfinction (ECDF) of 
the RAR or K for various ARMA models. The ECDF for each of these statistics is shown to be 
a function of the time series length N and the parameter values of the specific ARMA process 
being considered. Furthermore, it is possible to determine as accurately as desired the distribu- 
tion of the RAR or K. A theorem is given to obtain confidence intervals for the ECDF in order 
to guarantee a prescribed precision. Then it is shown by utilizing simulation results and a given 
statistical test that ARMA models do preserve the observed RAR or K of the 23 geophysical 
time series. 

10.63 ARMA Modelling of Geophysical Phenomena 

Ln this section, ARMA models are determined for 23 yearly geophysical time series. Table 
10.6.1 lists the average annual riverflows and miscellaneous geophysical phenomena that are 
modelled. The riverflows are the longer records that are available in a paper by Yevjevich 
(1%3). Although the flows were converted to cubic meters per second. it is irrelevant which 
units of measurement are used since the AR and MA parameter estimates for the ARMA models 
fittad to the data arc independent of the measuring system used. The mud varve, temperature, 
rainfall, sunspot numbers, and minimum flows of the Nile River are obtained from articles by De 
Geer (1940). Manley (1953, pp. 255-260). Kendall and Stuart (1963, p. 343). Waldmeier (l%l), 
and Toussoun (1925), respectively. 

Table 10.6.2 lists 12 sets of tree ring indices comprising six different species of trees from 
western North America The indices labelled Snake arc from a book by Schulman’s (1956, p. 
77), and the rest were selected from a report by Stokes et al. (1973). 

By employing the three stages of model construction presented in detail in Pan III, the 
most appropriate ARMA model from [3.4.32] is f i n d  to each of the 23 time series. Table 10.6.3 
catalogues the type of ARMA model, Box-Cox transformation from [3.4.30], parameter esti- 
mates and standard mors (SE’s) for each data set. The SE’s are given in parentheses. For all 
the Box-Cox transformations, the constant is set equal to zero. When k = 1 there is no 
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Table 10.6.1. Annual riverflows and miscellaneous geophysical data. 

Codc Name Type Lacation P a i d  h g t h  N 

Mississippi Rim 
N e u m m  R i v a  
Danube R i v a  
Rhinc Riva 
SI. Lamrre R i v a  
Gota Riva  
mud v m s  

law=(u=b 
prccipilation 

Y d Y  -pots 
minimum flows of 
Nile R i v a  

SLLOUiS.Missarri 
S- ’. USSR 
Orshava, Romania 
Bale. Switzerland 
Ogdensburg. New York 
sp(ap-vaneRbrrg. Sweden 
Espanolaontario 
English Midlands 

-. England 

Rhoda, Egypt 

sun 

186 1 - 1957 
l8ll-IW3 
1837-1957 
1807-1957 
18601957 
1807-1957 

4 7 1  O -820 
(Swedish time) 

1698- I952 
1813-1912 
1798- I970 
622- 1469 

96 
132 

150 
97 

I 5 0  
350 

i m  

255 
100 
163 
848 

Table 10.6.2. Tree ring indicies data. 

Code Name Type of Tree Location Period LengthN 
Snake Douglas fu Snake River Basin 1282-1950 669 
Exshaw 
Naramata 
Dell 
Lakeview 
Nine mi 1 e 

Navajo 

Bryce 
Tioga 
Bigcone 
Whitemm 

Eaglecol 

Douglas fu 
Ponderosa pine 
Limber pine 
Ponderosa pine 
Douglas fu 
Douglas fu 
Douglas fir 

Ponderosa pine 
Jeffrey pine 
Big cone spruce 
Bristlecone pine 

Exshaw, Alberta, Canada 
Naramata, B.C., Canada 
Dell, Montana 
Lakeview, Oregon 
Nine Mile Canyon, Utah 
Eagle, Colorado 
Navajo National Monument 
(Belatakin), Arizona 
Bryce Water Canyon, Utah 
Tioga Pass, California 
Southern California 
White Mountains, California 

1460- 1965 506 
145 1 - 1965 515 
1311-1%5 655 
142 1 - 1964 544 
1194-1964 77 1 
1107-1964 858 
1263- 1 %2 700 

1340-1964 625 
1304-1964 661 
1458-1966 509 
800- 1 %3 1164 

transformation. while X = O  mcans that natural logarithms are taken of the data. Whenever a 
MLE of X is calculated, the SE is included in parentheses. 

10.63 Distribution of the RAR or K 

Suppose the determination of the exact distribution of the R4R (i.e.. E*,,,) or K is required. 
The expected value of E*N is now known theoretically for both an independent and a symmetri- 
cally correlated Gaussian process (Anis and Lloyd, 1976). At present, the cumulative 
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Table 10.6.3. ARMA models fitted to the geophysical data. 

Chapter 10 

CodeName Model A* parameter Value* P m e ( a  Value. Parameter Value* 
M S l 0 U l S  (0.1) 1.0 el -0.309 

NeUmunaS 

Danube 
Rhine 
0s- 

Gota 

bpanda 

Temp 

Rwip 
swyr 

Minimum 

snake 

EXShaW 

Natamata 

Dell 

M e v i e w  

Ninemile 

Eagkcol 

Navap 

Bryce 

Tioga 

Bigcau 

Whitemtn 

0.0 

1 .o 
1 .o 
I .o 

1 .o 

0.0 

1 .o 

0.0 
1 .o 

-0.778 
(0.316) 

1 .o 

1 .o 

1 .o 

I .o 

0.7 I7 

(0.130) 
0.684 

(0.060) 
0.624 
(0.054) 
I .o 

1.366 
(0.107) 
1.458 

(0.098) 
1 .o 

1.414 

(0.CJW 
-0.222 

(0.086) 

0.626 
(0.083) 
0.59 1 

(0.079) 
0.963 
(0.0 16) 
-0.115 

(0.063) 

1.219 

(0.060) 
1.254 

(0.060) 
0.352 

(0.039) 
0.725 
(0.067) 
0.1% 

(0.044) 
0.367 

(0.039) 
0.525 

(0.038) 
1.225 

(0.063) 
1.156 
(0.114) 
0.683 

(0.082) 
0.598 
(0.033) 
0.5% 

(0.033) 
0.31s 

(0.024) 
0.64 1 

0.0 

-0274 

(0.086) 
0.537 
(0.05 1) 
-0.202 

(0.057) 

-0.508 
(0.056) 
-0.279 
(0.05 I) 
0.093 

(0.04 I) 
0.395 

(0.090) 
0.131 

(0.044) 
0.185 

(0.039) 
0.0 

-0274 

(0.047) 
-0.237 
(0.082) 
0.424 

(0.103) 

0.159 

(0.044) 
0.408 

(0.061) (0.086) (0.104) 

49 0.184 

(0.086) 

4!9 0.232 

(0.029) 

(0.049) 

(0.039) 

81 0.842 

49 0.100 

49 0. I43 

(0.039) 

(0.049) 

(0.103) 

81 0.850 

81 0.693 
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distribution function (CDF) of i*N for a white noise process and in general any ARMA model is 
analytically intractable. However, by simulation it is possible to determine as accurately as is 
desired for practical purposes the CDF for E*,,. Because both F*N and K arc functions of N, 
their CDF's arc defined for a particular length of series N. The CDF for E*N is 

F = F(ry,$,@ = Pr(E*N s r )  [ 10.6.11 

where N is the length of each individual time series, $ is the set of known AR parameters, 8 is 
the set of known MA parameters, and r is any possible value of E*N. 

When simulating a time series of length N. it is recommended to employ the improved 
simulation techniques of Chapter 9. In this section, WASIM1 from Section 9.3 is utilized for the 
A M  (04) models, while WASIM2 from Section 9.4 is used with the ARMA@,O) and 
ARMA(P4) processes. &cause the R4R or K is independent of the variance of the innova- 
tions, any value of a: may be used. Consequently, it is simplest to set IS,' = 1 and hence to 
assume that the residuals arc NID(0,l). 

Suppose that i simulations of length N are generated for a specific ARMA model and the 
RAR's given by E*N~,F*N~, . . . , R*Ng, are calculated for the simulated series, respectively. 

If the sample of RAR is reordered such that E*N(~) S E*N(~)  S * . . S F*"g), it is known that the 
MLE of F is given by the ECDF (Gnedenko, 1968. pp. 444-45 I): 

- 

F,q = F,i&r;N,$,B) = 0, 

F i  = Fg(rfl,$,8) = kJN , 

r S E * N ( l )  
- 

R * N ( k )  < r S K * N ( k + l )  [10.6.2] 

The Kolmogorov theorem (Gnedenko, 1968, p. 450) can be used to obtain confidence inter- 
vals for Fg and to indicate the number of samples i necessary to guarantee a prescribed accu- 
racy. This theorem states that if i is moderately large (it has been shown that > 100 is ade- 
quate), then 

Pr(maxlFF-FI < ~ N " ) = K ( E )  [10.6.3] 
r 

where 

K@)=O, E S O  - 
K ( E )  = C (-1)ke-u2E1, E > 0 

k- 

For example, when E = 1.63, then K(E)  = 0.99. If i= 104 simulations arc done for a series of 
length N, then by Kolmogorov's theorem. all the values of Fg are accurate to at least within 
0.0163 with a probability of 0.99. 

In actual simulation studies, it is useful to examine the convergence of F,q by printing out a 
summary of the ECDF for increasing values of # (such as 2 = 100,200,500,1000,2000, * 1 ) 
until sufficient accuracy has been obtained. To curtail the computer time required in 
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simulations, therc arc efficient algorithms available called “quicksom” (Knuth, 1973) for order- 
ing the sample values for the RAR. 

If simulation studies arc done for F*N, the ECDF for K can be obtained from the transfor- 
mation 

K = l O @ ~ f l O g ( N / 2 )  [ 10.6.41 

Altcmatively, when the ECDF for K is known, the ECDF for F*N can be calculated by substitut- 
ing each value of K into 

R*N = (N/2 )K  [ 10.6.51 

Representative ECDF’s arc given in Appendix A1O.l for the simulations carried out in this 
section. In Table A1O.l.l, the ECDF of K is shown for various values of N for white noise that 
is NlD(0.a:). For each value of N (i.c.. each TOW) in that table, an ECDF is determined using 
g= 104 samples of length N .  By substituting all values for K in this table into [10.6.5] the 
ECDF for the RAR can be found for each value of N .  

When a particular time series is modelled by an ARMA model other than white noise. the 
ECDF for either F*N or K can be calculated by simulation for each desired value of N.  Table 
A10.1.2 lists the ECDF of K for different values of N for a Markov process in [3.2.1] with 
41 = 0.4. By utilizing the transformation in [ 10.6.51 for each entry in this table, the ECDF’s for 
E*N for the Markov model can be found and arc shown in Table A10.1.3. Because of the 
transformation in [ 10.6.51, it is sufficient to simply have a table for either K or E*N. 

- 

The tables of various ECDF’s for different types of ARMA models are listed in the appen- 
dix of the microfiche version of the paper by Hipel and McLeod (1978a). In particular, results 
are given for white noise as well as Markov models with = 0.1.0.2, . . . ,0.9. h all of the 
tables, for a particular value of N the number of samples 

For a particular ARMA model, the ECDF can be used to make inferences about F*N or 
equivalently K. For instance, the 95% confidence interval for p*,,, with N = 100 for a Markov or 
AR(1) model with =0.4 can be determined by utilizing Table A10.1.3. Opposite N = 100, 
select the values of E*N below the 0.025 and 0.975 quantiles. The 95% confidence interval for 
the RAR is then 9.85 - 24.02. By substituting these interval limits into [ 10.6.41. the 95% confi- 
dence interval for K is 0.585 - 0.813. This confidence interval for K is also confirmcd by refer- 
ring to the appropriate entries of Table A 10.1.2 opposite N = 100. 

The ECDF tables illustrate certain properties of the RAR or K. For example, an examina- 
tion of the median for K for white noise below the 0.500 quantile in Table A 10.1.1, definitely 
shows that K slowly decreases asymptotically toward 0.5 with inmasing N and is consequently 
a function of N. Because of this, a separate ECDF must be developed for each value of N for a 
specified process. Note that the median values for K in Table A1O.l.l arc almost identical with 
the values of K tabulated in Table 10.5.2. These latter values of K are calculated by using 
[10.6.4] when the exact theoretical expected values of E*N am found from a formula given by 
Anis and Lloyd (1976) and also by employing simulation techniques to estimate E ( K ) .  As can 
be seen from a perusal of Table 10.5.2, the expected value of K is obviously a function of N and 

simulated is 104. 
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daxases in magnitude with incrtasing N. 
It can be proven theoretically that for any ARMA pmess the RAR or K is a function of the 

timc series length N and the AR and MA paramctcrs (Hipel, 1975, Appendix B). This fact is 
confirmed by the ECDF for the RAR for the Markov process with = 0.4 in Tables A10.1.2 and 
A10.1.3. It can be seen that the median and all other values of the RAR at any quantile for all of 
the Markov models increase in value for increasing N. When one compares the results with 
other Markov models given by Hipel and McLeod (19784 microfiche appendix), the distribution 
ofi*,,, or K is also a function of the value of the AR parameter 

10.6.4 Preservation of the RAR and K by ARMA Models 

By employing the ECDF of the RAR or K in conjunction with a specified statistical test it 
is now shown that ARMA models do preserve the historically observed Hurst statistics. Because 
the Hurst coefficient K is widely cited in the literature, the research results for this statistic are 
described. However, K and F**N are C O M C C ~ ~ ~  by the simple transformation given in [10.6.5]. 
and, therefore. preservation of either statistic automatically implies retention of the other by an 
ARMA model. 

The ARMA models fitted to 23 geophysical time series ranging in length from N =96 to 
N = 1164 arc listed in Table 10.6.3. For exactly the same time series length N as the historical 
data, 1 d  simulations arc done for each model to determine the ECDF of K, or equivalently F*N. 
The probability pi of having K for the ith model greater than the K calculated for the ith histori- 
cal series is determined from the ith ECDF as 

Pr(K > KP”lmode1) =pi  [ 10.6.61 

w h m  KPb” is the K value calculated for the ith observed historical time series. If the chosen 
ARMA model is comct, then, by definition, pi would be uniformly distributed on (0.1). For k 
time series it can be shown (Fisher, 1970, p. 99) that 

[ 10.6.71 

Significance testing can be done by using [ 10.6.71 to determine whether the observed Hurst 
coefficient or the RAR is preserved by ARh4A models. The test could fail if the incorrect model 
were fitted to the data (for example, if the Ogden data were incorrectly modelled by an AR(1) 
process with = 0.4) or if ARMA models do not retain the Hurst K. Careful model selection 
was done, thereby largely eliminating the former reason for test failure. If it is thought (as was 
suggested by Mandelbrot and Wallis (1%8)) that the observed K is larger than that implied by 
an appropriate Brownian domain model, then a one tailed rather than a two tailed test may be 

The results of the x2 test in [10.6.7] for the 23 geophysical phenomena confirm that there is 
no evidence that the observed K’s, or equivalently the RAR’s, arc not adequately preserved by 
the fitted ARMA models. Table 10.6.4 summarizes the information used in the test. The 
observed Hurst coefficient, E(K) from the simulations and the pi value arc listed for each of the 
time series. In Table 10.6.5, it can be seen that the calculated x2 value from [10.6.7] is not signi- 
ficant at the 5% level of significance for the 23 time series for either a one sided or a two sided 

p e r f O d  
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test. Therefore, on the basis of the given information. ARMA models do statistically preserve K 
or the RAR when considering all the time series. Furthemore, when the set of annual river- 
flows, miscellaneous data, and tree ring indicies an inspected individually. it can be seen from 
Table 10.6.5 that ARMA models preserve the historical Hurst statistics for all three caws. 

Table 10.6.4. Geophysical time series calculations. 
Code Names N ’ s  Observed K ’ s  ARMA Model E(K) ’ s  pj’s 

Mstouis % 0.648 0.667 0.624 
Neumunas 
Danube 
Rhine 
Ogden 
Gota 
Espanola 
Temperature 
Precip 
Sunspot numbers 
Minimum 
Snake 
Exshaw 
Naramata 
Dell 
Lakeview 
Ninemile 
Eaglesol 
Navajo 
Bruce 
Tioga 
Bigcone 
Whitcmm 

132 
120 
150 
97 

150 
350 
255 
100 
163 
848 
669 
506 
515 
655 
544 
77 1 
858 
700 
625 
661 
509 

I164 

0.660 
0.633 
0.614 
0.894 
0.689 
0.855 
0.694 
0.618 
0.723 
0.815 
0.687 
0.637 
0.595 
0.687 
0.706 
0.740 
0.645 
0.653 
0.732 
0.701 
0.61 1 
0.695 

0.649 
0.613 
0.609 
0.832 
0.659 
0.877 
0.646 
0.610 
0.768 
0.786 
0.693 
0.702 
0.649 
0.694 
0.729 
0.726 
0.747 
0.670 
0.698 
0.687 
0.695 
0.648 

0.420 
0.534 
0.468 
0.149 
0.283 
0.674 
0.157 
0.434 
0.728 
0.264 
0.559 
0.938 
0.905 
0.569 
0.709 
0.378 
0.995 
0.660 
0.203 
0.362 
0.981 
0.095 

Table 10.6.5. Results of the I* test for the geophysical time series. 
Data Sets Degrees of -21nDi 

Riverflows 12 11.78 
Miscellaneous 10 9.46 
Tree rings 24 16.08 
Total 46 37.32 

Frccdom 
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In Table 10.6.4, the average of the observed K’s is calculated to be 0.693 With a standard 
deviation of 0.076. The E ( K )  from the simulations has an average of 0.698 with a standard devi- 
ation of 0.068. The average of the observed K is, therefore, slightly less than that for the s h u -  
latcd case. but this difference is not statistically different. 

If the results of the RAR had been given rather than K, only columns 3 and 4 of Table 
10.6.4 would be different, due to the transformation in [10.6.7]. The pi values and the results of 
the x2 test in Table 10.6.5 would be identical. Therefore, preservation of either K or Z*N infers 
retention of the other statistic by ARMA models. 

10.7 E!TI’IMATES OF THE HURST COEFFICIENT 

Different estimators are available for estimating the Hurst coefficient. The purpose of this 
section is to compare these estimates for the 23 annual geophysical time series given in Tables 
10.6.1 and 10.6.2. 

From empirical studies of approximately 690 geophysical time series, Hurst (1951, 1956) 

R*N = Nh [ 10.7.11 

where h is a constant often referred to as the generalized Hurst coefficient. The above equation 
can be written in the general form 

R*N = aNh [ 10.7.21 

where u is a coefficient. Hurst assumed the coefficient u to have a value of (1/2)h and then 
estimated h by K in [ 10.6.41. 

Siddiqui (1976) has employed the functional central limit theorem and the theory of 
Brownian motion to derive many statistical formulae that may be of interest to hydrologists. Of 
particular importance is the asymptotic result for calculating E(E*) for ARMA processes. This 
formula is given as 

E ( F * )  = U”lR [ 10.7.31 

found the RAR to vary as - 

- 

where 

and yo is the theoretical autocovariance function at lag 0 that is evaluated by using the algorithm 
in Appendix A3.2 with u,’ = 1, Oi is the ith MA parameter and $; is the ith AR parameter. If the 
random variables are I D ,  a special case of [10.7.3] that was previously derived by Feller (1951) 
is 

E(E*N) = 1.2533”‘ [ 10.7.41 

By comparing [ 10.7.31 and [ 10.7.21, a possible alternative method of evaluating h may be 
to employ the equation 
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[10.7.5] 

whcrc SH is Siddiqui's estimate of the generalized Hurst coefficient h.  When logarithms are 
taken of [ 10.7.51, Siddiqui's estimate for h is (Siddiqui, 1976) 

[ 10.7.61 

It should be noted that due to the way Hurst (1951.1956) and Siddiqui (1976) calculate the 
coefficient u in [10.7.2]. the Hurst coefficient K and the Siddiqui coefficient SH arc in fact two 
different statistics. Nevertheless, as was suggested by Siddiqui (1976). it may be of interest to 
determine whether h exhibits the Hurst phenomenon if the estimate SH is employed. Accord- 
ingly, for the 23 geophysical time series given in Tables 10.6.1 and 10.6.2 the K and SH statis- 
tics are compared. 

Table 10.6.3 lists the ARMA models fitted to the 23 timc series. If a Box-Cox transforma- 
tion is included in a model, then K and SH ax calculated for the transformed series to which the 
model is fit This is because the formula for calculating SH in [10.7.6] does not have the capa- 
bility of incorporating a Box-Cox transformation in order to get an estimate of SH for the 
untransformed data. Table 10.7.1 displays the values of K and SH that are calculated for each 
time series by using [10.6.4] and [10.7.6], respectively. Notice that the entries for K in Table 
10.7.1 differ from the K values in Table 10.6.4 wherever the data used in Table 10.7.1 have been 
transformed by a Box-Cox transformation. 

An examination of Table 10.7.1 reveals that in all cases except three, the value of SH is less 
than K for the corresponding time series. The K statistic has an arithmetic mean of 0.701 with a 
standard deviation of 0.084. However, the mean of the SH statistic is 0.660 and possesses a 
standard deviation of 0.131. The mean value of SH is, therefore, well within 2 standard devia- 
tions of 0.500. 

Another technique to estimate h can be found by comparing [ 10.7.41 and [ 10.7.21. Accord- 
ingly, Gomide (1975) suggests the following equation to evaluate h: 

- 
R*N = 1.2533NYH [10.7.7] 

where YH is Gomide's estimate of the generalized Hurst coefficient h.  By taking logarithms of 
[10.7.7], Gomide's estimate of h is 

[ 10.7.81 

When [ 10.7.81 is utilized to estimate the Hurst coefficient Gomide (1975) obtains an aver- 
age value for YH of 0.57 for the 690 series considered by Hurst (1951, 1956). On the other hand, 
Hunt (1951, 1956) calculated K to have an average of 0.73 for the 690 series. Therefore, lower 
values an obtained for the Hunt coefficient h if YH is employed rather than K. 

Table 10.7.1 lists the values of YH for the same 23 geophysical time series that are con- 
s i d e d  for S H .  Therefore, if a Box-Cox transformation is included with an ARMA model in 
Table 10.6.3. then YH is determined for the transformed series to which the model is f i t  Obvi- 
ously, because Y H ,  as calculated in [10.7.8], is not a function of the ARh4A model parameters, it 
is not, in general, necessary to consider the transformed series. However, the aforementioned 
procedure is adopted so that appropriate comparisons can be formulated for the three estimates 
given in Table 10.7.1. 
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Table 10.7.1. Estimates of the Hunt coefficient 
Code Names 
Mstouis 
Neumunas 
Danube 
Rhine 
Ogden 
Gota 
Espanola 
Temp 
h i p  
Sunyr 
Minimum 
Snake 
Exshaw 
Naramata 
Dell 
Lakeview 
Ninemile 

Navajo 
Bryce 
Tioga 
Bigcone 
Whitment 

Eaglecol 

K ’ s  
0.648 
0.677 
0.633 
0.614 
0.894 
0.689 
0.928 
0.694 
0.615 
0.723 
0.817 
0.687 
0.637 
0.595 
0.687 
0.703 
0.727 
0.761 
0.653 
0.734 
0.704 
0.61 1 
0.695 

SH’s  
0.45 1 
0.499 
0.495 
0.484 
0.436 
0.504 
0.455 
0.521 
0.473 
0.570 
0.462 
0.475 
0.420 
0.435 
0.475 
0.499 
0.466 
0.485 
0.468 
0.5 13 
0.498 
0.404 
0.530 

YH’s  
0.500 
0.535 
0.495 
0.484 
0.709 
0.549 
0.779 
0.567 
0.473 
0.580 
0.699 
0.579 
0.530 
0.492 
0.579 
0.590 
0.617 
0.650 
0.550 
0.620 
0.594 
0.507 
0.595 

- 

37 1 

A perusal of Table 10.7.1 shows that for each time series the values of both SH and YH is 
consistently less than the magnitude of K. For the series to which white noise models are fit in 
Table 10.6.3 (i.e., Danube, Rhine and Recip), the values of YH and SH in Table 10.7.1 arc 
equivalent However, for all the other data sets the magnitudes of SH arc less than Y H .  The 
mean of the 23 YH values is 0,577 with a standard deviation of 0.078. The YH statistic is within 
one standard deviation of 0.500. Therefore, it can perhaps be argued that for the data considered, 
the Hurst phenomenon is not significant for the YH statistic. A similar argument can be made 
for the SH estimate of h.  

10.8 CONCLUSIONS 

The pursuit of possible explanations to solve the riddle of the Hurst phenomenon has 
stimulated decades of valuable research by both hydrologists and statisticians. The Hunt 
researchers analogous to the inquisitive archadogists of the 19th and early 20th centuries 
who sought to find the treasures of the ancient Egyptians in long forgotten temples. pyramids 
and tombs. Like the archaclogists, during their search the Hurst scientists have unearthed many 
valuable treasures that have attracted the world-wide attention of their colleagues. However, the 
main treasure find is the one described in Section 10.6. In that section. ARMA models arc 
shown to preserve statistically the observed RAR and K when fitted to a variety of geophysical 
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time series. In other words, the fitttd ARMA models indirectly account for the measured Hurst 
statistics, which are usually significantly larger than 0.5 (see Table 10.6.4). Because important 
stochastic characteristics of hydrologic timc series are retained by ARMA models, this should 
give engineers confidence in water resource projects that are designed with the aid of simulation 
techniques. In phcular,  the RAR statistic is directly related to storage problems, and this 
makes ARMA models desirable for reservoir design, operation, and evaluation. 

Besides the main solution to the Hunt riddle given in Section 10.6, many other interesting 
discoveries have been made. In addition to the Hurst coefficient K defmed in [10.3.4], other 
coefficients have been suggested to model the generalized Hurst coefficient h given in [ 10.3.21. 
For example, Gomide (1975). Siddiqui (1976). Anis and Lloyd (1976) and Wallis and Matalas 
(1970) proposed altcmative procedures to model h. One of the major reasons for developing 
alternative exponents to K was to produce a coefficient that would reach its limiting value of 0.5 
more quickly than K would. Nevertheless. it must be borne in mind that the definition of the 
Hunt phenomenon is based on a comparison of the value of K in small and moderate sample 
sizes to its large sample value of 0.5. If the empirical, or theoretical, value of another estimate of 
h is compared for finite time series length to its asymptotic magnitude of 0.5, the Hurst 
phenomenon should probably be redefined in terms of that statistic. However, because of the 
inherent statistical properties of the RAR. it is recommended that future research primarily be 
devoted to the study of this statistic and that less emphasis be put on the various definitions of 
the Hurst coefficient. Some interesting insights into problems related to the Hurst phenomenon 
are provided by Klemes and Klemes (1988). Further research into the Hurst phenomenon and 
long-range dependence is provided by Bhattacharya et al. (1983) and Poveda and Mesa (1988) 
while Beran (1992) carries out a partial survey of long-range dependence research. Kunsch 
(1986) provides an approach for discriminating between monotonic trends and long-range depen- 
dence. Finally, Cox (1991) links non-linearity and time irreversibility with long-range depen- 
dence. 

Feller (1951) proved that the asymptotic formula for the expected value of the adjusted 
range in [10.3.5] is valid for IID random variables. A s  is shown in [ 10.3.61 for large samples, 
Feller’s equation is also comct for the expected value of the RAR for IID summands. The exact 
analytical expression for the expected value of the RAR for NID summands was derived by Anis 
and Lloyd (1976) and is written in (10.3.151. For fmite samples, the simulation and analytical 
results of Table 10.5.1 indicate that the expected values of the RAR and hence K are functions of 
the sample size but are virtually independent of the underlying distribution for IID summands. 
Accordingly, it has been suggested that the Hunt phenomenon could be explained by a combina- 
tion of transcience and autocornlation (Wallis and O’COMC~~. 1973). This implies that perhaps 
either a short memory or a long memory mdel  that takes into account the autocornlation shuc- 
ture of a tim series may explain the Hunt phenomenon. Perhaps a better way to phrase this is 
that if a given stochastic model, that is fit to a given data set, preserves the important historical 
statistics such as the RAR and K, then that model may indirectly account for the Hurst 
phenomenon. Therefore, it can be argued that a resolution to the controversies related to the 
Hurst phenomenon boils down to determining stochastic models that preserve the RAR. as well 
as other relevant historical statistics. 

If a stochastic model is to retain the historical statistical characteristics of a time series, 
then the model must provide a good statistical fit to the data. This can be accomplished in prac- 
tice by following the identification, estimation, and diagnostic check stages of model 
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construction described in part III of the book. For long memory FGN processes the authors have 
developed an efficient estimation procedure using the method of maximum likelihood (Section 
10.4.3). and a technique for calculating the modcl residuals so that they can be tested by 
appropriate diagnostic checks (Section 10.4.4). Moreover, in Scction 10.4.5 a method is given 
for calculating one step ahead MMSE forecasts for a FGN model. Finally. in Section 10.4.6 a 
technique is presented for exactly simulating FGN such that the synthetic traces will lie outside 
the Brownian domain for the parameter H in the range 0.5 < H < 1. 

Short memory models provide an alternative approach to FGN processes for modelling 
hydrological time series. In particular, the ARMA family of short memory models possesses 
great potential for widespread applications to water resource as well as other geophysical and 
environmental problems. Klemes et al. (1981) maintain that given the socioeconomic and 
hydrologic data usually available for reservoir planning and design, the replacement of short 
memory models with long memory ones in reservoir analyses, cannot be objectively justified. 

A statistical approach for discriminating between short and long memory models is to use 
the AIC of Section 6.3. The AIC provides a means of model discrimination based on the princi- 
ples of good statistical fit and parsimony of the model parameters. For the six annual riverflow 
time series c o n s i d d  in Section 10.4.7 the results of Table 10.4.4 show that in all six cases the 
AIC chooses the best fimng ARMA model in preference to the FGN process. Although there 
may be certain situations where the FGN model is appropriate to use. the inherent inflexibility of 
a FGN process may limit the use of this model in many types of practical applications. Rather 
than allowing for a choice of the required number of model parameters to use in a given situation 
as is done in ARMA modelling, the FGN model is always restricted to just three parameters (i.e., 
the mean, the variance, and H). 

By adhering to the model construction stages of Part III, it is a straightforward procedure to 
develop an appropriate ARMA to describe a particular time series. If the phenomenon being 
modelled has been influenced significantly by external interventions, these effects can be incor- 
porated into the model using the intervention model of Chapter 19. By employing Monte Carlo 
techniques, the ECDF's of statistics such as the RAR or K can be developed to any desired accu- 
racy, as shown in Section 10.6.3. The ECDF's arc used in conjunction with a specified statistical 
test to check for the preservation of historical statistics in Section 10.6.4. This testing pmedure 
can be ustd to check for the retention of any observed statistics by A M  or by other types of 
stochastic models. Tsay (1992). for example, employs a similar approach for investigating the 
reproducibility of historical statistics by fitted models. 

&sides considering Hurst's estimate K of the coefficient h ,  it is possible to enterrain other 
types of estimates as explained in Section 10.7. For the 23 natural time series listed in Tables 
10.6.1 and 10.6.2, the Siddiqui coefficient SH (Siddiqui, 1976) and Gomide's statistic YH 
(Gomide, 1975) possess a mean value less than K. By examining the standard deviations of the 
YH and SH statistics the Hurst phenomenon is Seen to be less pronounced for these estimates 
than it is for K. 

If one wishes to consider fitting a long memory model to a specified time series, one may 
wish to entertain the fractional ARMA or FARMA model as an alternative to FGN. This model 
is more flexible to use than the long memory FGN model because the number of model parame- 
ters is not futed. In fact, as shown in the next chapter, the FARMA model is a direct extension 
of ARM and ARIMA models. 
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APPENDIX A1O.l 

Chapter 10 

REPRESENTATIVE 

EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS 

(ECDF’s) 

FOR HURST STATISTICS 

The thtcc tables presented in this appendix contain ECDF’s for simulation studies 
explained in Section 10.6.3. More specifically, for a range of lengths N of simulated sequences 
the following rhm sets of ECDF’s arc given: 

Table A1O.l.l. ECDF’s of K for a NID(0.u:) process. 

Table A10.1.2. ECDF’s of K for a Markov process with 9, = 0.4. 

Table A10.1.3. ECDF’s of i*N for a Markov process 9, = 0.4. 
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Table A1O.l.l. ECDF's of K for a NLD(0,a:) process.* 

375 

value 
of N 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
60 
70 

90 
100 
125 
150 
175 
200 
500 
loo0 

ao 

. . .  

0.005 0.010 0.025 0.050 0.100 0.200 0.300 0.400 

0.260 0.294 0.354 0.41? 0.485 0.474 0.634 0.677 
0.355 0.380 0.422 0.450 0.506 0.566 0.611 0.648 

0.406 0.426 0.459 0.486 0.520 0.565 0.600 0.628 
0.414 0.436 0.466 0.497 0.527 0.569 0.509 0.626 
0.429 0.445 0.473 0.501 0.531 0.570 0.598 0.622 
0.436 0.453 0.482 0.505 0.534 0.569 0.596 0.619 
0.446 0.463 0.488 0.511 0.537 0.570 0.596 0.617 
0.447 0.464 0.487 0.519 0.537 0.570 0.594 0.615 

0.461 0.473 0.494 0.515 0.538 0.569 0.591 0.610 

. . .  

0.390 0.414 0.445 0.478 0.518 0.570 0.605 0.637 

0.453 0.68 0.489 0.519 0.537 0.570 0.593 0.613 

0.460 0.474 0.498 0.515 0.538 0.568 0.589 0.607 
0.461 0.475 0.499 0.518 0.450 0.568 0.588 0.606 

0.474 0.489 0.507 0.523 0.542 0.565 0.503 0.598 
0.477 0.489 0.506 0.523 0.542 0.564 0.581 0.5% 
0.476 0.488 0.508 0.523 0.540 0.563 0.579 0.594 

0.491 0.497 0.512 0 . 5 3  0.538 0.556 0.559 0.580 

0.464 0.483 0.501 0.519 0.540 0.569 0.588 0.604 
0.466 0.480 0.499 0.520 0.541 0.566 0.585 0.601 

0.484 0.494 0.509 0.525 0.542 0.564 0.479 0.593 

0.494 0.502 0.514 0.525 0.537 0.552 0.594 0.573 
... 

*Table continues on opposite page. 
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(Table A1O.l.l continued.) 

Quantile 
0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995 

. . .  
~~ 

0.714 
0.685 
0.668 
0.655 
0.65 1 
0.644 
0.640 
0.637 
0.634 
0.632 
0.627 
0.623 
0.622 
0.6 19 
0.616 
0.6 13 
0.609 
0.607 
0.606 
0.591 
0.583 

0.748 0.801 
0.720 0.755 
0.696 0.724 
0.681 0.708 
0.674 0.698 
0.666 0.689 
0.661 0.683 
0.656 0.679 
0.654 0.675 
0.650 0.669 
0.645 0.664 
0.641 0.658 
0.638 0.655 
0.635 0.652 
0.632 0.648 
0.627 0.642 
0.624 0.638 
0.620 0.634 
0.619 0.632 
0.602 0.613 
0.592 0.602 

0.854 
0.791 
0.757 
0.738 
0.726 
0.716 
0.709 
0.702 
0.699 
0.692 
0.684 
0.678 
0.675 
0.671 
0.666 
0.660 
0.555 
0.650 
0.647 
0.626 
0.614 

0.904 
0.836 
0.800 
0.775 
0.762 
0.750 
0.743 
0.734 
0.730 
0.722 
0.714 
0.706 
0.702 
0.6% 
0.691 
0.684 
0.678 
0.672 
0.668 
0.643 
0.630 

0.932 
0.872 
0.832 
0.804 
0.790 
0.777 
0.768 
0.759 
0.753 
0.748 
0.735 
0.728 
0.723 
0.716 
0.711 
0.703 
0.697 
0.689 
0.685 
0.657 
0.642 

0.948 
0.895 
0.855 
0.827 
0.813 
0.799 
0.790 
0.780 
0.774 
0.766 
0.751 
0.746 
0.740 
0.723 
0.728 
0.7 18 
0.7 13 
0.704 
0.698 
0.669 
0.653 

0.961 
0.917 
0.882 
0.852 
0.836 
0.822 
0.809 
0.80 1 
0.791 
0.786 
0.772 
0.765 
0.757 
0.754 
0.746 
0.732 
0.730 
0.720 
0.713 
0.683 
0.664 

0.967 
0.932 
0.897 
0.870 
0.849 
0.835 
0.823 
0.815 
0.806 
0.801 
0.786 
0.777 
0.769 
0.758 
0.761 
0.744 
0.740 
0.729 
0.72 1 
0.693 
0.67 1 

. . .  



The Hurst Phenomenon 377 

value 
of N 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
60 
70 
80 
90 
100 
125 
150 
175 
200 

Table A10.1.2. ECDF’s of K for a Markov process with = 0.4.* 

. .. 

0.005 0.010 0.025 0.050 0.100 0.200 0.300 
~ 

0.236 
0.401 
0.470 
0.435 
0.495 
0.514 
0.523 
0.530 
0.536 
0.540 
0.542 
0.546 
0.542 
0.549 
0.550 
0.558 
0.555 
0.552 
0.559 

0.325 0.407 
0.442 0.494 
0.494 0.536 
0.507 0.545 
0.512 0.555 
0.530 0.566 
0.544 0.573 
0.550 0.577 
0.551 0.578 
0.555 0.532 
0.559 0.582 
0.553 0.583 
0.559 0.583 
0.562 0.585 
0.563 0.585 

0.564 0.534 
0.567 0.586 
0.570 0.586 

0.568 0.588 

0.476 
0.537 
0.503 
0.580 
0.586 
0.594 
0.593 
0.603 
0.603 
0.692 
0.602 
0.603 
0.605 
0.604 
0.605 
0.605 
0.602 
0.601 
0.602 

0.551 0.635 
0.590 0.660 
0.612 0.666 
0.618 0.665 
0.622 0.667 
0.628 0.667 
0.627 0.664 
0.631 0.666 
0.631 0.664 
0.629 0.662 
0.628 0.661 
0.626 0.658 
0.628 0.655 
0.626 0.656 
0.625 0.651 
0.624 0.649 
0.622 0.646 
0.619 0.642 
0.620 0.642 

0.636 
0.703 
0.705 
0.700 
0.700 
0.697 
0.693 
0.591 
0.690 
0.688 
0.683 
0.679 
0.677 
0.676 
0.67 1 
0.667 
0.663 
0.660 
0.658 

0.400 

0.724 
0.746 
0.738 
0.730 
0.726 
0.721 
0.716 
0.714 
0.711 
0.707 
0.703 
0.698 
0.695 
0.692 
0.688 
0.683 
0.673 
0.674 
0.672 

... 

*Table continues on opposite page. 
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(Table A 10.1.2 continued.) 

Quantile 
0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995 

. . .  
0.763 
0.777 
0.766 
0.756 
0.750 
0.744 
0.737 
0.734 
0.731 
0.726 
0.720 
0.715 
0.712 
0.703 
0.704 
0.697 
0.692 
0.688 
0.685 ... 

0.810 
0.806 
0.792 
0.778 
0.773 
0.765 
0.759 
0.754 
0.749 
0.744 
0.738 
0.731 
0.728 
0.724 
0.7 19 
0.7 12 
0.706 
0.701 
0.698 

0.851 
0.833 
0.819 
0.804 
0.795 
0.787 
0.780 
0.774 
0.770 
0.763 
0.756 
0.749 
0.745 
0.740 
0.735 
0.727 
0.721 
0.715 
0.712 

0.835 
0.863 
0.845 
0.830 
0.820 
0.81 1 
0.803 
0.796 
0.793 
0.785 
0.776 
0.769 
0.765 
0.759 
0.753 
0.745 
0.738 
0.732 
0.727 

0.922 
0.894 
0.877 
0.862 
0.851 
0.841 
0.833 
0.826 
0.821 
0.8 13 
0.803 
0.795 
0.790 
0.784 
0.778 
0.763 
0.761 
0.752 
0.748 

0.943 
0.916 
0.901 
0.884 
0.872 
0.863 
0.854 
0.847 
0.84 1 
0.836 
0.823 
0.815 
0.809 
0.803 
0.797 
0.786 
0.780 
0.77 1 
0.764 

0.958 
0.932 
0.918 
0.900 
0.889 
0.880 
0.872 
0.864 
0.857 
0.852 
0.838 
0.831 
0.826 
0.818 
0.813 
0.801 
0.795 
0.785 
0.777 

0.967 
0.948 
0.931 
0.916 
0.906 
0.898 
0.887 
0.830 
0.873 
0.870 
0.855 
0.849 
0.841 
0.836 
0.829 
0.816 
0.810 
0.799 
0.792 

0.97 1 
0.958 
0.941 
0.927 
0.914 
0.905 
0.898 
0.893 
0.885 
0.879 
0.866 
0.859 
0.85 1 
0.847 
0.840 
0.825 
0.813 
0.809 
0.801 
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value 
of N 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
60 
70 
80 
90 

100 
125 
150 
175 
200 

Table A10.1.3. ECDF's of i*,, for a Markov process with = 0.4.* 

. . .  

0.005 0.010 0.025 0.050 0.100 0.200 0.300 0.400 
. . .  

1.30 1.35 
1.91 2.04 
2.58 2.71 
3.05 3.22 
3.49 3.73 
4.02 4.20 
4.47 4.75 
4.89 5.19 
5.30 5.55 
5.68 5.97 
6.33 6.70 
6.% 7.26 
7.38 7.85 
8.08 8.49 
8.59 9.06 
10.06 10.48 
10.99 11.43 
11.81 12.60 
13.15 13.77 

1.45 1.55 
2.21 2.37 
2.95 3.14 
3.51 3.80 
4.06 4.39 
4.63 4.99 
5.15 5.54 
5.63 6.09 
6.06 6.53 
6.51 6.94 
7.23 7.75 
1.95 8.54 
8.60 9.30 
9.26 9.98 
9.85 10.68 
11.38 12.21 
12.47 13.47 
13.72 14.66 
14.84 15.99 

1.66 
2.59 
3.43 
4.15 
4.82 
5.48 
6.0 1 
6.63 
7.13 
7.58 
8.47 
9.27 
10.13 
10.86 
11.52 
13.23 
14.65 
15.91 
17.39 

1.79 
2.89 
3.82 
4.62 
5.39 
6.03 
6.69 
7.35 
7.91 
8.41 
9.46 
10.38 
11.20 
12.13 
12.78 
14.65 
16.28 
17.65 
19.21 

1.88 
3.13 
4.14 
5.01 
5.86 
6.60 
7.27 
7.93 
8.57 
9.15 
10.21 
11.17 
12.16 
13.00 
13.83 
15.74 
17.52 
19.09 
20.7 1 

1.94 
3.32 
4.42 
5.37 
6.26 
7.05 
7.76 
8.50 
9.15 
9.75 
10.92 
11.94 
12.98 
13.91 
14.74 
16.85 
18.7 1 
20.39 
22.10 

. . .  

*Table continues on opposite page. 
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(Table A10.1.3 continued.) 

Quantile 
0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995 

. . .  
2.01 
3.49 
4.68 
5.70 
6.64 
7.49 
8.25 
9.02 
9.72 
10.34 
11.57 
12.70 
13.82 
14.80 
15.68 
17.88 
19.86 
21.71 
23.42 

2.10 
3.66 
4.94 
6.00 
7.04 
7.95 
8.79 
9.56 
10.31 
10.95 
12.30 
13.47 
14.65 
15.71 
16.65 
18.97 
21.12 
23.00 
24.89 

2.18 
3.82 
5.20 
6.37 
1.46 
8.44 
9.32 
10.15 
19.99 
1 1.65 
13.07 
14.32 
15.62 
16.72 
17.76 
20.21 
22.53 
24.50 
26.54 

2.25 
4.0 1 
5.49 
6.77 
7.92 
8.98 
9.96 
10.86 
11.80 
12.52 
14.03 
15.41 
16.80 
17.97 
19.0 1 
2 1.79 
24.24 
26.42 
28.46 

2.33 
4.22 
5.85 
7.28 
8.57 
9.75 
10.84 
11.87 
12.87 
13.71 
15.36 
16.90 
18.44 
19.76 
20.97 
23.97 
26.72 
28.91 
3 1.33 

2.37 
4.37 
6.14 
7.65 
9.05 
10.34 
11.54 
12.65 
13.73 
14.73 
16.43 
18.16 
19.81 
21.27 
22.64 
25.77 
28.98 
31.44 
33.69 

2.40 
4.48 
6.36 
7.95 
9.45 
10.85 
12.14 
13.29 
14.43 
15.54 
17.31 
19.22 
2 1.02 
22.54 
24.02 
27.42 
30.92 
33.51 
35.8 1 

2.43 
4.60 
6.53 
8.24 
9.35 
11.38 
12.68 
13.98 
15.17 
16.45 
18.32 
20.44 
22.28 
24.09 
25.64 
29.26 
33.05 
35.62 
38.40 

2.43 
4.67 
6.65 
8.45 
10.05 
11.64 
13.08 
14.53 
15.72 
16.95 
19.04 
21.23 
23.05 
25.18 
26.72 
30.27 
34.25 
37.22 
39.95 

... 
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PROBLEMS 

10.1 

10.2 

10.3 

10.4 

10.5 

10.6 

10.7 

10.8 

10.9 

10.10 

10.11 

1o.u 

Read Hurst’s (1951, 1956) original papers about his work in long term storage. 
Summarize what he did and comment upon his abilities as an engineer and a statisti- 
cian. 
In Sections 10.2 and 10.3.1, statistics are defined for studying long tam storage 
problems. Suggest some statistics for examining short term storage problems in 
reservoir design. 
What do you think is the most reasonable explanation for the Hurst phenomenon? 
Base your answer upon references given in this chapter and elsewhere. 
Using equations, explain the basic mathematical design and main purposes of the 
shifting level models referred to in Section 10.3.3. 

Mention three types of yearly time series which could be appropriately modelled by 
FGN models. Provide both physical and statistical justifications for your sugges- 
tions. 
In Section 10.4.5, a procedure is given for claculating a one step ahead MMSE 
(minimum mean square error) forecast for a FGN model. Develop a formula for 
determining I step ahead MMSE forecasts for a FGN model where I 2 1. 

In Section 10.4.6, seven methods are presented for approximately simulating FGN. 
Select any two of these techniques and explain using equations why these methods 
do not exactly simulate FGN. 
In Table 10.4.4, the AIC is employed to decide upon whether or not FGN or ARMA 
models should be used for modelling six annual riverflow timc series. Carry out a 
similar type of study for six annual time series that an not average yearly river- 
flows. Comment upon the results. 
Within your field of study, select a statistic which is of direct interest to you. For 
example, you may be a hydrologist who is interested in floods or droughts. Explain 
how you would carry out simulation experiments to determine whether or not time 
series models fitted to your data sets preserve the historical statistics that are impor- 
tant to you. 
Carry out the simulation study that you designed in the previous question. 
Summarize Tsay’s (1992) approach for ascertaining whether a fitted model 
preserves important historical statistics. Compare Tsay’s procedure to the one 
presented in Section 10.6. 

Explain how the research of Klemes and Klemes (1988) sheds light on the Hurst 
phenomenon. 
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CHAPTER 11 

FRACTIONAL 

AUTOREGRESSIVE-MOVING AVERAGE 

MODELS 

11.1 INTRODUCTION 

As explained in detail in Chapter 10, the well known Hurst Phenomenon defined in Section 
10.3.1 stimulated extensive research in the field of stochastic hydrology. One valuable 
by-product of this research was the development of long memory models (see Sections 2.5.3, 
10.3.3 and 11.2.1 for a definition of long memory). In particular, the fractional Gaussian noise 
(FGN) model of Section 10.4 possesses long memory and was developed within stochastic 
hydrology as an attempt to explain the Hurst Phenomenon through the concept of long term per- 
sistence. 

The FGN model is not the only kind of stochastic model having long memory. As a matter 
of fact, due to its rather inflexible design and the difficulties encountered when applying it to real 
data (see Section 10.4). researchers have studied a variety of long memory models. The objec- 
tive of this chapter is to present the most flexible and useful class of long memory models that 
have currently been developed. More specifically, this family is called the fractional 
autoregressive-moving average (FARMA) group of models (Hosking, 198 1; Granger and Joyeux, 
1980) because it arises as a natural extension of the ARIMA(p,dq) models of Chapter 4. By 
allowing the parameter d in an ARIMA@,d.q) model to take on real values, the resulting 
FARMA model possesses long memory ford falling within the range 0 c d < 112. 

A sound explanation for the Hurst phenomenon is presented in Section 10.6. In particular, 
by properly fitting ARMA models to a variety of geophysical time series, it is shown using 
simulation that the ARMA models statistically preserve the Hurst statistics consisting of the res- 
ealed adjusted range (RAR) and the Hurst coefficient K. Because FARMA models are simply 
extensions or generalizations of ARMA (Chapter 3) and ARIMA (Chapter 4) models, one could 
also consider FARMA models in statistical experiments similar to those given in Section 10.6. 
Nonetheless, from a physical viewpoint hydrologic phenomena such as annual riverflows do not 
possess long memory or persistence since c m n t  flows do not depend upon annual flows that 
took place hundreds or thousands of years ago. Hence, for these kinds of series, ARMA models 
can adequately explain the Hurst phenomenon. However, the reader should keep in mind that 
there may be series that have long term memory and for these data one can employ FARMA 
models. 

In the next section, the FARMA model is defined and some of its main statistical properties 
are described. Within Section 11.3, it is explained how FARMA models can be fitted to time 
series by following the identification, estimation and diagnostic check stages of model consmc- 
tion. Although good model building tools are now available, further research is required for 
developing more comprehensive estimation procedures. Methods for simulating and forecasting 
with FARMA models are given in Section 11.4. Before the conclusions, FARMA models are 
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fitted to hydrological time series to illustrate how they arc applied in practice. Parts of the 
presentations provided in Sections 11.2 to 11.5 were originally given in a paper by Jimenez et al. 
Urn). 
11.2 DEFINITIONS AND STATISTICAL PROPERTIES 

11.2.1 Long Memory 

Persistence or long renn memory is the term used to describe a time series that has either an 
autocomlation structure that decays to ztro slowly with increasing lag or equivalently a spectral 
density that is highly concentrated at frequencies close to zero. This autocornlation stlllcture 
suggests that the present state of the process must be highly dependent on values of the time 
series lying far away in the past, and, hence, to model the process the whole past should be 
incorporated into the description of the process. 

A variety of precise mathematical definitions for long memory are given by authors such as 
Eberlein and Taqqu (1986). Davison and Cox (1989) as well as other authors cited in this chapter 
and Chapter 10. A simple definition that captures the essence of persistence, is the one presented 
in Sections 2.5 and 10.3.3. More specifically, a time series process can be classified according to 
the behaviour of the memory of the process where memory is defined as 

I11.2.11 

where pL is the theoretical ACF at lag k for the process. A long term memory process is defined 
as a process with M = =, whereas a short term memory process has M < -. The M term is often 
used as a mixing coefficient for stationary time series (Brillinger, 1975) to indicate the rate at 
which the prcsent values of the time series arc independent of the far away past values. The 
asymptotic independence between values of the time series well spaced in time where the mixing 
rate is given by M < -, has been traditionally used by time series analysts to prove results relat- 
ing to normality, asymptotic behaviour of a quantity like the sample ACF, parameter estimates 
obtained either by maximum likelihood estimation or by the method of moments, hypothesis 
testing, and Portmanteau tests. Hence, most of the findings usually used in time series analysis 
are not necessarily true for long term memory processes because these processes have an infinite 
memory. 

Besides hydrology, meteorology and geophysics, the classification of time series according 
to short and long memory may be useful in other arcas (Cox, 1984; Panen, 1982) such as 
economics (Granger, 1980; Granger and Joyeux, 1980). This classification has been used even 
with other types of stochastic processes (Cox, 1984). although the memory has had other defini- 
tions. An alternative definition of long term memory, essentially equivalent to the definition 
given above, is to consider time series processes whose ACF decays as 

pr = O(k-7, (11.2.21 

wherc (I lies in the interval (0.1). 
An advantage of the FARMA family of models, defined in the next subsection, is that it can 

describe both short and long term memory. Furthermore. it constitutes a direct generalization of 
the ARMA and ARIMA models of Chapters 3 and 4. rcspectivcly. 
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11.23 Definition of FARMA Models 

As explained in Chapter 4, a device frequently used in time series modelling is differencing 
the series, if it is thought that its mean function is time dependent. A time dependent mean could 
produce sample autocomlations that, rather than decaying to zero exponentially like the ACF’s 
of ARh4A models, decay to zero much more slowly. In fact, if the rate of decay of the ACF 
Seems to depend linearly upon the lag the usual approach is to work with the first differtnces of 
the time series. For the type of processes studied in this chapter, the ACF decays to zero at a rate 
slower than exponential, but faster than linear. This suggests the use of a device similar to the 
usual differencing operator, to model time series having a slowly decaying ACF with long 
memory. In fact, FARMA models generalize in a natural form the concept of ARIMA time 
series models containing differencing operators. 

The FARMA family of models is a generalization of the ARIMA models of Chapter 4 
which in turn constitute an extension of the ARMA models of Chapter 3. To define FARMA 
models, the concept of differencing is generalized by means of the filter 

(1 1.2.31 

where B is the backward shift operator. For an ARIMA model, the values of d in the filter in 
[ 11.2.31 arc restricted to be zero when the series being modelled is stationary and to be a positive 
integer when the series must be differenced to remove nonstationarity. When d can befrac- 
tional, and hence take on real values, the above filter becomes the one used with FARMA 
models. As is explained in Section 11.2.3 on the statistical properties of FARMA models, the 
value of d conmols the memory of the process. 

As originally suggested independently by Hosking (1981) and Granger and Joyeux (1980), 
a FARMA(p,d,q) model for modelling a series zI is defined as 

1 1 
2 6 

= 1 - d B - - d ( l - d ) B 2 - - d ( l - d ) ( 2 - d ) B 3 -  . . .  

$ ( E ) v ~ z ,  = e(B)a, [ 1 1.2.41 

w h m  $(E)  = 1 - - I@ - . . . - $pBp is the autoregressive (AR) operator of order p hav- 
ing the AR parameters . . . ,$,,; e(B)  = 1 - 8,B - 8# - . . . -8#V is the moving aver- 
age (MA) operator of order q having the MA parameters 8,,02 . . . , 8,; V d  is the fractional dif- 
ferencing operator defined in [11.2.3]; and u, is a white noise process that is identically and 
independently distributed with a man of zero and variance of 02 (i.e. IID(0.u~)). As is also the 
case for the standard ARMA model of Chapter 3. the operators $(B) and 8(B)  arc assumed to 
have all roots lying outside the unit circle and to have no common roots. Finally, no mean level, 
p, is written in [ 11.2.4) since V d p  = 0 for positive d. 

One can write the FARMA process in [ 1 1.2.41 as 

[11.2.5] 

One can interpret the short memory component of the FARMA process as being modelled by 
applying the usual ARMA filter given by 8(B)l$(B) to the a, time series that is IID(0,a;). The 
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fractional dfferencingjilter Vd handles the long mtmory part of the overall process. 
For a nonseasonal FARMA model, the notation FARMA@,d,q) is employed where p and 

4 an the orders of the AR and MA operators. respectively. and d is a parameter in the filter in 
[ 11.2.31 and can take on real values. When d is a positive integer, the FARMA@&) model is 
quivalent to an ARIMA@d,q) model where the acronym ARIMA stands for autoregressive 
integrated moving average (see Chapter 4). If d = 0, the FARMA@,d,q) model is identical to a 
shon memory ARMA@,q) model of Chapter 3. When p = 4 = 0, the FARMA@dg) model 
reduces to 

Vdz,  = a, [ 1 1.2.61 

which is called afractional differencing model. The labels that can be used for the various types 
of FARMA. ARIMA and ARMA models arc listed in Table 11.2.1. In this table, the 
FARMA@#,4) model is the most general and it contains all the other models as subsets. 

As an example of how to write a specific FARMA@,d,q) model, consider the case of a 
FARMA(0,0.3,1) for which p = 0, 4 = 1 and d has a real value of 0.3. From [ 11.2.4) this model 
is given as 

(1 -B)O%, = ( 1  - e18)a, 

Using [ 1 1.2.31, the fractional differencing operator is expanded as 
1 1 
2 6 

(1  - B)0.3 = 1 - 0.38 - -(0.3)(1 - 0 . 3 ) ~ ~  - -0.3(1 - 0.3)(2 - 0.3)B3 - . . . 

= 1 - 0.38 - 0.1058* - 0.0608~ - * * * 

Substituting the expanded fractional differencing operator into the equation for the 
FARMA(0,0.3,1) model results in 

(1 - 0.38 - 0 . 1 0 5 8 ~  - 0 . 0 5 9 8 ~  - . . . )z, = (1  - e,B)a, 

or 

or 

t, = 0.3z,-, + 0.105~,-2 + 0.059~,-3 + . . . + 0, - elu,-l [ 1 1.2.71 

From this equation, one can see that the weights for the z, terms are decreasing as one goes 
further into the past 

For the theoretical definition of the FARMA@,d,q) model in [11.2.4], the u, series is 
assumed to be IID(0.a;). In order to develop estimation and other model construction methods, 
usually the a,'s are assumed to be normally distributed. Recall that the assumption that the u,'s 

are NID(0,a:) for application purposes is also invoked in Part III for the ARMA and ARIMA 

models of Chapters 3 and 4, respectively, as well as most other models presented in this book. 
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Table 1 1.2.1. Names of models. 

393 

Values of d Values of p Values of 4 

Real value 
Real value 

Positive P 4 
Integer 

Positive 0 4 

When the residuals of a fitted FARMA model and, hence, the original series are not nor- 
mally distributed, one approach to overcome this problem is to invoke the Box-Cox transforma- 
tion defined in r3.4.301. Subsequent to this, one can estimate the parameters of all the model 
parameters, including d, for the FARMA model fitted to the transformed series. 

Three classes of seasonal models are given in Part VI of the book. The definition for non- 
seasonal FARMA models can be easily extended to create long memory seasonal FARMA 
models for each of the three kinds of seasonal models. To create a seasonal FARMA model, 
which is similar to the seasonal ARIMA model of Chapter 12, one simply has to incorporate a 
seasonal fractional differencing operator as well as seasonal AR and MA operators into the basic 
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nonseasonal FARMA model in [11.2.4]. A descasonalized FARMA model is formed by fitting a 
nonseasonal FARMA model to a series which has been first deseasonalized using an appropriate 
deseasonalization technique from Chapter 13. To obtain a periodic FARMA model that reflects 
the periodic ARMA model of Chapter 14, one simply defines a separate nonseasonal FARMA 
model for each season of the year. Future research could concentrate on developing comprthen- 
sive model building techniques, especially for the cases of seasonal FARMA and periodic 
FARMA models. Hui and Li (1988) have developed maximum likelihood estimators for use 
with periodic FARMA(O4,O) (is. periodic fractional differencing) and periodic FARMA@d,O) 
models. 

Another function for FARMA modelling is to allow the noise terms of transfer function- 
noise (Part VLI), intervention (Part vm), and multivariate ARMA (Part lX) models to follow a 
FARMA model. The defmitions of these models are simple. However, the development of 
model construction techniques, especially efficient estimation methods, would be a formidable 
task. Hence, this should only be undertaken if practical applications using real world data indi- 
cate a need for these kinds of long memory models. 

Keeping in mind that FARMA modelling can be expanded in many directions, the rest of 
this chapter is resmcted to the case of nonseasonal FARMA models. In the next subsection, 
some theoretical properties of the FARMAbdg) model in [ 11.2.41 are given. 

11.23 Statistical Properties of FARMA Models 

As explained by Hosking (1981), the FGN model of Section 10.4 is in fact a discrete-time 
analogue of continuous-time fractional noise. Another discrete time version of continuous-time 
fractional noise is the fractional differencing (ix. FARMA(Od,O)) model in [11.2.6]. An advan- 
tage of the fractional differencing model over FGN is that it can be expanded to become the 
comprehensive FARMA@dq) model in [11.2.4], which in turn is a generalization of the 
ARailA model. 

The basic properties of FARMA processes are presented by Hosking (1981) and Granger 
and Joyeux (1980). As explained by Jimcnez et al. (1990). they found among other things that: 

For the process to be stationary, d < 0.5 and all the roots of the characteristic quation 
$(B)  = 0 must lie outside the unit circle. 
For the process to be invertible, d > -0.5 and all the roots of the characteristic equation 
8(B)  = 0 must lie outside the unit circle. 

1 1 Because of (a) and (b), if -- < d < -, the FARMA@,d,q) process is both stationary and 
2 2 

invertible. 
I For 0 < d < - the process has long memory (see Section 11.2.1 for definitions of long 
2 '  

mmory). 
The ACF behaves as 

pr = O(k-l+U). [11.2.8] 

The process is self-similar, which mcans that the stochastic properties of the process arc 
invariant under changes of scale. 
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Several probabilists (Rosenblan, 1%1, 1979, 1981; Taqqu, 1975) have studied the 
behaviour of statistics derived from time series processes where the ACF behaves as in [ 1 1.2.81 
and d is positive. They found that 
(g) The sample mean times N l R d ,  where N is the number of observations, converges in law to 

a normal random variable. 
(h) The sample autocovariances do not converge asymptotically to a normal random variable. 

The result in (g) about the mean is of some interest to hydrologists because it has been 
found that processes thought to possess long term memory have a sample mean that Seems to 
indicate slow changes in a n d .  This wandering of the sample mean can be explained in terms of 
(g) above. This shifting level process for modelling a changing mean is referred to in Section 
10.3.3 and references are provided at the end of Chapter 10. Arguments to show that persistence 
in geophysical processes is due to a slowly changing a n d  cannot be based just on statistical 
behaviour but should use geophysical insight. Note also that the above results are not restricted 
to the FARMA process case but that they are valid for any time series whose ACF behaves as in 
[ 11.2.81. 

An important, although seemingly mvial extension of the original definition of FARMA 
processes by Hosking (1981) and Granger and Joyeux (1980) is to relax the assumption that the 
mean of the time series is zero. The extension of the model given above to the case of a nonzero 
mean is straightforward. However, what is very important to note is that if a constant, in particu- 
lar the mean, is passed through the filter Vd, the output, for the case of a positive d ,  is zero. 
Hence, the mean of the process does not have to appear in the equations that define the model. 
Nevertheless, it should be noted that the mean is a well defined quantity for this process when 
d c 0.5. 

The aforementioned property is very important for determining the stochastic properties of 
the estimates for the parameters. This is because the sample mean can be used as an estimate for 
the mean of the time series and the slow rate of convergence of the sample mean as given in (g) 
above does not affect the asymptotic rate of convergence of the estimates for the other parame- 
ters to a Gaussian random variable, where this rate is the usual A'-'. 

Another interesting feature is that the filter Vd can smooth some special trends as can be 
seen easily for the case d = 1 when the a n d  is a straight line. When 0 5 d < 0.5 the filter Vd 
smooths slowly changing a n d s .  Hence, even if the process mean is slowly changing, FARMA 
models could be used to model the time series in much the same way that ARIMA models are 
employed with a deterministic drift component. 

Another consequence of the fact that 

vqz, - p) = vdz,, d > 0 [ 11.2.91 

where z, is the value of the process at time I with a theoretical mean p, is that the process 
behaviour is independent of the mean. In the stationary ARMA process, on the other hand, the 
local behaviour of the process does depend on the mean. This can be seen by considering the 
value of the process conditioned on the past as given by E{z,+l Is,, s 5 f ) .  In the ARMA case, 
this quantity depends on p = E{z,) but in the FARMA case with d > 0, it does not. In the 
remaining parts of this section, unless stated to the contrary, the mean p will be assumed equal to 
zero. 
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An important consequence of the slow rate of decay to zero of the ACF as given by [ 11.2.81 
is that Bartlett's formula (Bartlett, 1946) for the variances and the covariances of the estimated 
autocovariance function (ACVF), {?J, has to be modified accordingly. In fact, the exact for- 
mula for the variance is given by 

Then, by [ 11.2.81 

[ 11.2.101 

[11.2.11] 

Hence, if d < 0.25 then var(fk) = O(N'), which is the same order as in the case of a short 
memory process. However, if 0.25 < d < 0.5 the order of vor(?k) is larger than N'. In fact as d 

approaches 0.5 the variance approaches a quantity of order one. This implies that the stochastic 
variability of the estimated ACVF is higher for long term memory processes with 0.25 < d < 0.5 
than for short term memory processes. Moreover, the order of the variance depends on the unk- 
nown quantity d .  Finally, similar results are valid for the covariances of the estimated ACF. 

An interesting subset of the FARMA@,d,q) family of processes in [11.2.4] is the 
FARMA(O,d,O) process in [11.2.6] which is referred to as the fractional differencing model. 
This model has been studied in some detail and expressions for the ACF, partial autocorrelations 
function (PACF). partial linear regression cocfficients. and inverse autocorrelations are known 
(Hosking. 1981, 1984, 1985). One important fact about the stochastic behaviour of a 
FARMA(Od,O) process is that all its autocorrelations are positive if d is positive, and they are 
negative otherwise. Also, all the partial autocorrelations of the FARMA(O.d.0) model have the 
same sign as the persistence porumeter d ,  and their rate of decay to zero is of the same order as 
the inverse of the lag. Because of these limitations of the structure of the ACF, fractionally 
differenced noise is passed through an ARMA filter in order to obtain a richer autocomlation 
structure within the framework of a FARMA@dg) process. 

As suggested by Jiminez et al. (1990), it is possible to generalize the filter (1 -B)  in 
another form, which is closely related to the (1 - B)d filter in [11.2.3]. In particular, this filter is 
defined by (1 +B)d .  Note that the associated transfer function also has a root on the unit circle 
at B = -1. m e  coefficients of this filter an the same as those of the filter (1 - B ) ~  except for the 
sign and hence the process also has long term memory if d > 0, it is stationary if d < 0.5, and 
invertible if d > -0.5.  However, the interesting fact is that although the absolute values of the 
autocorrelations arc the same for both filters, the autocorrelations of the filter (1 + B ) ~  alternate 
in sign. More general autocorrelations structures could be obtained by generalizing the filters to 
accommodate complex roots on the unit circle. The class of processes studied in this chapter an 
panicular cases of the more general processes that result by filtering white noise through the 
filters defined by (1 - E E ) ~ ,  where the parameter E lies in the range lel 5 1. In this chapter it is 
assumed that E = 1, or -1. 
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11.3 CONSTRUCTING FARMA MODELS 

11.3.1 Overview 

To fit a FARMA@d,q) model to a given time series, one can follow the usual identifica- 
tion, estimation and diagnostic check stages of model construction. Model building procedures 
arc fairly well developed for the case of the fractional differencing (i.e. FARMA(OI.0) model in 
[11.2.6]). However, further research is required for obtaining a comprehensive set of tools for 
building the FARMA@d,q) models in [ 11.2.41. Of particular impoMce is the need for good 
estimation techniques that are both computationally and statistically efficient, as well as capable 
of estimating the mean level along with the other FARMA model parameters. Unlike 
ARIMA(p,d,q) models where d is futed at zero or some positive integer value prior to estimat- 
ing the other model parameters for the differenced series. one must, of course, estimate d in the 
FARMA@&) model simultaneously with the othcr model parameters. 

11.33 Identification 

To identify a suitable ARMA model (Chapter 3) or ARIMA model (Chapter 4) to fit to a 
given time series, one can examine the characteristics of graphs of the sample ACF, PACF, 
IACF and IPACF (Chapter 5). By knowing the behaviour of the theoretical ACF, PACF, IACF 
and IPACF for ARMA or ARIMA models, one can determine from the sample plots which 
parameters to include in the model. If more than one model is fitted to the series, an automatic 
selection criterion such as the AIC (see Section 6.3) can be used to select the best one. 

The sample ACF, PACF, IACF and IPACF can also be used to identify a FARMA(p,d,q) 
model for fitting to a series. If the series is stationary and the sample ACF dies off slowly, then 
d should be estimated to account for this long term persistence. Hosking (1981) gives formulae 
for the theoretical ACF, PACF and IACF for the case of the fractional differencing model in 
[11.2.6]. Further research is required to obtain formulae for the theoretical PACF, IACF and 
IPACF for FARMA@,d,q) models. By comparing the behaviour of the sample graphs to the 
theoretical findings one can decide upon which parameters to include in the FARMA(p.d,q) 
model. Additional procedures for model identification arc presented in Section 11.5 with the 
applications. 

11.33 Estimation 

This section follows the research findings of Jimcnez et al. (1990). However, the reader 
may also wish to refer to the FARMA estimation procedures presented by Boes et al. (1989), 
and by Brockwell and Davis (1987, pp. 464-478). as well. As noted earlier in Section 11.2.3, 
the coefficients of the filter (1 - B ) d  and (1 +& only differ in sign. Because the estimation 
results of this section are valid for both filters, everything is described only for the filter 

There am several estimation procedures available in the literature. Fnquency domain 
methods do not seem to be as efficient as estimators based on the tim domain representation. 
Hence, only time domain methods arc considered here. 

Because of the slow rate of convergence of the sample mean to the true mean as can be 
seen in (g) in Section 11.2.3, it is of utmost importance to find a more efficient estimator of the 
mean. The most obvious candidate is the maximum likelihood estimate of the mean (McLeod 
and Hipel. 1978a), which is given by 

Vd=(l - B ) d .  



398 Chapter 11 

r; = ( Z k h ) ( l k 1 1 )  [11.3.1] 

when zT=(zI,z2. . . . , z N )  is the 1xN vector of observations, C is the autocornlation matrix of the 
time series. and 1 represents a column vector of ones. However, it can be shown that the sample 
mean is efficient for the case when the persistence parameter d is nonnegative, and it is not effi- 
cient when the persistence parameter is negative. This agrus with the common knowledge that 
overdifferencing can lead to inefficient estimates. Although it is difficult to give a physical 
meaning to antipersistence, a negative value of d can be useful from a purely fitting point of 
view as it has been observed that somtimes FARMA models with negative d arise while fitting 
them to a time series, and, therefore, it is important in these cases to estimate the mean of the 
process using the maximum likelihood estimate as given by the above formula. The evaluation 
of the above formula can be performed efficiently using either Cholesky decomposition (Healy, 
1%8) of the inverse of Z given by the partial linear regression coefficients, {ei,] (which can be 
obtained easily by the Lcvison-Durbin algorithm (Dubin, 1960)). or by the Trench algorithm for 
the inverse of a Toeplitz mt r ix  (Trench, 1964). For the particular case of fractionally differ- 
enced noise, Hosking (1981) gives a closed expression for the reflection coefficients or partial 
linear regression coefficients. Hence, in this case a closed expression for the maximum likeli- 
hood estimate of the mean is known. For the situation where E = -1 in the filter, mentioned at 
the end of Section 11.2.3, this closed expression is still valid with appropriate sign changes. In 
terms of the partial linear regression coefficients. the following expression could be used to 
evaluate the maximum likelihood estimate c; 

N - 1  c (21 - e1,zI-l - 0 2 I Z I - 2  - . . . - @I,ZO)  

[ 1 1.3.21 c;=" I* 

N-1 

I* 
c (1 - 41.1 - $2, - . . . - 

In this stction, it is assumed that the persistence porumerer d is nonnegative, the sample mean is 
used as the estimate of the mean, and the sample mean has been subtracted from each observa- 
tion. 

There iur two mthods available to estimate the remaining parameters in the time domain: 
exact maximum likelihood estimation or an approximation of the filter Vd. Most of the max- 
imum likelihood estimation algorithms depend on computing the one step ahead prediction 
errors. a,, which can be computed in terms of the partial linear regression coefficients. These 
coefficients can be computed efficiently by the Durbin-Levinson algorithm. Finally, with these 
values of e, the estimates of the parameters are obtained by minimizing the modified sum of 
squares function given by: 

[11.3.3] 

Although the computation of estimates by maximum likelihood is statistically attractive, the 
amount of computations involved in the above scheme makes algorithms having fewer numbers 
of computations competitive alternatives. 

The algorithm proposed by Li and M c M  (1986) is computationally economical and is 
presented in Appendix A1 1.1. The algorithm consists of approximating the filter Vd by the filter 
Vi where V& is defmed as the filter resulting by taking the first M terms of the filter V d .  i.e. by 
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approximating the process by a “long” autoregnssion. Then the algorithm minimizes the sum 
of the squared residuals, where the residuals are obtained as the output of the filters v i  and the 
ARMA filter. To compute the residuals, an algorithm such as the one given by McLeod and 
Sales (1983) could be uscd. Also, as recommended by Box and Jenkins (1976) the sum of 
squared residuals could be extended back in timc by backforecasting. Note that the approxima- 
tion of Vd by Vi is not the optimal approximation in a least squares sense. However, since the 
order to M is comparable with N. it has to be very close to the optimal approximation. The order 
of approximation necessary to obtain consistence estimates has been found to be of the order of 
NIn and an ad hoc rule is to fit time series with at least 50 observations. The order of truncation 
M is chosen as a number of between N/4 and N“, by trying to balance the degree of approxima- 
tion of the filter Vi to the filter Vd and the amount of computations involved. Nonetheless, for 
N close to 50, M is taken as half the number of observations. The amount of computations using 
this algorithm is much smaller than that for the maximum likelihood approach. Monover, esti- 
mates obtained in this form are asymptotically equivalent to the maximum likelihood estimates 
and it seems that the finite sample estimates arc generally close enough to the maximum likeli- 
hood estimates. Li and McLeod (1986) studied the asymptotical distributions of the estimates 
when the mean of the time series is known. They derived closed form expressions for the vari- 
ances of the asymptotically normal distributions of the estimates. It can be demonstrated that the 
estimation of the mean by the sample mean does not affect the above asymptotic results. How- 
ever, these results are not likely to hold for a finite sample size because of the long term per- 
sistence and the parameter d is constrained to lie in the open interval (4.5.0.5). In practice, the 
interval is closed and it can be observed using simulation that if the persistence parameter is 
close to 0.5, there is a high probability for the estimate of d to be equal to 0.5. A similar 
phenomenon was observed for the ARMA(0,l) model by Cryer and Ledolter (1981). Hence, the 
rate of convergence of the estimates depends on the parameters even for relatively large sample 
sizes of more than 200. Additionally, it should be noted that the above method is very similar to 
fitting an autoregressive process of order one if d is not close to 0.5, say less than 0.3. 

Bootstrapping a Time Series Model 

Because the FARMA model is an infinite autoregression and, moreover, is nonstationary 
when d 2 0.5, it is expected that finite sample properties of the estimates are different than the 
large sample approximations. Consequently, it is interesting to obtain further information about 
these finite sample distributions. One interesting possibility to increase one’s knowledge of the 
finite sample distribution of the estimates is by using the bootstrapping tachnique proposed by 
Cover and UMY (1986). 

Since Efron (1979) proposed the bootstrap, there have been several proposals to extend the 
original technique to time series analysis. However, most of them have used a straightforward 
generalization of the original bootsuap with the consequence that what they did was to use dis- 
torted models. The idea of Cover and UMY (1986) is to inject randomness into the loss function 
by resampling the positions of the residuals and not the observations themselves (is. the time 
lags are resampled with replacement and with the same probability). This resampling of the time 
lags is interesting because of the nature of data that depends strongly on the time coordinates. 
Note also that unlike other resampling plans. the assumption that the fit& model is the true 
modcl is not crucial. Also, it can be applied to any time series model and not just to a FARMA 
model. Morcover, the idea is valid for other stochastic processes. 



400 Chapter 11 

The technique can then be described as follows: 
(a) Draw a random sample of size N with replacements from the integers between 1 and N; 
'b) Obtain estimates of the parameters by minimizing the sum of the squared residuals a,' with 

weights equal to the number of times that the number t appeared in the random sample in 
(a): 
Repeat (a) and (b) a large enough number of times to obtain reliable estimates of the distri- 
bution characteristics of the estimated parameters. 

This technique can greatly increase one's information about the parameter estimates as can 
be Seen in the applications. However, further theoretical results are required to confirm theoreti- 
cally the finite sample validity of the bootstrap approach. 

(c) 

11.3.4 Diagndic Cbedcs 

To ascertain if a calibrated FARMA(p.d,q) model adequately fits a given series, one can 
employ diagnostic checks similar to those given in Chapter 7 for ARMA and ARIMA models. 
The innovations of the FARMA model in [ 11.2.41 are assumed to be Gaussian, homoscedastic 
(i.e. have constant variance) and white. When, in practice, the residuals of the fitted model are 
not always nonnal/homoscedastic, this can often be overcome by transforming the data using the 
Box-Cox transformation of [3.4.30]. The parameters of the FARMA@,d,q) model can then be 
estimated for the transformed series and the residuals once again subjected to diagnostic checks. 

The most important innovation assumption is independence. If the residuals of the fitted 
model arc comlated and not white, then a different FARMA model or, perhaps, some other type 
of model, should be fitted to the series. The best check for whiteness is to examine the residual 
autocorrelation function (RACF) for the calibrated model, as is also the case for ARMA and 
ARKMA models (see Chapter 7). The large-sample distribution of the RACF for a FARMA 
model is given by Li and McLeod (1986) who also present a modified Portmanteau test statistic 
to check for whiteness. 

11.4 SIMULATION AND FORECASTING 

11.4.1 Introduction 

Aftcr a FARMA@,d,q) model has k e n  fitted to a given series. the calibrated model can be 
employed for applications such as simulation and forecasting. The purpose of this section is to 
present simulation and forecasting procedures for use with FARMA models. Techniques for 
simulating and forecasting with M A  and ARIMA models are presented in Part IV of the 
book. Finally, forecasting experiments in which fractional differencing models arc used, in addi- 
tion to other kinds of models, are given in Section 8.3. 

11.43 Simulating with FARMA Models 

Based upon a knowledge of closed expressions for the partial linear regression coefficients. (I,,. fast algorithms for generating synthetic sequences from FARMA models can be given. Par- 
tial linear regression coefficients an defined as the values of a, that minimize 
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~ { z ,  - aIz,-l - * * * - a,zd2 [11.4.1] 

where E is the expectation operator. Thus, they art the values that minimize the one step ahead 
forecast errors. As is well known, the time series process can be written in terms of the innova- 
tions as: 

z , = u , + $ ~ , z , - l +  - * *  +$,,zo [11.4.2] 

where the innovations {a,) are a sequence of independent Gaussian random variables with mean 

0 and variance 0,‘ = n ( 1 -  $i’j). First consider the case of simulating fractionally differenced 

noise. Expressions for $k, art presented by Hosking (1981). and recursive expressions are given 
by: 

I 

j=  1 

$I,, = d/(f - d)  

4j,, = 4j+l,,U + - j - d)/(O’ - 1 - d)(r -A), [ 1 1.4.31 

Consequently, to simulate a FARMA(O,d,O) noise model it is only necessary to compute recur- 
sively $k,, generate a normal random variable and then use [11.4.2]. 

To simulate using a FARMA(Od,q) model, the fractionally differenced noise is generated 
and then passed through the moving average filter. When generating synthetic data using a 
FARMA(pd.0) model, one possible approach is to simulate the FARMA(Od,O) model using 
above algorithm and after choosing p initial values, which can be done using the method in 
McLeod and Hipel (1978b), as explained below, generate recursively the other simulated values. 
Finally, the general FARMA(pd9) case can be obtained by a combination of the above 
methods. 

Another possible method to generate synthetic sequences (McLeod and Hipel, 1978a.b) is 
to obtain the Cholesky decomposition of the matrix of the theoretical autocorrelations, X, and to 
multiply this decomposition mamx by a vector of independent Gaussian variables with mean 
zero and desired variance (see Section 9.4 for the case of ARMA models). Finally, a mean 
correction is added to the series. However, although this method is attractive for other models, it 
may be less desirable than the method described above because it involves the computation of 
the matrix of autocorrelations and the theoretical autocorrelations arc given in terms of hyper- 
geometric functions (Hosking, 1981). Thus, the computation task time necessary to compute the 
autocorrelations is much bigger than the computation time necessary to pass FARMA(O4,O) 
noise through the different filters. However, once the ACF has been calculated and the rtquired 
Cholesky decomposition obtained, this method is useful if many independent realizations of the 
process arc to be simulated. Finally, both methods are equivalent in the case of the 
FARMA(Od,O) model. 

11.43 Forecasting with FARMA Models 

Forecasting by using ARMA models is generally most useful when the forecaster is just 
interested in one step ahead or two steps ahead forecasts. This is because the forecast functions 
produced by ARMA models converge exponentially fast to the mean of the time series. Hence, 
in ARMA models long term forecasts are. given by the mean p or some estimate of it. This is not 
the case when the process has a long term memory, as is clear from the definition of persistence. 
For the case of a lonR memory process. the forecasting functions still converge to the mean u: 
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however, the rate of convergence is not exponential but slower. For persistent time series, the 
rate of decay of the forecast function depends on the degree of persistence that the process 
possesses. 

Another consequence of persistence in forecasting is that the variance of the forecast func- 
tion of a persistent process decays to the variance of the process, 0,' at a rate that could be sub- 
stantially slower than exponential, depending on the degree of persistence. Therefore. confi- 
dence bounds for the I-step ahead forecasts of persistent processes are smaller than those of short 
term memory processes, if I is bigger than two or thrte. This can be seen if the timc series 
model is written as a linear process (Box and Jenkins, 1976) 

Then, the I-step ahead forecast, 4[I], is given by 
w 

f,"] = xak+/ai-k 
k=O 

but, for a FARMA model, at = k-14. Therefore, 

[ 1 1.4.41 

[ 1 1 . 4 4  

var{f,[lU =a; = O(I-l+u) 11 1.4.61 

Equation [ 11.431 is most helpful for forecasting if estimates of ut are available and if the 
coefficients at decay to zero fast enough so that the necessary mncation involved in the compu- 
tation of f,[l] as given in [11.4.5] produces a negligible error. However, for FARMA models 
these coefficients do not decay fast enough, and, hence, expressions for the forecast function 
< [ I ]  that do not involve approximations could be useful. The method proposed is based on the 
AR form of the time series as given by [ 11.4.21. The forecast function is given by 

4[lI = $,,mi + +Z,l(I)Z/-l + * . + $r,r(I)zo [ 1 1.4.71 

where 

[11.4.8] 

This expression has advantages over the formula given in [11.4.5] because it does not involve 
approximation either by truncation of an infinite series or in the computation of the residuals. 
Moreover, by using [ 11.4.71 it is possible to show that 

4[II = 49,+/ZI + . . . + h + / , + / Z O  [ 1 1.4.91 

Hence, as discussed above the forecast function decays to the theoretical man p at a rate slower 
than exponential. For example, for the FARMA(Od,O) model 

9 - l ~ ~  + . . + ( r  + I ) ~ - ' Z ~  
((1) = 

(d - l)! 
[ 11.4.101 
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Geographical Locations 
Walkerton, Ontario, Canada 
near Norslund, Sweden 
Orshava, Romania 
Asheville, N. Carolina 
near Sjotop-Vannersburg, Sweden 
McKenzie Bridge, Orcgon 
St. Louis, Missouri 
Smalininkai, Lithuania 
Bask, Switzerland 
Ogdensburg, New York 
Teddington, England 
Fortaleza, Bmil 
Philadelphia 
Central England 

11.5 FFITINC FARMA MODELS TO ANNUAL HYDROLOGICAL TIME SERIES 

To demonstrate how FARMA models arc applied in practice, FARMA models arc fitted to 
the fourteen hydrological time series listed in Table 11.5.1. The data consists of eleven annual 
r i v a  flows in m3 /s from different parts of the world, two records of average annual rainfall in 
mm, and an annual temperature series in degrees Celsius. Btcause efficient estimation pro- 
cedures arc available for use with FARMA(Od.0) (is .  fractional differencing) and 
FARMA@,O,q) (i.e. ARMA(p4)) models, these arc the models which arc considered for fitting 
to the series. Estimation methods for use with FARM(OB.0) and ARMA(p4) models arc 
presented in Sections 11.3.3 and Chapter 5, respectively. 

Table 11.5.1. Annual time series used in the applications of FARMA models. 

Time spans 
1915- 1976 
1852-1922 
1837-1957 
1880-1900 
1807-1957 
1900- 1956 
1861-1957 
1811-1943 
1807-1957 
1800- 1930 
1883-1954 
1849- 1979 
1800- 1898 
1723- 1970 

Descriptions 
(1) Saugeen River 

Dal River 
Danube River 
French Broad River 
Gota River 
McKenzie River 
Mississippi River 
Neumunas River 
Rhine River 
St. Lawrence River 
Thames River 
Rainfall 
Rainfall 
Average temperature 

Lengths 
62 
70 

120 
70 

150 
56 
96 

132 
150 
131 
71 

131 
99 

248 

In practice, the defition of long term memory in terms of M = 00 in [ 1 1.2.11 is difficult to 
check and instead the persistence criterion given in r11.2.81 is used. Hence, a sample ACF that 
decays slowly to zero could indicate that the time series has long term memory. For those time 
series whose sample ACF decays to zero at a hyperbolic rate. the possibility of modelling them 
by FARMA models is considered. Within the fourteen data sets, the St. Lawrence Riverflows 
and the Philadelphia Rainfall series show an estimated ACF that seems to decay to zero hyper- 
bolically. Thmfore, these two data sets present evidence that suggests the use of FARMA 
models to fit them. The graph of the St. Lawrtnce Riverflow series against time and its sample 
ACF arc shown in Figures II.1 and 3.2.1, respectively. For other records such as the Saugeen 
Riverflows and Rainfall at Fortaleza, the evidence, as given by the estimated ACF's, in favour of 
a persistence parameter is not so strong but it is a possibility. However, it should be remarked 
that if the persistence parameter d is close to zero and, hence, between 0 and 0.2, detection of 
long term memory by visual inspection of the autocomlations can be difficult. Momver, 
because Bartlett's formula nteds to be multiplied by a factor of order A'-'& (d 2 0.25). for the 
case of a FARMA(p,d,q) process, visual inspection of the sample ACF should be used with c8n 
when it is suspected that the process under analysis could have long term memory. 
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If the process belongs to the FARMA family of models, the PACF should decay to zero at a 
hyperbolic rate. This rate is independent of the degree of persistence. However, for the cast of a 
FARMA(O#,O) process, long term memory implies that all the values of the PACF should be 
positive. This behaviour of the PACF for the FARMA(O#,O) process suggests that to detect per- 
sistence, not only a hyperbolic decay of the PACF is of interest, but also the behaviour of the 
signs of the PACF. This suggests the use of a nonparametric sign test to test the signs of the 
estimated PACF. None of the estimated PACF's of the fourteen data sets show strong evidence 
of a hyperbolic rate of decay to m. However, some of them like those for the St Lawrence 
Riverflows and Philadelphia Rainfall series show PACF structures that arc generally positive. A 
sign test of these PACF's gives further support for the conjecture that these time series demon- 
strate signs of persistence. 

Another characteristic of a time series that could indicate the presence of persistence is the 
behaviour of the partial sample means, f,, of the process that are defined as 

[ 1 1.5.11 

For a short memory time series, a plot of Z; against k should show great stochastic variability for 
the fust values of k, but after k reaches a moderate value the graph should decay to an almost 
constant value and should show small stochastic variability. However, for the case of a long 
memory time series, the plot of 2, against k should display great stochastic variability for the 
fust few values of k. For moderate values of k the graph should show a gentle trend that should 
oscillate around a constant value as k increases, and after k reaches a very large value, which 
depends on the degree of persistence, Z;, should reach a constant value. Furthermore, because the 
present values of the time series arc correlated with the past, the current values of ?, are highly 
correlated with the past and, therefore, a plot of 2, against k could show local trends. To detect 
persistence, the rate of decay towards a constant value of the local trends is of interesf as is also 
the presence of an overall gentle trend. However, the presence of local trends in the plot of Z; 
against k by itself docs not indicate the presence of persistence. Within the fourteen data sets, 
the St. Lawrence Riverflows have an overall decreasing trend. This trend is gentle enough to 
assume that it could be due to the presence of persistence in the time series and not due to non- 
stationarity. The graph of f, against k of the St. Lawnnce Riverflows is displayed in Figure 
11.5.1. For some of the other data sets, local a n &  in Tk seemed to be present even at the end of 
the series. Finally, for most of the data sets the behaviour of the partial means is consistent with 
what could be expected in time series having a short term memory, consisting of a rapid decay of 
the graph to a constant value. 

All of the FARMA models considered for fitting to the series in Table 11.5.1 are subsets of 
the FARMA(2,dJ) model given by 

(1 - + 1 ~  - w2)vd(~)(z, -PI = (1 - elB)a,, [ 1 1.5.21 

where 9, is the ith AR parameter, 8, is the fust MA parameter, and p is not present in [ 11.5.21 
for positive d. For the St. Lawrence Riverflows the additional constrained AR(3) model given 
by 
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Figure 11.5.1. Partial sums of the St. Lawrence at 
Ogdensburg, New York from 1860-1957. 

(1 - 4+ - $3B3)(z ,  - l-0 = a , .  [ 1 1.5.31 

was considered, because this is the model used in Chapter 3 and Part III, within the class of 
ARMA models. The most appropriate FARMA model from [11.2.4] to f i t  each series was 
selected according to the minimum AIC (see Section 6.3). considering only those models that 
passed tests for whiteness of the fitted model residuals. The maximum likelihood estimates 
(MLE's) of the model parameters for each series along with the standard errors (SE's) given in 
brackets are displayed in Table 11.5.2. Those time series for which the estimates of d given in 
Table 11.5.2 are positive, portray persistent behaviour. Also, because the degree of persistence 
depends on the magnitude of d ,  those series having higher values of d possess greater degrees of 
persistence. For example, the model for the St. Lawrence River was estimated as a 
FARMA(O4,O) with d =0.4999. This indicates that the flows of the St. Lawrence are highly 
persistent, and, hence the far away past strongly influences the present. A consequence of this 
influence is the slow rate of convergence of the sample mean to the m e  value. For the case of 
the St. Lawrence River this rate of decay is of order O(N4.Oo0'), where N is the number of 
observations. This order of convergence is also true for the forecasting function and the 
estimated ACF of the St. Lawrence Riverflows. An interesting feature of the St. Lawrence 
River is that it is associated with great masses of water which perhaps suggests a model having a 
reservoir term whose time step is larger than the time step used to measure the series. All the 
models that exhibit persistence in Table 11.5.2 are FARMA(0,d.O). The data sets for which it 
was appropriate to fit a FARMA(O,d,O) model are the Mckenzie, St. Lawrence and Thames 
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annual riverflows plus the Philadelphia rainfall series. There were other data sets for which the 
AIC scltctcd ARMA models but the differences between minimum AIC’s for the ARMA models 
and the AIC’s for FARMA(Od.0) models were very small. Finally, note that some rivers do not 
show MY sign of second order correlation structure, as the optimal model according to the AIC 
was simply the mean. These data sets an the Dal, Danube and Rhine Rivers. Keep in mind that 
most of these findings arc consistent with the models suggested by the sample ACF. sample 
PACF and bchaviour of the partial means. 

Table 11.5.2. Parameter estimates and standard m r s  in brackets for FARMA 
models fitted to the hydrological time series. 

series 

Saugeen 
Dal 
Danube 
French 

Gota 

Mckenzie 

Mississippi 

Neumunas 

Mine 
St. Lawrtnce 

Thal l -ES 

Fortaleza 

Philadelphia 

Temperature 

- 
Parameter Estimates and SE’s 

$1 +2 d 01 

-0.234 
(0.12) 
0.59 

(0.08) 

0.29 
(0.10) 

0.24 
(0.08) 

0.12 
(0.06) 

0.27 
(0.08) 

0.2 
(0.06) 

0.27 
(0.10) 

0.499 
(0.08) 
0.12 

(0.10) 

0.23 
(0.08) 

-0.19 
(0.08) 

The bootstrapping technique of Cover and Unny (1986) was used to increase the fmite sam- 
ple infomation about the estimates of the persistence parameter d. For some data sets, the AIC 
does not provide a clear cut separation between models with and without the persistence parame- 
ter d. Also, most of the time the best FARMA model with a persistent parameter was the 
FARMA(O#,O) model. Because of these two remarks, it is interesting to obtain information on 
how reliable are the estimates of d and the estimates of its SE. For these reasons, the bootsaap 
technique proposed by Cover and UMY was used with the FARMA(Od.0) model for all the data 
sets. Although this model is not appropriate for some data sets, the information about the 
behaviour of the estimates of d is valuable. The information given by the bootstrap was 
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summarized by two methods. First, the sample m a n  and standard deviation of the estimates of 
d using the bootstrap technique for each data set were computed. Second, the distribution of the 
estimates of d for each data set was estimated using a nonparamemc kernel estimate (Fryer, 
1977). Using these two pieces of information, it is possible to decide if the data set exhibits any 
evidence of persistence. The means and standard deviations arc given in Table 11.5.3. together 
with the estimates of d obtained using the approximate maximum likelihood method. Plots of 
the density of the estimates of d for the St. Lawrence riverflows and for rainfall at Philadelphia 
arc given in Figures 11.5.2 and 11.5.3, respectively. From these tables and graphs, one can draw 
a number of conclusions: 

(a) The large sample approximations arc not necessarily valid for finite sample sizes. For 
example, the distribution of the estimate of the parameter d for the St Lawrence seems not 
to have tails, and the density Seems to be concentrated on the interval 0.4 to 0.54. More- 
over, the density seems somewhat skewed. 

(b) It appears that the asymptotic standard deviations are smaller than the bootstrap estimates 
for values of d not very close to 0.5, and this behaviour is reversed for values of d close to 
0.5. 
Note also that the means of the estimates of the parameter d obtained by resampling and 
the standard deviations of these estimates do not necessarily represent the data. 
If the threshold a is assumed known, the estimate of a by least squares can be easily found, 

and it can be shown using standard techniques that it has an asymptotic normal distribution with 
the inverse of the information mamx as the asymptotic variance. This information mamx is 
given by the expected value of the truncated variable z;{lz,l > a) .  If the threshold (I is unk- 
nown, the usual techniques cannot be used because of the nondifferentiability of the sum of 
squares function with respect to a. 

(c) 

11.6 CONCLUSIONS 

As a direct result of research on long memory modelling motivated by the controversy sur- 
rounding the Hurst phenomenon defined in Section 10.3.1, Hosking (1981) originally proposed 
the generalization of ARIMA models so that long term persistence could be effectively 
modelled. In particular, Hosking (1981) and independently. Granger and Joyeux (1980), sug- 
gested the FARMA(p#,q) model in [11.2.4] as a flexible approach for describing persistence. 
The FARMA model is especially appealing to researchers and practitioners in hydrology, 
economics and elsewhere. because it can model both long and short term behaviour within the 
confines of a single model. Bloomfield (1992). for example, employs FARMA models for inves- 
tigating trends in annual global temperature data. The fractional differencing fiter in [11.2.3] 
can account for long term behaviour or persistence while the ARMA component of the overall 
FARMA model in [ 1 1.2.41 takes cart of the short memory aspacts of the series being modelled. 
Because of these and other reasons, the FARMA@&) model of this chapter constitutes a more 
flexible approach to modelling persistence than the FGN model of Section 10.4. 

Model construction techniques arc available for fitting FARMA@,d,q) models to data sets. 
However, as noted in Section 11.3 improved estimation techniques should be developed and 
further contributions to model identification could be made. An approximate maximum likeli- 
hood estimation algorithm is presented in Appendix All.1. The applications of Section 11.5 
demonstrate how FARMA(O#,O) models can be fined in practice to yearly time series. Aftcr 
obtaining MLE’s for the model parameters and subjecting the fitted model to diagnostic checks 
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Figure 11.5.2. Probability density of the persistence parameter d obtained 
by bootstrapping for the St. Lawrence Riverflows. 
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Figure 11.5.3. Probability density of the persistence parameter d obtained 
by bootstrapping for the Philadelphia rainfall. 
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Table 11.5.3. Estimation of the parameter d usi 
Data Set Identification 
(1) Saugeen 
(2) Dal 
(3) Danube 
(4) French 
(5) Gob 
(6) Mckenzie 
(9) Neumunas 
(10) Rain Phil. 
(1 2) St Lawrence 
( 13) Thames 
( 14) Temperature 

Means of d 
0.1 10 
0.028 
0.069 
0.148 
0.365 
0.234 
0.105 
0.210 
0.475 
0.139 
0.153 

St. Deviations 
0.212 
0.177 
0.157 
0.168 
0.245 
0.142 
0.137 
0.110 
0.055 
0.149 
0.079 

: bootst 
d 

0.108 
0.024 
0.059 
0.134 
0.388 
0.274 
0.103 
0.229 
0.499 
0.120 
0.151 

- )ping. 
St Deviations 

0. loo 
0.093 
0.072 
0.093 
0.634 
0.105 
0.068 
0.078 
0.079 
0.093 
0.050 

Using bootstrapping technique described in Section 1 I .3.3. the value of the persistence parameter d in the model 
vd(B)z ,=o,  was estimated by the mean value of the estimates obtained using the bootsbap. and is given in the 

second column. The third column g ins  the standard deviation of the estimate obtained by bootsbapping. The 
four(h column lists i which is h e  estimate of d obtained by the appmpriate maximum likelihood method described 

in the Section 11.3.3 and the last column gives the asymptotic standard deviation of J. 

(Section 11.3.4), the calibrated model can be used for simulation and forecasting. Techniques 
for simulating and forecasting with a FARMA(p,d,q) model m presented in Section 11.4. 

APPENDIX A l l . 1  

ESTIMATION ALGORITHM FOR FARMA MODELS 

This appendix presents an algorithm for obtaining approximate MLE's for the parameters 
of a FARMA(p,d,q) model. This estimation algorithm was originally presented by Jimenez et 
al. (1990) and constitutes an extension of the estimation algorithm of Li and McLcod (1986). In 
the algorithm, it is assumed that the estimated mean of the series has been subtracted from each 
observation in order to produce a series having a zero m a n .  The mean can be estimated using 
[ 11.3.21 or some other appropriate technique. 

To compute the unconditional sum of squares of the residuals obtained assuming that the 
model can be represented by a long autoregressive approximation of 

a backforecasting algorithm similar to the one used by McLeod and Sales (1983) to compute the 
unconditional residual sum of squares for seasonal ARMA models, can be used. The uncondi- 
tional sum of squares of the residuals is given by 
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N 2  s = I= [a,] 1 

I=-= 

where [.I denotes expectation with respect to the observations is approximated by 

[A 1 1.1.21 

(A11.1.31 

where Q is a fairly large truncation point. The conditional form of [A1 1.1.11 is given by 

W3)Vi(B)[ztI = W)[a,l. [A 1 1.1.41 

when [a,] = 0, r > N. This CM be expressed by a two stage model 

vi(mz,l = [CII. [A11.1.5] 

and 

$(B)[c,l= wW,l [A 1 1.1.61 

The Box-Jenkins backforecasting approach needs also the forward form of [A1 1.1.11 such that 

$(F)Vi(F)z, = W)e,. [A11.1.7) 

where F is the forward time shift operator such that Fz,  = z,,~ and el is a sequence of normal 
independent random variables with mean 0. The mthcd uses the conditional form of [A1 1.1.71 
given by 

V i m Z I l  = [bll. (A11.1.81 

[A  1 1.1.91 

when [e,] = 0, I < 1. 

lowing steps. 
Step 0. Select Q and M. 
step 1. Compute the autoregressive coefficients of v;. 
Step 2. Compute [b,], using [A1 1.1.91 for t = N + Q, . . . , 1. Initially set [b,] = 0. 

Step 3. Backforecast the [b,] series using [A11.1.9]. This can be accomplished using the SAR- 

Step 4. Backforecast the [I,] series using [A11.1.81. 

Step 5. Compute the [c,] for r = 1 - Q, . . . , N series using [A11.1.51, 

Step 6. Compute the [a,] for r = 1 - Q, . . . , N series using [A1 1.1.61. 

Step 7. Compute S using [A11.1.2]. 

In summary, the unconditional sum of squares can be obtained iteratively through the fol- 

MAS algorithm of McLcod and Sales (1983). 
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Steps 1 to 7 can be repeated until a previously specitied tolerance limit is achieved. The parame- 
ters arc obtained by minimizing S as given in [A11.1.2]. The minimization algorithm given by 
Powell (1964) can be employed to minimize S. 

PROBLEMS 

11.1 

11.2 

11.3 

11.4 

11.5 

11.6 

By referring to appropriate literature cited in Chapters 10 and 11. make a list of the 
range of related definitions for long memory, or persistence. Compare the similari- 
ties and differences among these definitions. Which definition is most clear to you? 
The definition for a F A R M A o  model is presented in [ 11.2.41. Employ [ 11.2.31 
to write the expanded forms of the following FARMA models: 
a) FARMA( 1.0.4,l). 
b) FARh4A(O,-0.32), 
c) FARMA(l.O.8,l). 
Long memory models have been applied to time series in a variety of different 
fields. Find three different applications of long memory models by referring to pub  
lications in fields of your choice. For each application, write down the complete 
reference and provide a brief summary. Do not use applications from references 
given in Chapters 10 and 11. 
By referring to the paper by Hosking (1981), write down the formula for the theoret- 
ical ACF of a fractional differencing model and comment upon the general proper- 
ties of the ACF. 
Outline the purposes of bootstrapping and how it is implemented in practice. 
Describe in some detail how the bootstrapping technique of Cover and Unny (1986) 
can be employed when estimating parameters in ARMA, ARIMA and FARMA 
models. 
Select an annual time series which you think may possess long term memory. 
Explain reasons for suspecting persistence based upon your physical understanding 
of the problem. Following the approaches suggested in Sections 11.3 and 11.5. use 
statistical identification methods to j u s w  your suspicions. Fit a fractional dif- 
ferencing or FARMA(OI.0) as well as the most appropriate ARMA model to the 
series. Comment upon your fmdings. 
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SEASONAL MODELS 

415 

At a given location on the earth’s surface, bydrdogic phenomena, as well as other natural 
o c c u m ~  tend to vary from one season to another. In many cases, the change in behaviour of 
a specified phenomenon can be quite spectacular. For example, in Northern Canada the winters 
arc extremely cold whereas the summer temperatures arc quite moderate. In addition. due to the 
melting of snow during the early springtime. the spring flows of northern rivers tend to be quite 
high while the winter flows arc much less. The foregoing and other kinds of hydrologic changes 
across seasons, are largely dependent upon the rotation of the earth about the sun along with the 
accompanying changes in tilt of the earth’s axis. Local conditions such as mountain ranges, 
large bodies of water and continental land masses, also influence the hydrologic characteristics 
of a region. 

Seasonal bydrdogical data arc available as time series for which the timc intervals 
between adjacent observations arc less than one year. For instance, natural time series are com- 
monly available as average daily, weekly, and monthly sequences. As an illushation of an aver- 
age monthly time series consider Figure VI.1 which shows the last ten years of the average 
monlbly flows of the Saugeen River at Walkenon, Ontario, which are available from January 
1915 until December 1976 (Environment Canada, 1977). The sinusoidal shape of this graph is 
caused by the seasonal changes of the flows throughout the year. As can be seen. the riverflows 
arc high during the spring months and much lower in the winter time!. Because the flows vary 
across the seasons or periods in a cyclic manner, the time series in Figure VI.1 is often referred 
to as a periodic series. 

Except for some random variation, the flows within a given season in Figure VI.1 tend to 
be stationary across the years. For example, the individual April flows of the Saugeen River 
vary about the April mean across all of the years from 1915 to 1976. There appears to be no 
upward or downward trend across the years in the April flows. However, not all periodic series 
arc stationary within each season. Often series which arc dependent upon social and economic 
behaviour possess statistical characteristics which vary across the years within each season. 
Consider. for example, the graph in Figure VI.2 of the average monthly water consumption in 
millions of l i a s  per day from 1966 to 1988 for the city of London, Ontario, Canada. These 
observations arc available from the Public Utilities Commission (1989) of London. Like other 
prosperous cities in North America, the city of London has grown dramatically in size since 
World War II to a 1991 population of about 300,000 people. This increasing population growth, 
in conjunction with other socio-economic factors have caused the water demand to increase 
greatly with time, as portrayed by the obvious upward trend in Figure VI.2. Moreover. the 
seasonality is clearly visible as a sinusoidal pattern wrapped around the trend. 

The greenhouse effect is refemd to in Section 1.2.1. One of the principal greenhouse 
gases is carbon dioxide (Cod which could in conjunction with other gases lead to serious global 
warning. F i p  VI.3 displays a graph of the average monthly concentrations of atmospheric 
C Q  measured at the Mauna Loa Observatory located at 3397 meters above sea level on the 
shoulder of Mauna Loa on the Island of Hawaii. Because the Mauna Loa Observatory is remote 
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from industrial and other man-made sources of -* the CO, observations collected there an 
believed to be a reliable indicator of the regional mnd in the concentration of atmospheric CC+ 
in the middle layers of the troposphere. Moreova. the Mauna h a  CO, program constitutes the 
first continuous station anywhere to produce reliable CQ data which arc listed by both Keeling 
et al. (1982) and Bacastow and Keeling (1981). As depicted in Figure VI.3 there is a distinct 
upward trcnd in the C02 data which is probably caused by man-induced interventions such as the 
large-scale burning of fossil fuels and the massive destruction of forests throughout the world. 
Consequently, this series provides a vivid illustration of how a natural phenomena can be signifi- 
cantly altered by civilization. One can also scc in Figure VI.3 the periodic nature of the C q  
data which fluctuate in a sinusoidal manner about the trend. 

Within section VI, the following three families of seasonal models arc presented for model- 

seasonal autoregressive integrated moving average (SARIMA) models (Chapter 12); 

ling seasonal data: 
1 .  

2. deseasonalized models (Chapter 13); 

3. periodic models (Chapter 14). 

The deseasonalized and periodic models are used for describing data such as the average 
monthly flows shown in Figure VLl. which possess stationarity within each season. The SAR- 
IMA family of models can be fitted to data such as those shown in Figures VI.2 and VI.3 where 
the level and perhaps other statistics change within each season across the ycars. 

The designs of all three classes of seasonal models constitute direct extensions of nonsca- 
sonal models to the seasonal or periodic cases. More sptcilically, the SARIMA family of 
models is a seasonal version of the ARIh4A class of models described in Chapters 3 and 4 of Part 
II. For a given series such as the one in Figure VI.2 or VI.3, nonseasonal and seasonal nonsta- 
tionarities are removed using nonseasonal and seasonal differencing operators, respectively. 
before fitting a stationary seasonal ARMA model to the series. To fit a deseasonalizcd model to 
a periodic series Like the one in Figurc VI.1, each observation in the series is first deseasonalized 
by subtracting out the seasonal mean and then dividing this by the seasonal standard deviation. 
A nonseasonal ARMA model from Chapter 3 can then be fitted to the resulting nonseasonal 
series. Finally, a periodic model is formed by fitting a separate PAR or AR model to each sea- 
son of the year to form what arc called periodic autoregressive (PAR) models or periodic 
autoregressivemoving average (PARMA) models, respectively. In this way, the varying 
cornlation structure across the seasons in a series such as in the one shown in Rgun VI.1 can be 

In the next three chapters. each of the three types of seasonal models is defined and model 
construction procedures are presented. Hydrologic and other kinds of applications are 
employed for demonstrating how the models can be conveniently applied in practice to seasonal 
data. Because the deseasonalized and periodic models possess quite a few model parameters, 
procedures are given for duc ing  the number of model parameters. Forecasting experiments in 
Chapter 15. demonstrate that a certain type of PAR model forecasts seasonal hydrologic timc 
series better than other kinds of competing seasonal models. Consequently, when sufficient data 
are available, periodic models an the best type of models to use for describing hydrologic and 
other kinds of natural timc series. 

directly modelled. 
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Figurc VI.3. Average monthly concentrations of atmospheric CU, 

(molefraction in ppm) measured at Mauna Loa Observatory 
in Hawaii from January, 1965, to December, 1980. 

Although a l l  three seasonal families of models can be used for forecasting hydrologic 
series, only the deseasonalized and periodic models are properly designed for simulating the sea- 
sonally stationary type of data such as the time series shown in Figure VI.1. Additionally, only 
the SARIMA model contains the appropriate model parameters for describing the nonstationary 
seasonal data of Figures VI.2 and VI.3. If, for example, the residuals of a SARIMA model fitted 
to a seasonal series possess correlation which varies from season to season, a PAR model could 
be fitted to the residuals to capture this behaviour. 
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CHAPTER 12 

SEASONAL 

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE 

MODELS 

U.1 INTRODUCTION 

SeaFonaI amregressive integrated moving average (SARIMA) models are useful for 
modelling seasonal time series in which the mean and other statistics for a given season arc not 
stationary across the years. The graphs of the average monthly water consumption and a m s -  
pheric C q  series displayed in Figures VI.2 and VI.3. respectively, depict revealing illustrations 
of this type of behaviour. Notice that both data sets possess increasing trends which in tum 
means that the level of each monthly observation is growing in magnitude within the same 
month over the years. Moreover, the sinusoidal c w e s  that follow the upward a n d s  confirm 
that the data are seasonal. Figures VI.2 and VI.3 arc representative of the general types of nons- 
tationary statistical characteristics that are often present in many kinds of socio-economic time 
series and natural time series that arc sigrufcantly affected by man-induced changes, respec- 
tively. Other examples of time series which would behave in a similar fashion to the one in Fig- 
ures VI.2 and VI.3 include average monthly irrigation water consumption, average weekly elec- 
tricity demand and total quarterly income for recreational facilities located near lakes and rivers. 

In the next section, the mathematical design of the SARIMA model is presentd and asso- 
ciated theoretical properties arc described. An inspection of this design indicates why the S A R -  
IMA model is ideally suited for modelling a seasonal nonstationary time series like those shown 
in Figures VI.2 and VI.3 using relatively few model parameters. However, because the 
mathematical definition does not contain model parameters which explicitly account for separate 
means and variances in each season, the SARIMA model is not suitably designed for describing 
series having stationarity of second order moments within each season across the years. For 
instance, because the average monthly riverflow series of the Saugeen River at Walkerton. 
Ontario, Canada., p l o d  in Figure VI. 1 ,  appears to have a seasonal mean and variance which arc 
more or less stationary across all the years for each season. a SARIMA is not the best model to 
fit to this series. Rather, the deseasonalired and periodic models of Chapters 13 and 14, respec- 
tively, can be employed for modelling this series. Nonetheless, when one is confronted with 
modelling a seasonal series similar to the one in Figure VI.1, the model construction techniques 
of Section 12.3 can be utilized for conveniently fitting an appropriate SARIMA model to the 
series. The applications contained in Section 12.4 clearly explain how SARIMA models arc fit- 
ted in practice by following the identification, estimation and diagnostic check stages of model 
consfrucrion. Subsequent to fitting the most appropriate SARIMA model to a series, the cali- 
brared model can be used for purposes such as forecasting and simulation, as explained in Sec- 
tion 12.5. 
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123 MODEL DESIGN 

U.2.1 Definition 

The SARIMA model defined in this section constitutes a straightforward extension of the 
nonseasonal ARMA and ARIMA models presented in Chapters 3 and 4, respectively. In their 
book, Box and Jenkins (1976, Ch. 9) defme this model and justify why it is useful for describing 
certain kinds of seasonal series. 

Let z1,z2,. . , ,z,,,, represent a sequence of seasonal observations. If, for example, there 
were n years of data for which each year contains s seasons. this would mean that q is equal to 
N. For the case of 15 years of monthly data, then would be a total of 15x12 = 180 observa- 
tions. If the seasonal time series were not normally distributed and/or the variance of the series 
changes over time (k. ,  the series is heteroscedastic), one could alleviate this problem by invok- 
ing a Box-Cox tram$omtion (Box and Cox, 1964) defined in [3.4.30] as 

[ 12.2.11 

The parameter k is the Box-Cox power transformation and c is a positive number which is 
chosen to be just large enough to cause all the enmes in the time series to be positive. If non- 
normality and heteroscedasticity in the given series were not detected prior to fitting a SARIMA 
model to the data, these problems would show up in the residuals of the fitted model. At  that 
time, an appropriate Box-Cox transformation could be selected and the parameters of the SAR- 
M A  model could then be estimated for the transformed series. 

Figures VI.2 and W.3 graphically depicts how the magnitudes of observations can change 
across the seasons in a cyclic manner and also from year to year within a given season. To elim- 
inate nonstationarity within each season, one can employ the seasonal differencing operator 
defined by 

[ 12.2.21 

where s is the number of seasons per year and BJ is the backward shift operator defined by 
Bsz fa )=  z,!!. When dealing with monthly data, notice that the relationship in [12.2.2] only con- 
nects observations within the same season. Hence, when using seasonal differencing with 
monthly data, an observation in March is only subtracted from the observation in March of the 
previous year. If the z,~) series is of length q = sn. the number of observations in the differenced 
series is q - s. The differencing operator in [ 12.2.21 is applied just enough times to remove the 
seasonal nonstationarity. If it were necessary to apply the seasonal differencing operator in 
[ 12.2.21 D times to produce a series of length q - sD, the resulting series would be given by 

v ~ z I ( ~ )  = (1 - B ~ ) Z , ( ~ )  = ziL) - zI(2 for I = s+is+2,  . . . ,q 

vgzp = (1 - B J p p  [12.2.3] 

For purposes of explanation, consider once again a time series consisting of monthly obser- 
vations. To model correlation among, say, March observations in the differenced series, one 
may wish to introduce appropriate model parameters. More specifically, to accomplish this task 
of linking March observations together one can use a model of the fonn 
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O ( B ~ ) V ~ Z ~ )  = e(Bs)a, [ 12.2.41 

where @(BJ) and 8 ( B s )  art the seasonal autoregressive (AR) and seasonal moving average (MA) 
operators, respectively, and a, is a residual series which may conrain nonseasonal correlation. 
Both the seasonal AR and MA operators arc defined in order to describe relationships within the 
samc scason. In particular, the seasonal AR operator is defined as 

O ( B J ) =  1 - @ , B J - @ @ -  * * -a#’ 

where Qi is the ith AR parameter and P is the order of the AR operator. Because the power of 
each differencing operator is always an integer multiple of s. only the observations within each 
season an related to one another when using this operator. Hence, for the case of March obser- 
vations in a monthly series, only the March observations are C O M C C ~ ~ ~  together using @(Bs). To 
describe the relationship of the residuals, a,, within a given season. the seasonal MA operafor is 
defined using 

e(Bs) = 1 - elBs - ep2” - . -Be@ 

where ei is the ith M A  parameter and Q is the order of the MA operator. Since the exponents of 
B in 8(BJ) arc always integer multiples of s, the residuals in the same season are linked with 
another when using B(BS). 

Theoretically one could define a separate model as in [ 12.2.41 for each season of the year. 
However, to keep the model as parsimonious as possible, one can assume that [12.2.4] can be 
used for all of the seasons. Therefore, one is making the assumption that the correlation within 
all of the seasons is the same. For the case of monthly data this means that the relationship 
among all of the March observations is exactly the same as each of the other months. 

The e m r  components or residuals. a,, may contain nonseasonal nonstationarity which can 
be removed by using the nonseasonal diferencing operator defined in [4.3.3] as 

V d a ,  =(1 - B ) d a ,  [ 12.2.51 

where d is the order of the nonseasonal differencing operator which is selected just large enough 
to remove all of the nonseasonal nonstationarity. The sequence produced using r12.2.51 is 
theoretically a stationary nonseasonal series. The nonseasonal correlation can then be captured 
by writing the ARMA model in [3.4.4] or 14.3.41 as 

$(B)Vda, = e(B)a, 112.2.61 

where $(B)  is the nonseasonal AR operator of order p defined as 

$(B) = 1 - $1B - w2 - * * . - $,$“ 
and e ( B )  is the nonseasonal MA operator of order q written as 

e ( B )  = 1 - e lB - v2- - .  . - e,Bq 

The a,’s an the innovations which art identically independently distributed (ID) with a mean of 
zero and variance of 0,‘. Hence a,-IID(O,t$). In order to obtain maximum likelihood estimates 
for the model parameters of a SARKMA model, in the next section the restriction of normality is 
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also placed upon the (1,’s so that they are assumed to be distributed as NID(0.o:). 

Because of the form of [12.2.6], the correlation among seasons is the same no matter what 
season one is dealing with. Hence. when entertaining monthly data, the correlation between. say, 
the March and February observations is defined to be the same as that between any other adja- 
cent months such as October and September. For the periodic models of Chapter 14, this restric- 
tion is dropped by allowing for a separate correlation smcture for each Season of the year. 

To define the overall seasonal model, one simply combines equations [ 12.2.61 and [ 12.2.41. 
This can be accomplished by solving for a, in [12.2.6] and substituting this result into [12.2.4] to 
obtain the SARIMA (seasonal autoregressive integrated moving average) model 

$(B)@(Bs)VdVf~,@) = 8(B)8(Bs)a, [ 12.2.71 

Because the operators in [ 12.2.71 arc multiplied together rather than summed, this model is often 
called a multiplicative SARIMA model. 

When fitting the SARIMA model to a given time series of length q, one first transforms the 
data, if necessary, using the Box-Cox transformation in r12.2.11. Following this, the data can be 
differenced both seasonally and nonseasonally. It does not matter which differencing operation 
is carried out first. One then obtains the stationary series given by 

[ 12.2.81 

where the length of the w, series is q’ = q - d - sD. The seasonal and nonseasonal correlation in 
the w, sequence is modelled by using the seasonal and nonseasonal AR and MA operators, 
respectively. Hence, w, is modelled by employing 

W ) @ ( B S ) w ,  = w W ( B S ) 0 ,  [ 12.2.91 

In some applications, w, may be a stationary seasonal series which is not obtained by differenc- 
ing the original series. The model in [ 12.2.91 is called a seasonal ARMA or SARMA model of the 
w, series. 

U.23 Notation 

For a given application, one may first wish to indicate the key parameters included in a 
SARIMA model, without writing down all of the parameter estimates either in a table or else 
using the difference equation in [ 12.2.71. An economical notation for summarizing the s t rucm 
of the SARIMA model in [ 12.2.71 is @,d,q)x(f PQ),. The first set of brackets contains the 
orders of the nonseasonal operators while the orders of the seasonal operators arc listed inside 
the second set of brackets. More specifically, p ,  d and q stand for the orders of the nonseasonal 
AR. differencing and MA operators. respectively. In the second set of brackets, f ,  D and Q give 
the orders of the seasonal AR, differencing and MA operators, respectively. The subscript s 
appearing to the right of the second set of brackets points out the number of seasons per year. 

For the case of monthly data for which s = 12, a specific example of a SARIMA model is 
(2,1,1)~(1,1,2),~ Suppose that the original series were transformed using natural logarithms. 
By utilizing r12.2.71, this model is written using a finite difference equation as 
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(I -+-p)(i - 0 1 ~ 1 2 ) ( i  - ~ ) ( i  - B ~ * ) ~ ( z , ) = ( I  - e l ~ ) ( i  - e 1 ~ 1 2 - e + ~ ~ ,  
If the data an stationary, nonseasonal or seasonal differencing is not required. A stationary 

model is indicated as (p,O,q)x(P.O.Q),. Bccause this model is stationary, sometimes it is 
referred to as a SARMA (i.e.. seasonal autoregrcssive-moving average) (P,q)x(P,Q), model. 

The summary notation for a pun  MA model is (O#,q)x(OP,Q),. When a model contains 
no MA parameters, the SARIMA model is written as @#,O)x(PP,O),. 

When a model is punly nonseasonal. the notation of Part II should be used. Hence, a sta- 
tionary nonseasonal ARMA model is simply indicated by ARMA@,q) instead of 
SARMA@,q)x(O,O),. Likewise, a nonstationary nonseasonal ARIMA model is denoted as 
ARIMA@,d,q) rather than the more cumbersome notation given by SARIMA@,d,q)x(O,O,O)1. 

12.23 Stationarity and Invertibility 
For a nonseasonal model, the conditions of stationarity and invertibility arc discussed in 

detail in Sections 3.2.2. 3.3.2, and 3.4.2. Recall that for an ARMA model to be stationary the 
roots of the characteristics equation $ ( B )  = 0 must lie outside the unit circle. Likewise, for 
invertibility the roots of e ( B )  = 0 must fall outside the unit circle. 

In addition to the aforesaid conditions, the properties of the seasonal AR and MA operators 
must be specified for the SARIMA model if it is to be fitted to the stationary w, series in 
[12.2.9]. For seasonul srutiomnry the roots of the characteristic equation cD(Bs) = 0 must lie 
outside the unit circle. Similarly, for seasonal inverribilify, the roots of the characteristic equa- 
tion e(B") = 0 must fall outside the unit circle. 

12.2.4 Unfactored and Nonmultiplicative Models 
The SARIMA(p,d,q)x(P,D,Q), model in [12.2.7] is referred to as a multiplicative model. 

This is because the nonseasonal and seasonal AR operators are multiplied together on the left 
hand side while the two MA operators are multiplied together on the right hand side. In addi- 
tion, the nonseasonal and seasonal differencing operators arc multiplied together with the AR 
operators in r12.2.71. Following similar arguments, the SARMA@,q)x(P.Q), model which can 
be fitted to the stationary w, series in [ 12.2.91 is also multiplicative. 

Rather than write the SARIMA or SARMA model in multiplicative form, it is sometimes 
useN to use other formats. One approach is to write the models in unfactod form. This is 
accomplished by multiplying the $(B) and cD(Bs) operators together to Create a single AR opcra- 
tor which can be labelled as f@). Likewise, one can multiply O(B) and 8 ( B s )  together to form 
the single MA operator @). The SARIMA model in [ 12.2.71 can then be written in unfactored 
form as 

i (B)VdV:rp)  = @)a, [ 12.2.101 

while the unfactored SARMA model for the w, series is 
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As mentioned in Section 12.5, the unfactored form of the model in [12.2.10] or [12.2.11] is used 
for simulating data when differencing operators arc present. 

As an example of how an unfactorcd model is determined, consider a SARMA(2,l)x(l,2), 
model which is written in multiplicative form as 

(1 - $ 1 ~  - +p2)(i - = (1 - e,B)(i - e p  - eg2”)a, 

The unfactored version of this model is 

(1 - - W2 - @lBS + $14lB’+~ + h41BS+2)Wl 

= (1 - e l ~  - e l B s  + elelBs+l - e@ + e1e@+l)a, 

In the unfactored model in [12.2.10], the nonseasonal and seasonal differencing operators 
are not included in the unfactored AR operator I$@). To obtain a SARIMA model that does not 
have separate differencing factors, one can write the model in generalized form as 

[ 12.2.121 

where +’(B) = $(B)4(BS)VdVp is the generolized or unfucrored AR operaror for which 9’; is the 
ith generalized AR parameter, and 0’(B) = O(B)O(Bs) = 6 ( B )  is the generalized or unfacrored 
MA operafor for which Wi is the ith generalized MA parameter. The unfactortd format in 
[ 12.2.121 is useful for calculating minimum mean squared error forecasts, as is pointed out in 
Section 12.5. 

Because the unfactored models are equivalent to their multiplicative counterparts, unfac- 
tored models are, of coursc, multiplicative. For some applications one may wish to generalize 
the multiplicative models given in equations [12.2.7], [12.2.9], [12.2.10] and [12.2.11], by allow- 
ing nonmultiplicativc AR and MA operators, which arc denoted by $*@) and 0*(B),  respec- 
tively. If one wishes to remove nonseasonal and seasonal stationarity using differencing, the 
nomultiplicative model is given as 

+’(B )z/*) = W(B )af 

$*(B)VdVQrP) = 0* ( B b ,  [ 12.2.131 

When the given series is already stationary due to differencing or some other type of operation, 
the nonmultiplicative model is written as 

$*(B)Wl = O*(B)a, [ 12.2.141 

The model in j12.2.141 is, in fact, the same as the nonseasonal ARMA model given in 
r3.4.41. However, in practice one would not use all of the parameters in the A R M A  model and, 
therefore, use the constrained type of model discussed in Section 3.4.4. An example of a con- 
strained model is 

(1 - $ 1 ~  - $ 2 ~ ~  - +,B* - + s + l ~ s + l ) ~ l  = (1 - BIB - 0 , ~  - es+lBs+l)uf 

Notice that this model cannot be factored to form a multiplicative model, as is the case for the 
earlier example for the unfactored model. 
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In addition to entertaining the nonmultiplicative model, certain problems may dictate that a 
more complex multiplicative seasonal model should be used. For example, suppose that a water 
demand series contains two distinct seasonal components. One component may be due to indus- 
trial use which follows a different seasonal pattern than the second component, which is the 
residential demand. For each seasonal component, separate AR and M A  operators could be 
defined and all of these operators would be combined together in an overall multiplicative sea- 
sonal model. 

12.2.5 Autoaxrelation Function 

The derivations of the theoretical ACF for nonseasonal AR, MA, and ARMA processes arc 
presented in Sections 3.2.2.3.3.2 and 3.4.2, respectively. One could follow a similar approach to 
that used for the nonseasonal case to develop the formula for the theoretical ACF of the station- 
ary seasonal process, w,, given in [12.2.9]. However, a simpler approach is to Write the S A W  

model for w, in [12.2.9] in the same format as its nonseasonal counterpan by using the unfac- 
tored form in [12.2.11]. Subsequent to this, the procedure developed for the nonseasonal cast 
can be used to obtain the theoretical ACF for the seasonal model. To use the theoretical results 
for the ACF developed for the nonseasonal ARMA model in Section 3.4.2, simply replace the 
nonseasonal AR and M A  operators by their combined counterparts for the seasonal model. The 
algorithm of McLcod (1975) presented in Appendix A3.2 can then be used to determine the 
theoretical ACF for the SARMA process. In a similar fashion, one can also calculate the theoret- 
ical PACF for the seasonal model by utilizing appropriate results developed for the nonseasonal 
case in Chapter 3. 

U.2.6 Three Formulations of the Seasonal Processes 

Introduction 

?he three formulations for the ARMA and ARIMA processes are given in Sections 3.4.3 
and 4.3.4, respectively. As explained in these sections, the ARMA and ARIMA processes can be 
written using the original forms for their finite difference equations, the purely M A  or random 
shock formulations, or the purely AR or inverted formats. Likewise, one can write the SARIMA 
or SARMA processes using any of the three formulations. The difference equation forms in 
which the SARIMA and SARMA processes are originally defined are given in j12.2.71 and 
[12.2.9], respectively. The random shock and inverted formulations are now described. 

h d o m  Shock Form 

Because of both the invembility and stationarity conditions referred to in Section 12.2.3, 
one can manipulate the operators algebraically and, hence, Write the SAIUMA process as either a 
pure M A  process or a pure AR process. Using [ 12.2.71, the purc M A  or random shockform of 
the SARIMA model is 
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= (I, + Y p f - l +  Yg0,-* + * * * 

= u , + Y , B u f + Y ~ 2 u f +  . . .  

= (1 + Y I B  + Y$?2+ 

= W ) a ,  [ 12.2.151 

where Y ( B )  = 1 + Y , B  + Y$' + - . . , is the seasonal random shock or infinite MA operutor, 

and Y; is the ith parameter, coefficient or weight of Y(B). 

It is instructive to express a SARIMA process in the random shock in [12.2.15] for both 
theoretical and practical reasons. For example, the 'I' weights are needed to calculate the vari- 
ance of foncasts when using a SARIMA model for forecasting. Also, one way to simulate data 
is to first write a SARIMA model in random shock form and then use this f o m t  of the model 
for producing synthetic data. Finally, by writing each member of a set of SARIMA models in 
random shock form, the models can be conveniently compared by examining the magnitudes and 
signs of the Y parameters. 

In practice, one would first fit a SARIMA model to a given time series by following the 
model building approach described in Section 12.3 in order to obtain estimates for the AR and 
M A  parameters. Subsequent to this, one may wish to calculate the Y; parameters in r12.2.151, 

given the AR and M A  parameters. The relationship for carrying out these calculations is con- 
tained in [12.2.15]. By definition, the following identity is me: 

* .)al 

or 

+(B)@(Bs)VdV,*(B) = 8 ( B ) 8 ( B s )  [12.2.16] 

By equating coefficients of B', k = 1,2, * . . , on the left hand side of [12.2.16] to those on the 
right hand side, one can use the identity to solve for the Y i  coefficients in terms of the AR and 
M A  parameters. Examples of performing these manipulations for nonseasonal A R M  models 
are presented in Section 3.4.3. Similar calculations can be carried out using [ 12.2.161 or a sim- 
plified version thereof for the seasonal case. 

If no differencing operators are present and one is dealing with the SARMA model in 
[ 12.2.91 instead of the SARIMA model in r12.2.71, a similar procedure can be used to calculate 
the random shock weights. Simply remove the differencing operators from [12.2.16] and, once 
again, compare coefficients of B k ,  k = 0.12, * - - , to solve for the random shock parameters. 

Another approach to solve for the random shock parameters for the SARIMA or S A M  
model is to use [4.3.11] or [3.4.21] to solve for the 'Pi's. This is accomplished by writing the 
SARIMA or SARMA model in unfactored form by using [12.2.12] or [12.2.11], respectively, 
and then making appropriate substitutions for the operators so that the nonseasonal formulae for 
calculating the seasonal random shock parameters can be used. 
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Inver(ed Form 

To express the SARIMA model in inverted form, equation [ 12.2.71 can be written as 
+(B p ( B ” v d v p 2 p )  

Uf = 
0(B)8(BS) 

= qfi) - n Bz @) - n$22,@) - . . . 

=( l -n lB-n$’-  - . * ) 2 , ( ‘ )  

I f  

= rI(B)z/’) [12.2.17] 

where n(B) = 1 - l l , B  - &B2 - . * * , is the seasonu1 inverted or infinite AR operuror and ni is 
the ith parameter, coefficient or weight of l l ( B ) .  By comparing [12.2.17] and [12.2.16], one can 
see that 

Y(E)-’ = n(B) [ 12.2.181 

To calculate the inverted parameters, given that one knows the values of the AR and MA 
parameters, one can use the identity 

w P(B“)VdV,D 
n(B) = w )WS) 

or 

e(B)e(Bs)n(B) = $(B)@(B”)v~v,D [12.2.19] 

which is obtained from [12.2.17]. To solve for the n; parameters, simply equate the coefficients 
of BL fork = 0.1.2, * * - , on the left hand side of [12.2.16] to those on the right hand side. 

If one wishes to calculate the inverted parameters for the SARMA model in t12.2.91, sim- 
ply eliminate the differencing operators in [12.2.19]. Following this, one can use [12.2.19] to 
determine the inverttd parameters by equating coefficients of the Bk for k = 0.12. * - * , on the 
left hand side to those on the right. 

As was done for the random shock parameters, one can also use the nonseasonal formulae 
to determine the scasonal inverted parameters. Simply write the SARIMA or S A R M A  model in 
unfactorcd form as in [12.2.12] or [12.2.11], respectively, and then make appropriate substitu- 
tions into [4.3.14] or [3.4.27], respectively to solve for the seasonal inverted parameters. 

12.3 MODEL CONSTRUCllON 

123.1 Introduction 

The most appropriate SARIMA model to fit to a given seasonal time series can be ascer- 
tained by following the identification, estimation, and diagnostic check stages of model con- 
struction. In the previous section, it is shown how the design of the multiplicative SARIMA 
family of models is a straightforward extension of the nonseasonal models presented in Part II of 
the book. Likewise. as is explained in this section, the tools used for SARIMA model building 
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arc either the same or else closely related versions of the nonseasonal model construction tech- 
niques discussed in Part III. The applications described in Section 12.4 clearly demonstrate that 
the model development techniques of this section can be conveniently and easily utilized for 
determining the most appropriate SARIMA or SARMA model to fit to a given time series. 
Finally, to allow the model building stages to be expeditiously and properly implemented in 
practice. one can employ a flexible decision support system such as the McLeod-Hipel Package 
described in Section 1.7. 

U.33 Identification 

Introduction 

The purpose of the identification stage is to determine the nonseasonal and seasonal dif- 
ferencing required to produce stationarity and also the orders of both the nonseasonal and the 
seasonal AR and MA operators for the w, series in [12.2.9]. Although each identification tech- 
nique is discussed separately, in practical applications the output from all the techniques is inter- 
preted and compared together in order to design the type of model to be estimated. 

For some types of seasonal time series, it is known in advance whether or not the data sets 
should be transformed using the Box-Cox transformation in [12.2.1]. For instance, average 
monthly riverflow series often require a natural logarithmic transformation to cause the residuals 
of the fitted models to be approximately normally distributed and homoscedastic. In many 
applications, analysts may not realize that Box-Cox transformations are needed until after the 
model parameters have been estimated and the statistical properties of the residuals are exam- 
ined. The analysts should keep in mind that usually a Box-Cox transformation does not change 
the design of the AR and M A  operators needed in the model or models to fit to the transformed 
time series. However, this is not true in general, and as is pointed out by Granger and Newbold 
[ 19761, certain transformations can change the type of model to estimate for a given time series. 
Therefore, even though it is usually not necessary to perform the identification stage for the 
transformed data if it has already been done for the corresponding untransformed series, a practi- 
tioner should be aware that in some instances this may not be the case. When a transformation 
does change the type of model to be used, diagnostic checks would detect this fact and then the 
design of the model to fit to the transformed data can be properly identified. 

For a SARIMA model application there should be at least seven years of seasonal data and 
also at least 50 data points overall in order to get reasonable MLE’s (maximum likelihood esti- 
mates) for the model parameters. If one were analyzing a monthly series, one would require at 
least 12x7 = 84 observations. Therefore. one should proceed with the identification stage only if 
the minimum r e q u i d  amount of information is present. 

Tods 

When examining a specified time series analysis for the first time, one may wish to utilize 
the exploratory data analysis tools described in Section 22.3. The purpose of erplorarory data 
analysis is to discover the basic statistical characteristics of a data set by examining simple 
graphical and numerical output. Subsequent to obtaining a general understanding of the statisti- 
cal properties of the time series, one may wish to design a specific SARIMA model to fit to the 
series by studying the graphical output from the following techniques which are also used for 
designing nonseasonal models in Chapter 5:  
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1. Plot of the Original Series - A graph of the observations in the series against time is an 
important exploratory data analysis method that should always be used in model identifica- 
tion. Characteristics of the data which arc usually easily uncovered from a perusal of a 
time series plot include seasonality, nonstationarity due to a n d s  in the mean levels of the 
seasons or years, changing variance, extreme values, comlation or dependence among 
observations, and long term cycles. The nonstationarity present in the data can often be 
removed using seasonal and/or nonseasonal differencing. The seasonal and nonseasonal 
comlation in the time series can be modelled by appropriately deciding upon which AR 
and MA operators should be included in the SARIMA model. Graphs of the next four 
functions can be used for specifically designing the components n d e d  in the SARIMA 
d e L  
ACF (autocorrelation function) - The theoretical ACF defined in [2.5.4] measures the 
amount of linear dependence between observations in a time series that are separated by k 
time lags. The sample estimate, r,, for p,, is given in [2.5.9] while approximate variances 
for r, are given in [2.5.10] and [2.5.11]. To use the sample ACF in model identification, 

calculate and then plot r, up to a maximum lag of roughly 1 along with the approximate 

95% confidence limits. The graph of the sample ACF and the other thrce graphs described 
below should include at least 2s or 3s lags, where s is the number of seasons per year. In 
this way, the cyclic behaviour caused by seasonality and any decaying or truncation proper- 
ties of rk over k, can be visually detected. 

The first step is to examine a plot of the ACF to detect the presence of nonstationarity in 
the given series. For seasonal data with the seasonal length equal to s. the ACF often fol- 
lows a wave pattern with peaks at s, 2s, 3s, and other integer multiples of s. As is shown 
by Box and Jenkins (1976. pp. 174175). if the estimated ACF at lags that are integer multi- 
ples of the seasonal length s do not die out rapidly, this may indicate that seasonal dif- 
ferencing is needed to produce stationarity. Failure of other ACF estimates to damp out 
may imply that nonseasonal differencing is also required. If the length of the original 
series is q, the number of data points in the differenced series would be q' = q - d + sD. 
Li (1991) develops some statistical tests for determining the orders of differencing required 
for a seasonal time series. 
If the stationary w, series is not white noise, one can use the sample ACF to help decide 
upon which AR and MA parameters art needed in the SARIMA model. When the process 
is a purc MA(Od,q)x(OP,Q), model, the sample ACF truncates and is not sigrufcantly 
different from zero after lag q + sQ. For this case, the variance of f k  after lag q + sQ is 
(Bartlett, 1946) 

2. 

4 

[12.3.1] 

where q' stands for the length of the w, series after differencing. 

If rk attenuates at lags that arc multiples of s, this implies the presence of a seasonal AR 

component. The failure of the ACF to truncate at other lags may imply that a nonseasonal 
AR term is required. 
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As defined in [12.2.8]. the stationary w, series mated by differencing either the original or 
transformed series is given as 

Wf = VdVDz (k) 
S f  

when the exponent X indicates that the original zf series may be transformed using the 
Box-Cox transformations in [12.2.1]. Aftcr the data have been differenced just enough 
times to produce both seasonal and nonseasonal stationarity, then check the ACF of the wf 

series to determine the number of AR and MA parameters required in the model. The w, 

series is also used a! the other steps of the identification procedure. Of course, if no dif- 
ferencing is required. the w, series is simply the z,(~) series. As noted earlier, the graph of 
the sample ACF for w, should include at least 2s or 3s lags. 

1 If a series is white noise, then rk is approximately NID(0,7). This result allows one to test 
rl 

whether a given series is white noise by checking to see if the ACF estimates arc signifi- 
cantly different from zero, Simply plot confidence limits on the ACF diagram and see if a 
significant number of rk values fall outside the chosen confidence interval. 

PACF (partial autocorrelation function) - After writing the SARIMA or SARMA model 
in unfactored form as in [12.2.10] or [12.2.11], respectively, the theoretical PACF is 
defined for the w, series in [3.2.17] using the Yule-Walker equations. Following the 
approach discussed in Section 3.2.2 and Appendix A3.1. the sample PACF can be 
estimated. For model identification, simply calculate and plot the sample PACF to at least 
lag 2s along with the 95% confidence limits which are calculated using [3.2.18], in which 
the length of the series is taken to be that of w,. Employing rules put forward by authors 
such as Hipel et al. (1977), McLcod et al. (1977), and Hamilton and Watts (1978). the sam- 
p k  PACF can be utilized for deciding upon which AR and MA parameters arc needed for 
properly Representing the data. 
When the process is a p u n  AR(l,,d,O)x(PP,O), model, the sample PACF cuts off and is 
not significantly different from zero aftcr lag p + sP. After lag p + sP, the sample PACF is 
approximately NlD(0,y). 

If the sample PACF damps out at lags that are multiples of s, this suggests the incorpora- 
tion of a seasonal MA component into the model. The failure of the sample PACF to mn- 
cate at other lags may imply that a nonseasonal MA term is required, 

IACF (inverse autocorrelation function) - The theoretical IACF (Cleveland, 1972) is 
defined in Section 5.3.6 and a method for estimating the sample IACF along with approxi- 
mate 95% confidence limits is given in the same section. Theoretically, the IACF of the w, 

series is defined to be the ACF of the (q.dp)x@ PP), process that is written as 

3. 

1 

rl 

4 

e(B)e(Bs)w, = $(B)aqBs)a, [ 12.3.21 

The model in [12.3.2] is called the dual model while the SARIMA(I,d,q)x(P,D,Q), model 
in [ 12.2.7) or [ 12.2.91 is r e f e d  to as the primal model (Mehod, 1984). 
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As is the case for all four functions discussed under points 2 to 5 ,  the sample IACF is plot- 
ted up to a lag of at least 2s or 3s or not more than LL ~f the w, series is white noise, the 

sample IACF is approximately NID(0,y). For the case of white noise, the values of the 

sample IACF should not fall outside the 95% confidence limits o f f  ''% more than once 

in twenty lags 
For a pun AR(I,,d,O)x(Pp,O), process, the sample IACF truncates and is not significantly 
different from zero after lag p + sP. If the sample IACF damps out but is still significant at 
lags s, 2s. 3s. etc., a seasonal MA component may be needed in the model. An additional 
nonseasonal MA component will cause the sample IACF to damp out for values between 0 
and s, s and 2s. etc., where decreasing but prominent peaks occur at s. 2s, 3s. etc.. due to 
the seasonal MA term. 
LPACF (inverse partial autocorrelation tunction) - The theoretical IPACF originally 
defined by Hipel et al. (1977) is presented in Section 5.3.7. The PACF for a SARMA 
model is by definition the IPACF of the dual model in [ 12.3.21. In addition, a method for 
estimating the IPACF and obtaining approximate 95% confidence limits is explained in 
Section 5.3.7. 

For model identification, the sample IPACF and its 95% confidence limits arc plotted up to 
a lag of at least 2s or 3s. If the w, series is white noise, then the values of the sample 
IPACF should not be significantly different from zero and should fall within the 95% con- 
fidence limits. 
For a pure MA(O,d,q)x(09,Q), model, the sample IPACF truncates and is not sigrufi- 
candy different from zero after lag q + sQ. After lag q + sQ. the sample PACF is approxi- 
mately NID(0,y). If the sample IPACF attenuates at lags that an multiples of s, thjs may 

indicate the presence of a seasonal AR component. When the IPACF fails to cut off at 
other lags, this implies the need for a nonseasonal AR term. 
Cumulative periodogram white noise test - As was mentioned previously. the sample 
ACF plot is an accepted means of checking whether the given data arc white noise. The 
sample PACF, IACF, and IPACF can also be employed in this capacity. However, the 
cumulative periodogram defmed in [2.6.2] provides another means of checking for white 
noise. 
In addition to verifying whether a series is uncomlatcd, the cumulative periodogram can 
also detects certain types of correlation. In particular, it is an effective procedure for find- 
ing hidden pcriodicities. 

4 '  
1 

ll 

-F 

5. 

1 

ll 

6. 

summary 

A plot of the original data portrays an overall view of how the time series is generally 
behaving and whether or not differencing is required. However, the sample ACF, PACF. IACF, 
and IPACF transform the given information into a format whereby it is possible to detect the 
number of AR and MA terms required in the model. In general, the ACF and the IPACF hun- 
cate for pun MA processes, while the PACF and IACF cut off for AR models. For mixed 
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processes, all four functions attenuate. This behaviour of identification graphs for SARIMA 
models is summarized in Table 12.3.1. 

The ACF and the IPACF possess similar general properties, while the PACF and the IACF 
have common attributes. However, the four functions arc defined differently, and none of them 
behave exactly in the same fashion. In practice. the authors have found that if the PACF fails to 
detect a ccrtain property of the time series, then the IACF oftcn may be more sensitive and 
thereby may clearly display the presence of that property and vice versa. A similar situation 
exists between the ACF and the IPACF. In actual applications, it is necessary to consider simul- 
taneously the output from all the functions in order to ascertain which model to estimate. 

The incorporation of the IACF and the IPACF into the identification stage simplifies and 
substantiates model design because it is easier and more accurate to determine the proper SAR-  
IMA model to estimate. It is recommended that all of the identification plots be programmed for 
instantaneous display on a computer terminal screen. In this way, the identification stage can 
usually be completed in just a few minutes. The capability of making an immediate copy of any 
results portrayed on a screen provides a convenient method of keeping a permanent m o d  The 
decision support system for time series modelling described in Section 1.7 can be employed in 
this manner. 

In Appendix A12.1, an alternative procedure for using the ACF to identify the parameters 
required in a S A R M A  model is given. This novel approach utilizes the structure of the multipli- 
cative SARMA model by splitting the analysis using the ACF into nonseasonal and seasonal 
components. 

Table 12.3.1. Behaviour of identification functions for 
SARIMA models. 

12.33 Estimation 

Introduction 

Often, identification methods cannot clearly determine which is the single best S A R l M A  
model to fit to the time series under study. Rather. anywhere from one to four model designs 
may be tentatively identified At the estimation stage, MLE's can then be obtained for the 
parameters in each of the models. Subsequently, discrimination methods can be used for select- 
ing the best model from the set of calibrated models. The techniques for choosing the best 
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model include the AIC discussed in this section as well as Section 6.3 and the diagnostic checks 
presented in Section 12.3.4. If none of the fitted models adequately describes the data, appropri- 
ate design modifications can be made before estimating the parameters of the most recent itera- 
tion and repeating the above procedure until a suitable model is found. 

Algorithm 

Two algorithms arc discussed in this section for obtaining approximate MLE’s for the 
parameters of the SARMA model fitted to the w, series in [12.2.9]. Besides using the basic 
definition of the S A R M A  model, both methods are based on the assumption that the innovations 
arc normally independently distributed with a mean of zero and variance of 0: [i.e. NlD(0,02)]. 
The first approach is to use the algorithm developed for the nonseasonal ARMA model while the 
second one is to employ a more computationally efficient procedure which takes into account the 
specific mathematical structure of the SARMA model. Because the orders of nonseasonal and 
seasonal differencing operators required to produce the stationary w, series in [12.2.9] are not 
estimated but selected based upon identification results, only the parameters included in the 
SARMA model for fitting to w, have to be estimated. Consequently, in this section, parameter 
estimation is discussed in terms of the SARMA(p,q)x(P,Q), model in [12.2.9] rather than the 
SARIMA(p.d,q)x(P,D,Q), model in [12.2.7]. Furthermore. since the mean level of w, is zero 
due to differencing, the mean level or trend is not included in the SARMA model in r12.2.91. If 
it were necessary to estimate a mean or trend this could bc accomplished using the estimation 
methods discussed in this section. 

In Chapter 6, the modified sum of squares algorithm of McLQod (1977) is suggested for 
estimating the parameters of the ARMA@,q) model in [3.4.4]. As explained in that chapter, 
compared to other competing estimation methods, the modified sum of squares approach is both 
computationally and statistically efficient. The main steps in the algorithm are described in 
Appendix A6.1. To use the modified sum of squares method in Chapter 6 to estimate the param 
eters of the SARMA@,q) model in [ 12.2.91, the first step is to write the model in the unfactored 
form given in [ 12.2.111. Because the unfactored model in [ 12.2.1 11 can be considered as a spe- 
cial case of the ARMA(p,q) model, the modified sum of squares method can be used to obtain 
approximate MLE’s for the model parameters and residuals. 

’Ihe first estimation method works well when the number of seasons per year is not more 
than 12. However, for bimonthly data and weekly series for which s = 24 and 52. nspectively, 
the estimation becomes computationally inefficient. To overcome this problem, the maximum 
likelihood approach of McLeod and Salas (1983) can be used. This estimation method, which is 
based upon the modified sum of squares method of McLeod (1977). is designed according to the 
multiplicative structure of the AR and MA operators in the SARMA model. It works for yearly 
(s = 1). monthly (s = 12). weekly (s = 52), daily (s = 365) as well as any other types of seasonal 
series. The main steps in the McLeod-Salas algorithm are described in Appendix A12.2. 

The MLE’s for a SARMA or other kind of time series model arc asymptotically normally 
distributed. Because a SE (standard error) is estimated for each of the estimated parameters 
using the information ma&, one can check if an estimate is significantly different from zero. If 
the estimate is significant at the 5% significance level, its absolute magnitude should bc larger 
than l.% SE. Usually, it is advisable to drop parameters which are not significantly different 
from zero from the SARMA model and then to reestimate the parameters of the simplified 



434 Chapter 12 

model and then check if this model provides an adequate fit. 

Model Discrimination 

Subsequent to estimating the model parameters for the models separately fitted to the time 
series under study, one cm calculate the value of the AIC for each model in order to select the 
model which has the minimum AIC value. This procedure is n femd  to as MAICE (minimum 
AIC estimurion) and is described in detail in Section 6.3. The flow chart in Figure 6.3.1 explains 
the ways in which MAICE can be used in model construction for application purposes. One 
approach is to carry out an exhaustive AIC study by fitting a large range of S A W  models to 
the time Series and then picking the one having the minimum AIC. In the second main approach, 
the identification techniques of Section 12.3.2 arc used to select a handful of models for which 
the parameters and AIC values am estimated. Once again, one selects the model having the 
minimum AIC value. 

The general formula for the AIC is given in [6.3.1] as (Akaike, 1974) 

AIC = -2ln(ML) + 2k 
where ML denotes the maximized value of the likelihood function and k is the number of 
independently adjusted parameters in the model. Approximate formulae can be devised for 
determining the AIC for a SARIMA model which contains differencing operators. Because the 
amount of data has been reduced from a total of q to q’ = q - d - SD points when thcrc is both 
nonseasonal and seasonal differencing, this will certainly affect the first term on the right-hand 
side of [6.3.1]. Hence, the AIC for a SARIMA model can be roughly calculated as 

Afc = ?(-2ln(ML)) + 2k [ 12.3.31 
11 

where the maximized log likelihood is obtained by optimizing the log likelihood function 
defined in [A12.2.1]. The total number of model parameters is k = p  + q + P + Q + 1, where the 
unity term allows for the estimate of the variance of the model residuals. Usually, the mean of 
the differenced series can be assumed to be zero. However, if the mean of the differenced series 
is also estimated, k must be increased by unity. Also, k is increased by one if 3, f 1. 

Another alternative for developing an AIC formula for a SAIUMA model is to alter both of 
the terms on the right-hand side of [6.3.1]. As argued by Ozaki (1977). an increase in the 
number of data points con~butes  to decreasing the penalty due to the number of parameters. 
When the data a~ differenced both nonseasonally and seasonally, the number of data points 
decreases from q to q’ = q - d - SD . This effect can be incorporated into the AIC by writing the 
formula as 

AIC = 3(-2h(ML) + 2) [ 12.3.41 
T’ 

12.3.4 Diagnostic Checks 

Introduction 

The three assumptions underlying the innovations, a,, r = 1.2, . . . , q’, of the SARMA 

model in (12.2.91 arc that the disturbances arc independent, homoscedastic (i.e. have constant 
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variance) and normally distributed To check the foregoing residual stipulations, the estimated 
innovations, df Is. or model residuals are required. The estimates for the dl’s arc automatically 
calculated at the estimation stage along with the MLE’s and SE’s for the SARMA model param 
eters (see Appendices A12.2, A6.1 and A6.2). 

A data transformation cannot comct dependence of the residuals because the lack of 
independence indicates that the present model is inadequate. Rather, the identification and esti- 
mation stages must be repeated in order to determine a suitable model having different model 
parameters. If the less important assumptions of homoscedasticity and normality are violated, 
they can often be corrected by a Box-Cox transformation of the data. 

The residual assumptions for the SARMA model arc identical to those stipulated for the 
nonseasonal ARMA model in [3.4.4]. Consequently, all of the diagnostic checks presented for 
the nonseasonal ARMA model in Chapter 7, can be used with the SARMA model. Some of 
these diagnostic methods an briefly described below but for detailed accounts of these and other 
model checking methods. the reader can refer to Chapter 7. 

Tests for Whiteness 

If a calibrated SARMA model adequately describes a time series, the estimated innova- 
tions, 4 ’ s .  or residuals should be white, due to the independence assumption of the uf’s. To 
determine whether the residuals are white noise, the best procedu~c is to examine the residual 
uutocorrelution function (RACF). Because the distribution of the RACF which is shown in the 
theorem below is now known, sensitive testing techniques are available for checking the 
independence assumption of uf . 

The theorem for the RACF is developed as follows. The ACF. r,(d), of the calculated resi- 
duals can be determined by 

[ 12.3.51 

Define the vector of the first L values of the RACF as 

r(d) = [r&f)sz(a^), . . . , q,(B)l’ [12.3.6] 

Denote by “,(a) the coefficient of B’ in the Maclaurin series expansion of [@(Bs)]” in powers 
of B, and similarly define Y,($). Y,(e), and Y,(e). Then it can be proved for large samples 
(McLeod, 1978) that 

m=N 1 m3u1 [ 12.3.71 

where U = 1, - XT’X,  1, is the identity matrix, I =XX is the large-sample information matrix, 
and X = pPf-js(@), Y,-,(I$), Yf-js(C3), Yf-,@)] are the i , j  entries in the four partitions of the X 
matrix. The dimensions of the matrices X ,  Yf-js((b), Yl-j($), Yf-,#3), and Yf-,03) are, respec- 
tively, Lx(P + p  + Q +q), LxP, Lxp,  LxQ, and Lxq. Reviously, Box and Pierce (1970) 
obtained this result for the nonseasonal AR case, but the theorem listed here is valid for nonsea- 
sonal ARMA, SARMA, transfer function-noise, and intervention models. 
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There arc two useful applications of the RACF distribution theorem A sensitive diagnostic 
check is to fmt plot the RACF along with the asymptotic significance intewals for the RACF 

that arc obtained from the diagonal entries of the matrix - U. If some of the RACF values 

arc significantly different from zero, this may mean that the present model is inadequate. The 
important values of the RACF to examine arc those at the first couple of lags and also at lags that 
arc integer multiples of s for a seasonal model. 

If the current model is insufficient, one can use the information from the RAW plot to help 
design an improved model before returning to the earlier stages of model construction. For 
example, a significantly large value of the RACF at lag s may indicate that a seasonal MA 
parameter is needed in the SARMA model. Upon updating the model design, the new model can 
be calibrated and checked for the prtsence of any further weaknesses. 

A second but less sensitive test is to calculate and to perform a significance test for the 
modifid Portmanteau statistic UL (Li and McLeod, 1981). If L is large enough so that the 

I:' 1 

weights Yk(@), 'PA($), Y@), and Yk(8) have damped Out, then 

L L(L + 1) 
k=1 2rl' 

U, = qf c r&f) + [12.3.8] 

where L can be given as value of 2s to 4s such that the maximum value of L is not more than 
about *. The statistic UL is x2 distributed on (L - P - p  - Q - q )  d e p s  of freedom. A test 

of this hypothesis can be done for model adequacy by choosing a level of significance and then 
comparing the value of the calculated x2 to the actual x2 value from the tables. If the calculated 
value is greater. on the basis of the available data, the present model is inadequate and, conse- 
quently, appropriate design changes must be made. 

In Section 7.3.3, three Portmanteau test statistics arc defined for carrying out whiteness 
tests with nonseasonal ARIMA models. The Pomanteau statistic defined in [12.3.8] for use 
with SARIMA models is based upon the statistic given in [7.3.6] for employment with nonsea- 
sonal ARIMA models. The seasonal equivalent of the test statistic in [7.3.5] is 

4 

L 

&=I 
u, = q'(q' + 2) r&)/(q' - k) 

This statistic is xz disbibuted on (L - P - p  - Q - 4) degrees of freedom. 

[12.3.9] 

Test for Periodic Correlation 

When a SARIMA model is fitted to a seasonal hydrological series such as the average 
monthly flows for the Saugten River plotted in Figurc VI.1, it may not be able to &scribe the 
periodic or seasonal correlation that may be contained in the series. This is because the S A R -  
Lh4A model wumes that the comlation structure contained in the series is the same throughout 
the year. However, the cornlation between rivemow values for July and August, for instance, 
may be quite different from the correlation between April and March. This fact is confirmed in 
Section 14.4 where a periodic autoregressive model is fined to the average monthly Saugccn 
rivemows. 
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To test whether or not periodic correlation is contained in the residuals of a fitted SARIMA 
model, one can employ a statistical test presented by McLeod (1993). The periodic autocomla- 
tion at lag k for season m may be written as 

n 

C 4 m 4 m d  

[12.3.10] 

where d,, is the estimated innovation or residual for the rth year and rnth season. n is the 
number of years of seasonal data, and s is the number of seasons per year. Over the s seasons, 
the residual autocomlations at lag one given by r)'""(drm), rn = 1.2, . . . , s, arc approximately 
jointly normally distributed with mean zero, diagonal covariance matrix, and 
vur(rfm)(drm)) = n-I. A diagnostic check for detecting periodic autocorrelation in the residuals 
of a fitted SARIMA model is given by 

t12.3.111 

which should be approximately x2 distributed on s degrees of M o m .  if the model is adequate. 
When the calculated value for S is larger than that found in the tables for a given sigruficance 
level, the calibrated model does not capture the periodic correlation. 

Normality Tests 

As pointed out in Section 7.4, many standard tests are available to check whether data are 
normally distributed. Additionally, the graph of the cumulative distribution of the residuals 
should appear as a sh-aight line when plotted on normality paper if the residuals are normally dis- 
tributed (Section 7.4.3). For instance, the residuals should not be sigruficantly skewed or pos- 
sess a significantly large kurtosis coefficient under the assumption that the residuals are nor- 
mally distributed (Section 7.4.2). 

Homoscedasticity Checks 

Heterodst ic i ty  or changes in variance can arise in a number of different ways including: 
the variance changes over time, 
the magnitude of the variance is a function of the current level of the series. 

1. 

2. 

Sensitive sigruficance tests for checking for the presence of the above kinds of heteroscedasticity 
are described in detail in Section 7.5. 

u.35 summary 

By following the identification, estimation and diagnostic checks stages of model construc- 
tion, one can conveniently determine a reasonable SARMA or SARIMA model for describing a 
t h e  series. These three construction stages are summarized in Figure 12.3.1. This approach 
follows the general model building procedure shown in Figure 6.3.2. The applications in the 
next stage demonstrate how easy it is to carry out this SARMA model building approach in prac- 
tice. 
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Figure 12.3.1 Constructing a SARIMA model. 

12.4 APPLICATIONS 

12.4.1 Introduction 

To demonstrate how the model construction procedures of Section 12.3 arc conveniently 
utilized in practice, SARIMA models are fitted to three seasonal time series. In the first applica- 
tion, an appropriate SARIMA model is designed for describing the average monthly water con- 
sumption series of Figure VI.2 while in the second case study a SARIMA model is fitted to the 
average monthly concentrations of atmospheric COz displayed in Figure VI.3. 

As pointed out in the Foreword to Part VI. the seasonal series displayed in Figures VI.2 and 
VI.3 constitute data sets for which the level of the series within each series increases with time. 
This nonstationary characteristic is clearly depicted in Figures VI.2 and VI.3 by the incrcasing 
mnd around which the seasonal data fluctuate in sinusoidal patterns. However, for the average 
monthly flows of the Saugecn River at Walkerton, Ontario, shown in Figure VI.1. the m a n  and 
variance within a particular season across the years arc more or less stationary and, conse- 
quently, there is no upward a n d .  In the third application, the best SARIMA model to fit to this 
series is determined. However, as mentioned in the Foreword to Section VI. the most appropri- 
ate types of models to tit to the average monthly Saugeen Riverflows arc the descasonaliztd and 
periodic models of Chapters 13 and 14. respectively. Although a calibrated S A R I M A  model for 
the Saugten flows could be used for forecasting, it cannot be employed for simulation. This is 
because the SARIMA model is not designed for preserving stationarity within each season. 
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12.43 Average Monthly Water Useage 

The average monthly water consumption series in millions of l i a s  per day is available 
from h e  Public Utilities Commission (1989) of London from 1966 to 1988. When fitting a 
SARIMA model to this series, the first step is to obtain appropriate exploratory data analysis and 
identification graphs referred to in Section 12.3.2 and then to compare the information displayed 
on these graphs in order to design the SARIMA model. 

As explained in Section 22.3, one of the most informative exploratory data analysis tools is 
simply a plot of the given series against time. A plot of the monthly water consumption versus 
time in Figure VI.2 certainly reveals important characteristics about the observations. As also 
noted in the foreword to part VI as well as the introduction to this section, the sinusoidal curve in 
Figure VL2 indicates that the data are seasonal. Indeed the demand for water is highest during 
the wanner summer months and lowest during the winter time. Moreover, the increasing linear 
trend component indicates that the data in each month of the year are increasing with time. In 
some instances a physical understanding of the phenomenon being analyzed allows for the incor- 
poration of deterministic components into the model to account for seasonality andor trends. 
For instance, seasonality may be modelled by a Fourier series. while trend might be accounted 
for by a polynomial. However, for the water demand data, a purely stochastic SARIMA model 
is fit to the data Following the explanation of Section 4.6. the nonseasonal and seasonal dif- 
ferencing take care of the stochastic trend while the AR and MA parameters can describe the 
remaining dependence among the observations. Consequently. the SARIMA model stochasti- 
cally accounts for the inherent properties of the data 

From the graph of the water demand series in Figure VI.2, it is not obvious that a data 
transformation is required. However, the variance appears to be increasing in the last two years 
of the water demand series. When a Box-Cox transformation is estimated for the SARIMA 
model identified below, the best transformation is found to be X = -0.75. 

The upward trend in Figure VI.2 points out that seasonal and perhaps also nonseasonal dif- 
ferencing are needed for removing the nonstationary behaviour. The nonstationarity of the raw 
data is also confirmed by the fact that the sample ACF plotted in Figure 12.4.1 dies off very 
slowly. The seasonality of the water demand data is reflected in the attenuating sine wave pat- 
tern in this figure. 

Differencing the data once seasonally removes the nonstationarity contained in the original 
series. A graph of the seasonally differenced series in Figure 12.4.2 shows that differencing has 
eliminated the linear trend component as well as the sine wave. Also notice that the seasonally 
diffennced series in Figure 12.4.2 has 12 fewer data points than the graph in Figure VI.2 
because of the monthly differencing. In order to compare conveniently the original water con- 
sumption series in Figure VI.2 to the seasonally differenced version of the series in Figure 
12.4.2, the two series can be plotted on a single graph. Figure 12.4.3 displays the bivariate &ace 
plot for these graphs which shows Figure VI.2 as the lower graph and figure 12.4.2 as the upper 
plot To avoid clutter and permit easier interpretation of the results, the ordinate axis is omitted. 
One can clearly stt from Figure 12.4.3 how seasonal differencing has removed trend and 
sinusoidal components. 

The sample ACF, PACF. IACF and IPACF are displayed in Figures 12.4.4 to 12.4.7 for the 
seasonally differenced water demand series. Because none of these graphs attenuate slowly, the 
seasonally differenced data of Figures 12.4.2 and 12.4.3 (upper plot) are stationary. When 
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Figure 12.4.1. Sample ACF and 95% confidence Limits for the 
average monthly water useage series from January, 1966, 

to December, 1988, for London, Ontario, Canada. 

calculating the sample ACF in Figure 12.4.4, or, in general, when computing the ACF of any 
series that has been differenced. the mean of the w, series in [ 12.2.81 is not removed. This pro- 
cedure precludes missing any deterministic component that may still be present even after dif- 
ferencing. 

In order to identify the number of AR and MA terms required in the model of the season- 
ally differenced monthly water useage data, the graphs of the sample ACF. the PACF, the IACF, 
and the IPACF that arc shown in Figures 12.4.4 to 12.4.7, respectively, arc interpreted simul- 
taneously keeping in mind the main identification rules summarized in Table 12.3.1. Notice that 
both the sample ACF and IPACF have a sigrufkantly large value at lag 12. Mortova, because 
the sample PACF and IACF possess values that are decreasing in absolute magnitude at lags 12, 
24, 36, and 48 (i.c. lags that arc positive integer multiples of 12). this indicates the need for a 
seasonal MA term in the model. 

Overall, the four identification graphs in Figures 12.4.4 to 12.4.7 complement one another 
in clearly pointing out the need for a seasonal MA parameter to include in the SARIMA model 
to fit to the seasonally differenced monthly water demand series. These graphs arc also utilized 
for ascertaining which nonseasonal AR and MA parameters an needed. Because both the sam- 
ple ACF and IPACF appear to die off across the fust three or four lags, a nonseasonal AR 
parameter is required. Although the pattern is not strong, one could also interpret the sample 
PACF as attenuating during the first few lags. This indicates that a nonseasonal MA parameter 
may be needed in the model. Finally, notice that the sample IACF Seems to cut off after the first 
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Figure 12.4.2. Graph of the seasonally differenced average 
monthly water useage series for London, Ontario, Canada. 
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Figure 12.4.3. Bivariate trace plot of the average monthly water useage series 
(lower graph) for London, Ontario, Canada, from January, 1966, to December, 1988, 

and also the seasonally differenced water useage series (upper graph). 
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Figure 12.4.4. Sample ACF and 95% confidence limits for the seasonally differenced 
average monthly water useage series for London, Ontario, Canada. 
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Figure 12.4.5. Sample PACF and 95% confidence limits for the seasonally differenced 

average monthly water useage series for London, Ontario, Canada. 
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Figure 12.4.6. Sample IACF and 95% confidence limits for the seasonally differenced 
average monthly water useage series for London, Ontario, Canada. 
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Figure 12.4.7. Sample IPACF and 95% confidence limits for the seasonally differenced 
average monthly water useage series for London, Ontario, Canada. 
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MLE’s SE’s 
0.618 0.123 
0.297 0.150 
0.851 0.032 

1 . 8 6 ~ 1 0 ~  

lag and, theref0t.e. docs not confirm the need for a nonseasonal MA parameter. 
In summary, the identification plots given in Figures 12.4.4 to 12.4.7 indicate that an 

ARIMA(1,0,1)~(0,1,1)~~ or an ARIMA(l,O,O)x(O,l,l)l~ model should be fit to the water demand 
series. As mentioned earlier, a Box-Cox power transformation with X = -0.75 is also requircd 
When SARIMA models arc calibrated for the seasonally differenced ttansformed water demand 
series, the SARIMA model possessing the lowest AIC calculated using [12.3.3] is the SAR-  
IMA(l,O,l)~(0,1,1)~~ model. Table 12.4.1 lists the parameter estimates and the SE’s for this 
model while [ 12.4.11 gives the corresponding difference equation. 

(1 -0.6188)(1 -Bi2)z,@)=(1 -0.2978)(1 -0.851B”)a,I [ 12.4.11 

where the Box-Cox power parameter 5 = -0.75 for water demand series, zl. 

Notice in Table 12.4.1 that the estimate for the nonseasonal MA parameter is about twice 
its SE and is, therefore, just barely significantly different from zero. On the other hand, the 
parameter estimates for and el arc many times larger than their corresponding SE’s. Recall 
that the need for incorporating both $1 and 8, into the model arc clearly indicated by the identif- 
ication graphs. 

The calibrated SARIMA model in [12.4.1] passes diagnostic checks for whiteness, normal- 
ity and homoscedasticity refereed to in Section 12.3.4. Figure 12.4.8, for example, of the R4CF 
for the fittad SARIMA model shows that the model residuals are white. Except for lag 22, all of 
the RACF values fall within the 95% confidence interval. This large value at lag 22 is probably 
due to chance alone and could not be removed by including other model parameters. One would 
expect that then is one chance in twenty that a value could fall outside the 95% confidence Lim- 
its. Additionally, this large value docs not occur at crucial lags such as 1.12.24, and 36. Other 
diagnostic checks reveal that both the homoscedasticity and the normality assumption for the 
residuals arc fulfilled. Therefore, on the basis of the information usad, the chosen SARIMA 
model [ 12.4.11 adequately models the monthly water useage data 



SARIMA Models 

0.21 

445 

-0.21 

Figure 12.4 RACF and 95% confidence limits for the SARIh i( 1.0, 
model with X = -0.75 fined to the average monthly 
water useage series for London, Ontario, Canada. 

U.43 Average Monthly Atmospheric Carbon Dioxide 
Bacastow and Keeling (1981) as well as Keeling et al. (1982) list average monthly concen- 

trations of atmospheric COz measured at the Mauna Loa Observatory on the Island of Hawaii. 
Figure VI.3 displays a plot of these observations from January, 1965, to December, 1980. 
Because carbon dioxide is a principal grcenhouse gas that could cause global warming, the mon- 
itoring and analysis of CO, data such as the series in Figure VI.3 is of wide interest to environ- 
mental scientists, political decision makers and, indeed. the general public. As pointed out by 
Bacastow and Keeling (198 1). the increase per year in carbon dioxide concentration in the atmo- 
sphere is one of the important observations for understanding the carbon cycle. 

Blue (1991) reports upon the work of Wahlen et al. (1991) who are taking measurements 
of CO, in the air of bubbles in the GISP 2 (Greenland Ice Sheet Project 2) ice core using a dry 

extraction technique and tunable diode laser absorption spectroscopy. The CO, record spans the 
years from 1530 to 1940 and includes parts of the little ice age, a time of abnormally cold tem- 
peratures in Europe during the 16th and 18th centuries. Wahlen et al. (1991) have found that 
there were no significant changes in CO, concentrations during the little ice age. However, since 
about 1810, the C& concentrations have started to increase due to industrialization and other 
related land use changes such as deforestation and urbanization. Moreover, the date of the onset 
of incrcasing CO, in about 1810 in the GISP 2 ice core is similar to that discovered in the Siple 
core from Antarctica (Neftel et al., 1982) and also in another Antarctic ice core analyzed by 
Pearman et al. (1986). Finally. the data retrieved from the Greenland ice core GISP 2 are 



446 Chapter 12 

consistent with observations from Mauna h a  
Figure M.3 clearly depicts an increasing linear a n d  in the monthly CO, levels over the 

years. The sinusoidal c w c  wrapped around the a n d  demonstrates that the data arc sinusoidal 
with larger values occurring in May or June of each year. Because of the nonstationarity in Fig- 
ure VL3, differencing is required to remove a n d s  and hence create a stationary series. Figure 
12.4.9 shows a bivariate trace plot for which the original CO, series of Figure VI.3 is given in 
the lowa half of the graph and the stationary series is plotted at the top when the given series is 
diffennccd both seasonally (i.e. D = 1) and nonseasonally (d = 1). Notice from the top series 
the way in which differencing has removed the increasing a n d  as well as the distinct seasonal- 
ity shown in the original lowa series. Also, because of the diffenncing, the upper series is 13 
(d + D = 1 + 12 = 13) data points shorter than the original lower series. 

OBSERVATION NUMBERS 

Figure 12.4.9. Bivariate trace plot of the average monthly concentrations of atmospheric 
CO, (mole fraction in ppm) (lower graph) measured at Mauna Loa Observatory 

in Hawaii from January, 1965, to December, 1980, and also the 
nonseasonally and seasonally differenced CO, series (upper graph). 



SARIMA Models 447 

To discover the AR and MA parameters q u i d  to model the top series in Figure 12.4.9, 
one can simultaneously examine the sample ACF, PACF, IACF and IPACF shown in Figures 
12.4.10 to 12.4.13, respectively. The significantly large values of the sample ACF and IPACF at 
lag 12 means that a seasonal MA parameter is needed in the model. This finding is also con- 
fvmd by the fact that the sample PACF and IACF attenuate at lags that arc positive integer mul- 
tiples of 12 (i.e. lags 12,24,36 and 48). The slightly large values at lag one for the sample ACF 
points out that a nonseasonal MA parameter may be needed. The fact that the sample IACF 
possesses attenuating values after lags 1, 12, 24 and 36 may indicate that a nonseasonal MA 
parameter is requind. Consequently, the most appropriate model to fit to the monthly C02 data 
is probably a SARIMA(O,~,~)X(O,~,~)~~ model. When comparing other possible S A R M A  

models such as the S A R I M A ( ~ , ~ , ~ ) X ( O , ~ , ~ ) ~ ~  and (l,l,O)x(O,l,l)l~ to the aforementioned model. 
the AIC value calculated using 112.3.31 is lowest for the SARIMA(0,1,1)x(0,1,1)12 model. 

Table 12.4.2 lists the MLE’s and SE’s for the parameters of the SARIMA(0,1,1)x(0,1,1)12 
model fitted to the monthly CO, data set. In difference equation form, this calibrated SARIMA 
model is written as 

(1 -B)(1 -BI2)z,  = ( 1  -0.336B)(1 -0.831B1*)a, [ 12.4.21 

where z, represents the average monthly C02 series value at time t .  

The estimated model in [12.4.2] provides a reasonable fit to the CO, series according to 
diagnostic checks for whiteness, normality and constant variance described in Sections 7.3 to 
7.5, respectively. Because all of the values for the RACF fall within the 95% confidence limits 
in Figure 12.4.14. the model residuals are not significantly comlated and, hence, arc white. 
Monover, the calibrated model performs reasonably well with respect to normality and homos- 
ctdasticity checks. For example, the value of the test statistic for changes in variance depending 
on the cumnt level (see Section 7.5.2) is -2.232 with a SE of 1.296. Because the test statistic 
falls within two SE’s of zero, one can argue that the statistic is not significantly different from 
zero and, hence. the residuals arc homosccdastic. 

U.4.4 Average Monthly Saugeen Riverflows 
The average monthly flows for the Saugeen River at Walkerton, Ontario, Canada, arc 

displayed in Figure VI.1. When modelling monthly riverflow series it is usually necessary to 
take natural logarithms of the data to alleviate problems with heteroscedasticity and/or non- 
normality in the model residuals. Therefore, the Box-Cox parameter 1 is set equal to zero in 
[ 12.2.11 for the Saugecn flows. Following this, an examination of the sample ACF for the loga- 
rithmic data reveals that the data has to be differenced once seasonally in order to remove sca- 
sonal nonstationarity. By studying the propenies of the sample ACF. PACF, IACF and IPACF 
graphs for the seasonally differend logarithmic Saugecn time series, it is found that the best 
design is a SARIMA(l,0,1)x(0,1,1)12 model. Diagnostic checks for the residuals of the cali- 
brated modcl indicate that the model provides an adequate fit to the data. However, it is found 
that the periodic autocomlation test statistic in [ 12.3.111 for the fitted SARIMA has a signifi- 
cantly large value of 59.6 on twelve degrees of fieedom. Consequently, the SARIMA model 
residuals possess significant periodic cornlation. Therefore, in Section 14.4 a periodic autore- 
gressive model is fitted to the logarithmic average monthly Saugeen riverflows in order to 
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Figure 12.4.10. Sample ACF and 95% confidence limits for the differenced (d = D = 1) 
avenge monthly atmospheric CO, concentrations (mole fraction in ppm) 

measured at Mauna Lon Observatory in Hawaii. 
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Figure 12.4.1 1. Sample PACF and 95% confidence limits for the differenced 
(d = D = 1)  average monthly atmospheric COz concenmtions 

(mole fraction in ppm) measured at Mauna Loa Observatory in Hawaii. 
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Figure 12.4.12. Sample IACF and 95% confidence limits for the differenced (d = D = 1) 
average monthly atmospheric C02  concentrations (mole fraction in ppm) 

measured at Mauna Loa Observatory in Hawaii. 
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Figure 12.4.13. Sample IPACF and 95% confidence limits for the differenced 
(d = D = 1) average monthly atmospheric C 0 2  concentrations 

(mole fraction in ppm) measured at Mauna Loa Observatoj in Hawaii. 
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Table 12.4.2. Parameter estimates and SE’s for the 
SAlUMA(0,1,1)x(0,1,1)12 model fitted to the average 
monthly atmospheric C02 concentrations measured 

at Mauna Loa Observatory in Hawaii. 
I Parameters I MLE’s I SE’s 1 
I I 
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I 1 1 , , , , , , , , ,  I 
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Figure 12.4.14. RACF and 95% confidence limits for the SARIMA(0,1,1)x(0,1,1)12 
model fitted to the average monthly atmospheric CO, concentrations 

(mole fraction in ppm) measured at Mauna Loa Observatory in Hawaii. 

properly model the periodic comlation. 
Equation [ 12.3.31 can be employed for calculating the AIC of the SARIMA model fitted to 

the Saugtcn flows. 7he value of the AIC is found to be 3435.43. As shown in Chapters 13 and 
14 for the values of the AIC determined for the deseasonaliztd and periodic models, respec- 
tively, the estimate of the AIC is much higher for the calibrated SARIMA model. This is 
because deseasonalizcd and periodic models are spocifically designed for preserving certain 
kinds of stationarity within each Season of the average monthly Saugben riverflows. 
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l2.5 FORECASTING AND SIMULATING WITH SARIMA MODELS 
After fitting the SARIMA model in [12.2.7] to a given seasonal timC series, the calibrated 

model can be employed for forecasting and simulation. In Chapter 8, minimum mean squarc 
error fortcasts arc defined and procedures arc presented for calculating MMSE forecasts for non- 
seasonal ARMA (Chapter 3) and ARIMA (Chapter 4) models. Section 15.2.2 explains how 
MMSE forecasts arc conveniently determined for a SARIMA model when the model is written 
using the generalized form in [12.2.12]. If the data have been transformed using a Box-Cox 
transformation, one can employ the procedure explained in Section 15.2.2 as well as Section 
8.2.7 to dettrmine the forecasts in the original unuansformcd domain. 

In Section 12.4.2 of the previous section, the most appropriate SARIMA model to fit to the 
average monthly water useage series displayed in Figure VI.2 is found to be the SAR-  
IMA(1,0,1)~((0,1,1),~ model with 1=-0.75 written in [12.4.1]. Figure 12.5.1 depicts the 
MMSE forecasts for the water demand series from January 1989 until December 1990 that are 
calculated for the fitted SARIMA model by following the procedure given in Section 15.2.2. 
The seasonal characteristics of these forecasts can be clearly seen as a sinusoidal pattern on the 
right hand side of Figure 12.5.1 that fall within their 90% probability limits. 

The model for the SARIMA(0,1.1)x(0,1,1),2 model fitted to the average monthly concen- 
trations of atmospheric CO, is written in [12.4.2]. The MMSE forecasts for this model arc 
displayed on the right hand side of Egure 12.5.2 along with the 90% probability limits. As is 
also the case in Figure 12.5.1, the forecasts follow the seasonal sinusoidal shape exhibited by the 
historical observations. 

When simulating with a SARIMA model, the first step is to Write the model in unfactored 
form as in [12.2.11]. Next, WASIMl or WASIM2 explained in Sections 9.4 and 9.5. respec- 
tively, is employed to determine simulated data for the w, series in [12.2.11]. Subsequently. the 
algorithm of Section 9.5.2 is utilized for integrating the systematic w, values to obtain the simu- 
lated z,(’) series. Finally, the inverse Box-Cox transformation in [9.6.2] is invoked to procurt the 
corresponding z, synthetic data in the unuansformcd domain. Parameter uncertainty can be 
entertained by employing the WASIM3 algorithm of Section 9.7. 

12.6 CONCLUSIONS 

The SARIMA and SARMA models defined in (12.2.71 and [12.2.9], respectively, arc 
designed for modelling time series which exhibit nonstationarity both within and across seasons. 
An inherent advantage of the SARIMA family of models is that relatively few model parameters 
arc required for describing these types of time series. As demonstrated by the three applications 
in Section 12.4, the model construction techniques of Section 12.3 can be conveniently and 
expeditiously implemented in practice for designing, calibrating and checking SARIMA models. 
Many other applications of SARIMA models to water resources and environmental timt series 
can be found in the literature. For instance, Irvine and Eberhardt (1992) fit SARIMA models to 
lake level time series. 

As explained in Section 12.5 and also Section 15.2.2, a calibrated SARIMA model can be 
employed for forecasting and simulation. In Chapter 15, the results of forecasting experiments 
demonstrate that the deseasonalized and periodic models of Chapters 13 and 14, rcsptctively, 
foncast better than SARIMA models when forecasting monthly riverflow time series This is 



452 

s 280.0- 
\ 

0 

w 

4. 
to - 
Y 

240.0 

m 
3 
= 2000- 

6 
G 

160.0- 

Chapter 12 

0 OBSERVATION 
+ FORECAST 

- 

0 

0 

O O  

0 

OO 0 
(,0O0 oOOO 

I I I I 

YEAR 

Figure 12.5.1. MMSE forecasts along with their 90% probability intervals 
for the SARIMA(l,0.1)x(0.1,1)~2 model with 1 = -0.75 fitted to 

the average monthly water useage (million litres per day) series from 1966 to 1988 
for London. Ontario, Canada. 

because the SARIMA model is designed for modeling the type of series shown in Figures VI.2 
and VI.3 rather than the one in Figure VI. 1. 

If then wen more than one seasonal cycle in a series, other sets of seasonal operators could 
be incorporated into the SARIMA model to handle this situation. Furthermore. one could also 
easily design a seasonal FARMA (fractional ARMA model) by directly extending the definitions 
in Chapter 1 1  for nonseasonal FARMA models to the seasonal case. 
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OBSERVATION NUMBERS 

Figure 12.5.2. MMSE forecasts along with their 90% probability intervals for the 
SARIMA(O,l.l)x(O.l,l),z model fitted to the average monthly water concentrations of 

atmospheric CO, (mole fraction in ppm) measured at Mauna Loa observatory in Hawaii. 

APPENDIX A12.1 

DESIGNING 

MULTIPLICATIVE SARIMA MODELS 

USING THE ACF 

The multiplicative SARMA(p,q)x(P,Q), model for fitting to the stationary w, series in 
t12.2.81 is defined in [12.2.9]. The theoretical ACF of w, is given by 

p& =y&/yo. k = 0 , 1 . 2 , * * *  

where y& = E[w,w,,]. Using a result of Godolphin (1977, [3.4]), it follows that for s large 
enough 
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pi*b=pi(ur)pi(U,) fori=0,1, ..., sIZand j = O , l : . - ,  rA12.1.11 

where pi*js is the ACF of w, at lag iijs and pi@,) and pj(U,) arc the values of the ACF at lags i 
and j of u, and U, in the models Q(B)u, = 8(B)u, and O(B')U, = B(Bs)u,, respectively. Godol- 
phin (1977, [3.4]) demonstrates using a vector representation that tA12.1.11 holds exactly when 
p = P = 0 and s > 2q. As shown at the end of this appendix, this result may also bc derived 
using the autocovariance generating function (Box and Jenkins, 1976, p. 81). In any case, the 
general approximation follows from the fact that a SARMA(p.q)x(P ,Q)r model can bc approxi- 
mated by a (O,q)x(P.Q), modcl for suitable Q when s is large enough. 

A graphical interpretation, along similar lines to that suggested by Hamilton and Watts 
(1978) for the PACF may be given. First, the regular nonseasonal component p a m  is defined 
as the ACF of u, plus repetitions centered about the seasonal lags O,s,2s, * - - . Figure A12.1.1 
shows the regular component pattern corresponding to a (1.0)(P.Q)12 model with Q, = 0.6. Next, 
the seasonal component pattern is determined from the ACF of U, as illustrated in Figure 
A12.1.2 for the case of a (p,q)(l,0),2 model with O1 =0.6. Then, the approximation to the ACF 
of w, is the product of the regular and seasonal component patterns. Figurc A12.1.3 shows the 
resulting approximation for the (1,0)(1,0)12 model with Ql = O1 = 0.6. 

In conclusion, the general interpretation presented in this appendix is useful for seasonal 
model identification and does not appear to have been pointed out previously. For some applica- 
tions, the employment of this procedure can simplify the identification process. 

Generating Function Proof of Godolphin's Result 
Theorem: Ifs > 2q, the autocovariance function, yk, of a (O.q)x(P,Q), model may be expressed 
for nonnegative lags as, 

Yi(U,)'Yj(Ut) for 0 S i S 4 and 0 S j S Q, 
yjxti = [o, otherwise, 

where yi(u,) and q(U,) denote the autocovariance functions of the processes Q(B)u, = O(B)u, and 

P m t  For convenience, it may bc assumed that var(u,) = 1. 

@(B)U, = 8(B)u,. 

r(B) = e(E)e(B-')/[@(S)O(B-')] 
w 

= rkBk 
L.u 

Then the autocovariance generating function of the (O,q)(P.Q), model may be written as 

Y(B)= 5 YkBk 
k= 

= e(B)e(B-I)r(BS) 
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where 0, = -1. Thus, provided s > 2q, the coefficient of BjSA ( i  = 0, * - - 4) is 

Similarly, the coefficients of Bjd and Ej'1 can be shown to be equal. 

APPENDIX A12.2 

MAXIMUM LIKELIHOOD ESTIMATION 

FOR 

SARMA MODELS 

Mckod and Salas (1983) provide an algorithm for calculating an approximation to the 
likelihood function of the multiplicative SARMA model in [12.2.9]. Their algorithm specifi- 
cally takes advantage of the multiplicative structure of the nonseasonal and seasonal AR and MA 
operators in the SARMA model. The conditional, unconditional or iterated unconditional 
method of Box and Jenkins (1976) may be used in the algorithm of McLeod and Salas (1983) in 
conjunction with an approximation to the determinant term (see McLeod (1977) and also Appen- 
dix 6.1) to obtain an accurate and highly efficient algorithm. In fact, M c W  and Salas (1983) 
point out that other competing algorithms become computationally infeasible when the seasonal 
period s becomes much larger than 12, as in the cases of half-monthly (s = 24). weekly (s = 52) 
or daily (s = 365) timc series. 

In this appendix, the theory bthind the algorithm of McLeod and Salas (1983) is outlined. 
The reader can refer to the paper of McLeod and Salas (1983) for a more detailed description of 
the thcory and method of application as well as a listing of the Foman computer program for the 

The SARMA (p.q)x(P,Q), model for fining to a series w, of length q'=q - d  -sD is 

algorithm. 

defined in [ 12.2.9). Let the vector of model parameters be given by 

B=(+~.&, . . . ,+p .~ i .e2t . .  . ,eppralro2,. . . .ap,ei.e2,. . . BQ) 
Although the SARMA model may bc considered as a special case of the ARMA (p*.q*) model 
in r12.2.141 by taking p* = sP, q* = q + sQ, 4*(B)  = a(B')$(B) and 8*(B)  = e(B')e(B), a 
more efficient estimation algorithm can be developed utilizing the multiplicative structure of the 
SARMA model. 
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Rgure A12.1.3. Approximate ACF of a SARMA(l.O)(l,O),, 

model with = 0.6 and 0, = 0.6. 

Given the observations w,, r=1,2, * * ,q', the exact log-likelihood function maximized over 
the variance, a:, of the innovation, of, may be written, apart from an arbitrary constant, 

lo&(P) = -1170g(Sm/q'Y2 [A 12.2.11 

where S,,, , the modified sum of squares is 

sm = S[Mq*(p ,qQ .Q s )I-"'* [A12.2.2] 

S represents the unconditional sum of squares of Box and Jenkins (1976) defined by 

s = i [all2. [A12.2.3] 
1- 

where [.I denotes expectation given w,.w2, * * .w,,t. 

types of truncation error. First, the infinite sum in [A12.2.3] is replaced by 
The evaluation of S by the iterative unconditional sum of squares method may involve two 

s = i [all2 (A12.2.41 
1zI-T 

for suitably large T. Theoretically, T should be chosen so that 
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[A 122.51 

when yo = var(w,), y; is the coefficient of u , i  in the infinite MA representation of [12.2.9] and 
e,ol is an e m r  tolerance. Thus, if the model contains a AR factor with roots near the unit circle, 
a fairly large T might be necessary. In practice, 

T = q + sQ + 2O(p + sQ) [A12.2.6] 

is often sufficient. The other truncation error involves terminating the itcxative pmiedurt used 
to calculate [a,]. Several iterations may be required to obtain convergence when the model con- 
tains a M A  factor with roots near the unit circle. However, sufficient accuracy is usually 
obtained on the first evaluation. 

McLeod (1977) suggests that the term M,.(P,q,P,Qj) be rtplaccd by m @ , q P , Q j ) ,  given 
by 

m @ .q P ,Q J) = M @  .q)[MV' ,Q)l'. [A12.2.7] 

where M @ , q )  is defined for any ARMA@,q) model as 

~ @ , q )  = M~~M$u, ,  [A 12.2.81 

where the terms Mp, Mq and M p ,  are defined in terms of the auxiliary autoregressions, 
$(B)v, = a, and 8(B)u, = a, and the left-adjoint autoregression $(B)e(B)y,  = a,. For the autorc- 
gression, $(B)v, = a,, M p  is the determinant of the p x p  matrix with ( i j )  entry 

[A 12.2.91 

and similarly for the other autoregrcssions. The p x p  matrix defined by [A12.2.9] is called the 
Schur matrix of I$@). Pagano (1973) has shown that a necessary and sufficient condition for sta- 
tionarity of an autoregression is that its Schur matrix be positivedefinite (sec Section 3.2.2). 
Thus, calculation of rn@,q,P,Q,s) also provides a check on the stationarity and invertibility con- 
ditions and so during estimation the parameters may be c o n s h e d  to the admissible rtgion. 
Modifid Cholesky decomposition is used to evaluate M @ , q ) .  

To obtain MLE's for the model parameters, the modified sum of squares must be minim- 
ized by using a standard optimization algorithm (see Section 6.2.3). McLeod and Salas (1983) 
describe in detail how the backforecasting method of Box and Jenkins (1976, Ch. 7) for ARMA 
models can be efficiently adapted for employment with SARMA models by making use of their 
multiplicative structure. 
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u. 1 Select an average monthly riverflow time series that has at least ten years of data, 
Employ a suitable set of time series programs such as the McLeod-Hipel Package 
refemd to in Section 1.7 to help you perform the following tasks. 

(a) Examine a graph of the observations plotted over timc and comment upon the 
o v d  statistical characteristics of the data If necessary use other exploratory 
data analysis tools (SCC Sections 1.2.4.5.3.2, 12.3.2 and 22.3) to Study the ~ t a -  
tistical properties of your series. 

(b) Based upon the discussion given at the start of Part VI and elsewhere in the 
chapter, which type of seasonal model do you fcel is most appropriate to fit to 
the time series? 
Utilizing the techniques of Section 12.3, follow the three stages of model con- 
struction to develop the most appropriate S A R I M A  model to fit to this series. 
Show and explain all of your modelling results at each model building stage. 

Carry out question 12.1 for a seasonal socio-economic time series of your choice. 
For example, you may wish to study a quarterly water or electrical demand series. 
Execute question 12.1 for a seasonal water quality time series that has no missing 
values. 
Select a seasonal meteorological time series for answering the questions given in 
question 12.1. 

Write a SARIh4A(2,1.3)~(1.1,2)~ model that is fitted to a series z, with k=O.S in 
the following forms: 

(a) difference equation format given in [ 12.2.71. 

@) unfactod form in [ 12.2.101, 

(c) generalized style as in [12.2.12]. 

(d) random shock form given in [12.2.15]. 

(e) and inverted format written in [12.2.17]. 

Derive the theoretical ACF for the SARMA@q)x(P.Q) model in [ 12.2.91. 

For a SARIMA(1,1,2)x(1,1,1)~~ model fitted to a series with X = 0.5, calculate the 
MMSE forecasts for I = 1.2, . . . ,24. 

For the same SARIMA model given in 12.7, describe the steps for simulating 
10,OOO sequences of length 120 for this model. Where necessary, use equations to 
explain how calculations arc carried out. 
Select one of the calibrated SARIMA models that you fitted to a seasonal time 
series in problems 12.1 to 12.4. Calculate and plot the MMSE forecasts as well as 
the 90% probability intervals using this model for lead times from 1 to 25 where s is 

(c) 

u.2 

u.3 

u.4 

US 

12.6 

u.7 

12.8 

12.9 

the seasonal length. Comment upon your results. 
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l2.10 Choose one of the calibrated SARIMA models that you fitted to a seasonal data set 
in one of the first four questions. Simulate and plot thm synthetic sequences of 
length 8s for the SARIMA modcl where s is the seasonal length. Compare these 
simulated sequences to the original series and discuss your findings. 

Outline the procedure of Box et al. (1987) for estimating the trend in a seasonal time 
series that can bc described using a SARIMA model. Comment upon the advan- 
tages and drawbacks of their approach. 
Briefly describe how the tests of Li (1991) work for determining the orders of dif- 
ferencing required for modelling a seasonal time series. Comment upon the useful- 
ness of the differencing tests. 

12.11 
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13.1 INTRODUCTION 

Deseasonalized models are useful for describing time series in which the mean and vari- 
ance within each season are stationary across the years. An example of a time series exhibiting 
these properties is the average monthly flows of the Saugeen River at Walkerton, Ontario, 
Canada, plotted in Figure VI.1. As can be Seen from the sinusoidal shape of this graph, the mean 
and perhaps also the variance for each month change from season to season. Nevertheless. if one 
examines, for instance, the July flows across all of the years, these flows fluctuate around an 
overall mean level for the month of July and the variance is constant over time for the month of 
July. The deseasonalized models of this chapter and also the periodic models of Chapter 14 are 
ideally designed for capturing this type of statistical behaviour. 

In addition to the flexible design of the deseasonalized models presented in Section 13.2, 
there are other distinct advantages for employing these models in practical applications. As 
explained in Section 13.3, a deseasonalized model can be easily identified and fitted to a given 
time series. Firstly, the seasonal component is removed from the series by subtracting from each 
observation the seasonal mean and perhaps also dividing this by the seasonal standard deviation. 
Subsequently, the most appropriate nonseasonal ARMA model is identified for fitting to the 
resulting nonseasonal series. Hence, the model construction tools presented in Part III for non- 
seasonal ARMA models, can also be used for building deseasonalized models. 

To demonstrate clearly that the modelling methods can be easily used in practice, deseason- 
alized models are fitted to two environmental time series in Section 13.4. In the first application, 
a deseasondized model is built for the average monthly flows of the Saugeen River displayed in 
Figure VI.1 while in the second example the most appropriate deseasonalized model is con- 
structed for an average monthly ozone series. 

Two other advantages for employing deseasonalized models are that they can be easily 
used for forecasting and simulation. As explained in Section 13.5, when forecasting with a 
deseasonalized model, the nonseasonal component of the series is forecasted using the procedure 
of Chapter 8 for nonseasonal ARMA models. Next, these forecasted values are converted to sea- 
sonal forecasts using the inverse of the deseasonalization procedure. Finally. if the original data 
were also transformed using a Box-Cox transformation, the inverse Box-Cox transfornation is 
invoked to produce forecasts which possess the same units as the original untransformed series. 
A similar procedure is employed for simulating synthetic data using a deseasonalized model. 
The techniques of Chapter 9 are used to generate the simulated data from the nonseasonal 
ARMA model fitted to the deseasonalized series. Following this, the nonseasonal simulated 
values are filtered through the inverse deseasonalization method and inverse Box-Cox m s f o r -  
mation to produce the untransformed synthetic sequence. 
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A drawback of using deseasonalized models is that they may rcquire many model p m e -  
ters for deseasonalizing the data. For instance, when dealing with a monthly time series. twelve 
monthly means and perhaps also twelve monthly standard deviations are needed for deseasonali- 
zation purposes. When modelling bimonthly and weekly tim series a total of 48 and 104 desea- 
sonalization parameters, respectively, may be required. To overcome the problem of over- 
parumererirarion, a Fourier series upprwch is described in Section 13.2.2. The applications in 
Section 13.4 are used for explaining how this method for reducing the number of model parame- 
ters is used in practice by following the overall model building stages explained in Section 13.3. 
In Section 13.5, approaches for forecasting and simulating with deseasonalized models are 
explained. 

13.2 DEFINITIONS OF DESEASONALIZED MODELS 

13.2.1 Introduction 
As noted in the introduction, the deseasonalized model consists of the deseasonalization 

and ARMA model components. Because the basic design of the deseasonalized model reflects 
the inherent structure of many kinds of seasonal hydrological time series, this model has been 
used by hydrologists and environmental engineers for a long time for modelling, simulating and 
forecasting hydrologic phenomena (see, for example, Thomas and Fiering (1962), McMichael 
and Hunter (1972), McKerchar and Delleur (1974), Kawas and Delleur (1975), Delleur et al. 
(1976). Tao and Delleur (1976). Croley and Rao (1977). Yevjevich and Harmancioglu (1989). 
and Jaywardena and Lai (1989), as well as the books on stochastic hydrology referred to in Sec- 
tion 1.6.3). In addition to defining this popular type of seasonal model in Sections 13.2.2 and 
13.2.3, the AIC (Akaike information criterion) formula for the deseasonalized model is deter- 
mined in Section 13.3.3 following the research of Hipel and McLeod (1979). 

13.23 Deseasonalization 
When considering data with s seasons per year (s = 12 for monthly data) over a period of n 

years, let zrn represent a time series value in the rth year and mth season where r = 1.2, . . . , n ,  

and m = 1,2, . . . , s. It is convenient to denote the ith previous value of r r m  by z,,,,-~. i = 1.2 ,.... 
If, for example, one were dealing with monthly data, then 29.12, zlo,o, and Z8.N would all refer to 

the same observation. 
If required, the given data may be transformed by the Box-Cox transformation (Box and 

Cox, 1964) to form the transformed series 

[ 13.2.11 

for r = 1.2, . . . , n ,  and m = 1.2, . . . .s,  where the constant c is chosen just large enough to cause 
all enmes in r j z  to be positive, and X is the Box-Cox power transformation. Although one 
could have a separate Box-Cox transformation for each season of the year, in order to reduce the 
number of parameters it is assumed that the same X and c arc used for each season. The purpose 
of the Box-Cox transformation is to rectify anomalies. such as heteroscedasticity and non- 
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normality in the residuals of the ARMA model fitted to the deseasonalized time series. 
The Box-Cox transformation given in [13.2.1] cannot remove seasonality from a time 

series. However, the following equations describe two deseusonulirudon merhodr that can be 
employed to deseasonalize the given data. 

WrJn (1) = Zr.m K i m  [13.2.2] 

[ 13.2.31 

where i,,, and 6, are the fitted mean and standard deviation for the rnth season. 

The deseasonalization procedures given in r13.2.21 and [13.2.3], reflect the inherent statisti- 
cal realities of many kinds of natural time series. For example, when considering average 
monthly river flow data, the observations for any particular month tend to fluctuate about some 
fixed mean level. Consequently, the deseasonalization method in r13.2.21 may be appropriate to 
employ if the monthly standard deviations of the zj .2  series are more or less constant throughout 
the year. When both the means and standard deviations of the z,!: sequence are different from 
month to month, then the transformation in [13.2.3] should be utilized. In certain situations, a 
Box-Cox transformation may cause the standard deviations to become constant throughout the 
year for the z , ( 2  series and hence [13.2.2] can be used in preference to r13.2.31. However, as 
pointed out in Chapter 12. for the type of natural time series just described, it is not recom- 
mended to difference the data to remove seasonality if the model is to be used for simulation. 

The fitted means and standard deviations in [13.2.2] and [13.2.3] can be estimated using 
two approaches. One method is to estimate them using the standard formulae. Hence, the esti- 
mate, p,,,, for the mean of the mth season across all of the years, can be determined using 

The estimate of the standard deviation for the mth season, is calculated as 

[13.2.4] 

[ 1 3 . 2 4  

For the case of monthly data, the deseasonalization transformation in [13.2.2] would require 12 
means whereas the one in [13.2.3] needs 12 means and 12 standard deviations for a total of 24 
deseasonalization parameters. When dealing with bimonthly, weekly and daily observations, a 
far greater number of deseasonalization parameters would be required 

To reduce the total number of deseasonalization parameters that are needed, a Fourier 
series upproach to deseusonulizurion can be utilized as another method for estimating the means 
and standard deviations. Let F,, and Fa be the number of Fourier components to fit to the sea- 
sonal means in [13.2.4] and seasonal standard deviations in [13.2.5], respectively. Both F,, and 
Fo can possess an integer value between 0 and sn. The Fourier coefficients are determined from 
the equations. 
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[13.2.6] 

[ 13.2.71 

[13.2.8] 

[ 13.2.9) 

where k = 1 2 ,  . . . , Fp, and h = 1,2.. . , , F, for 1 S F,, , F, S s12. To calculate the fitted means 
and standard deviations, set i,,, = 0 if F,, = 0 and let 6, = 1 if F, = 0. Otherwise, determine i,,, 
and 6, using 

+ Bksin- , m = 1 , 2  , . . . ,  s 
S k=l  

[ 13.2. lo] 

[ 13.2.1 1) 

1 ' -  l S -  
m=l m=l 

w h e r e A o = - ~ p m , a n d C ~ = - ~ q , , .  

The deseasonalized series can be calculated using [ 13.2.21 if F,  = 0 or otherwise [ 13.2.31. 
When all of the Fourier components are used to calculate i, (or om), then k,,, = c,,, (and 
6, =6,) and, hence, i,,, in [13.2.10] is equal to im in [13.2.4] and 6, in (132.111 is the same 
as 6,,, in [13.2.5]. Therefore, estimating the means and standard deviations using [ 13.2.41 and 
[ 13.231, respectively, can be considered a special case of the Fourier series approach. 

13.2.3 ARMA Model Component 

Subsequent to deseasonalization, the ARMA model defined in [3.4.4] can be fitted to the 
deseasonalizcd series represented by w,(: or w;: in [13.2.2] or [13.2.3], respectively. For the 
caSe of the w,(Z series in [ 13.2.31. the ARMA model would be written as 

O(B)w,(? = WW,, [ 13.2.121 

where g(B) = 1 - g1B - g2B - * * - $,Bp is the AR operator of order p for which gi is the ith 
AR parameter and B(B) = 1 - elB - 02E2 - - * - B,Bq is the MA operator of order q for which 
ej is the jth M A  parameter. The innovation series, urn. is assumed to be distributed as 
IID(0,a~). For estimating the model parameters, the normality assumption is invoked so that the 
innovations are required to be NID(0,aZ). If the residuals of the fitted model are not normally 
distributed and/or do not possess a constant variance, then an appropriate power transformation 
from [ 13.2.11 should be selected for correcting these problems. 
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13.3 CONSTRUCTING DESEASONALIZED MODELS 

13.3.1 Introduction 

When constructing a deseasonalized model, one follows in a general fashion the identifica- 
tion, estimation and diagnostic check stages of model building. During model construction. one 
must be able to identify and estimate the parameters contained in the deseasonalization and 
ARMA model components which form the overall deseasonalized model. In the next two sec- 
tions, two basic approaches are presented for carrying out the model building process. In the 
first method, the time series under study is fully deseasonalized using [13.3.4] and i13.3.51 to 
estimate the deseasonalization parameters given in [13.2.2] and [13.2.3]. Then the best ARMA 
model is fitted to the resulting nonseasonal time series. The resulting model is then subjected to 
diagnostic check to ascertain if design modifications arc needed to correct abnormalities in the 
ARMA model residuals. In the second approach, the AIC is used to determine which Fourier 
parameters are required in the deseasonalization step so that a more parsimonious model can be 
found. This second method is often needed when one is examining series, such as bimonthly or 
weekly sequences, for which the number of Seasons per year is greater than twelve. Special AIC 
formulae arc derived for deseasonalized models so one can employ the MAICE (minimum AIC 
estimation) procedure (see Section 6.3) for selecting the model having the fewest number of 
parameters. The AIC formulae are also valid for use with deseasonalized models having a Box- 
Cox transformation. 

Figure 13.3.1 outlines the two procedures for fitting deseasonalized models to a time series. 
When following the fully deseasonalized approach of Section 13.3.2, one does not use the AIC 
to determine the Fourier components needed in the deseasonalization. Alternatively, when util- 
izing the AIC to determine which Fourier components are needed, one is constructing the desea- 
sonalized model according to the procedure explained in Section 13.3.3. Notice that Figure 
13.3.1 is similar to the general AIC model building methodology depicted in Figure 6.3.1. 
Moreover, most of the model building tools of Part 111, can be employed for developing the 
ARMA component of the deseasonalized model of Sections 13.3.2 and 13.3.3. 

13.32 Fully Deseasonalized Models 

As just mentioned, the approach for fitting a fully deseasonalized model to a seasonal time 
series is found in Figure 13.3.1 by following the path which ignores using the AIC for determin- 
ing the Fourier components n d e d  in the deseasonalization method. Firstly. if it is known a 
priori that a Box-Cox transformation is needed, one can use [ 13.2.11 to transform the data. If the 
need for a Box-Cox transformation is not known in advance, it will be detected by testing the 
model residuals at the diagnostic check stage. Subsequent to implementing an appropriate 
transformation, the model parameters can be calibrated once again as shown in Figure 13.3.1. 

Secondly, the transformed seasonal series is fully deseasonalized. If it is suspected based 
on graphs of the series or estimates of the seasonal standard deviations that the seasonal variance 
is about the same across the seasons, one can use [13.2.2] to deseasonalize the series. When 
using [ 13.2.21, each Seasonal mean is estimated using the standard formula given in [ 13.2.41. If. 
on the other hand, the variance changes across the seasons, [13.2.3] is used for obtaining the 
deseasonalized series where (13.2.41 and [13.2.5] arc utilized for estimating the seasonal means 
and standard deviations, respectively. 
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Figure 13.3.1. Constructing dtseasonalized models. 
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Thirdly, the procedures of Part Ill are used to determine the best ARMA model to fit to the 
nonseasonal series found using [13.2.2) or [13.2.3]. If, for example, the best ARMA is not 
clearly identified using the identification graphs presented in Chapter 5,  one may have to esti- 
mate the parameters for a few different ARMA models and select the one possessing the 
minimum value of the AIC (see Section 6.3). Whatever the case, in Figure 13.3.1, one omits 
using the AIC for determining the Fourier components and proceeds to estimating the parameters 
of the most appropriate ARMA model. Next, the residuals of the fitted ARMA model am 
checked to see if their underlying assumptions are satisfied. In particular, one should make sure 
that the residuals are uncorrelated, normally distributed and homoscedastic. Specific tests for 
checking that these properties arc not violated are presented in detail in Chapter 7. Problems 
with heteroscedasticity andor non-normality can be corrected by invoking a suitable Box-Cox 
transformation. If the residuals are correlated, a different ARMA model should be fitted to the 
fully deseasonalized series. After obtaining a satisfactory model. the overall deseasonalized 
model can be used for application purposes such as forecasting and simulation. 

13.33 Fourier Approach to Deseasonalized Models 

Overall Procedure 
The overall procedure for carrying out the Fourier approach to deseasonalized models is 

explained first. Following this, the AIC formulae which are used in this procedure are derived. 
The Fourier approach is traced in Figure 13.3.1 by following the path which uses the AIC 

for ascertaining the Fourier components needed in the deseasonalization. As can be seen, the 
first three steps consisting of a Box-Cox transformation, full deseasonalization, and determining 
the best ARMA model to fit to the fully deseasonalized data are identical to those explained for 
the fully deseasonalized model in Section 13.3.2. To cut down on the number of deseasonaliza- 
tion parameters that are needed in either [13.2.2] or r13.2.31, the MAICE procedure can be used 
to select the Fourier components that are required in [13.2.10] to [13.2.11]. When doing this, 
one can assume that the ARMA model identified for fitting to the fully deseasonalized data set 
requires the same number of AR and MA parameters. For each possible combination of Fourier 
components, one can estimate the AIC for a given type of ARMA model. The deseasonalized 
model possessinp the minimum AIC value is then selected as the most satisfactory model. If one 
suspected that the type of ARMA model fitted to the deseasonalized data were dependent upon 
the number of Fourier components. one could also allow the number of AR and MA parameters 
to vary during the MAICE procedure. However, this would require a significant increase in the 
amount of computations and therefore is not shown in Figure 13.3.1. Whatever the case, subse- 
quent to choosing the best deseasonalized model, one can subject the ARMA model residuals to 
the diagnostic checks given in Chapter 7. As shown in Figure 13.3.1, problems with the model 
residuals can be rectified by returning to an earlier step in the modelling procedure. The best 
overall deseasonalized model can then be used for application purposes. 

AIC Formulae for Deseasonalized Models 
Recall from [6.3.1] Section 6.3, that the general formula for the AIC is given as (Akaike, 

1974) 
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AIC = -2ln(ML) + 2k 

where ML stands for the maximized value of the likelihood function and k is the number of free 
parameters. The model which adequately fits a time series using a minimum number of parame- 
ters possesses the lowest AIC value. The pmedurt for determining the model having the 
minimum AIC value is referred to as MAICE. 

When calculating the AIC formula for the deseasonalid model, one must consider the 
effects of a Box-Cox transformation and deseasonalization. Hence, one must determine the 
Jacobians of the deseasonalization transformations. 

Following the derivation given by Hipel and McLeod (1979). first consider the deseasonali- 
zation procedure given in [13.2.2]. The Jacobim of the transformation from zrm to w / s  is 

[13.3.11 

To explain in detail how [13.3.1] is derived, examine the Box-Cox transformation in [13.2.1]. 
Assuming that all of the z,,,, are positive and, therefore, the constant is zero, 

and from [ 13.2.21 the deseasonalized transformed series is 

The entire matrix used in the Jacobian calculation in [13.3.1] is 

... 

In this matrix, all of the off-diagonal entries have a value of zero whereas each diagonal element 
is evaluated as 

Therefore, the value of the determinant of this matrix which constitutes the Jacobian J1 is found 
by multiplying the diagonal enmes together to obtain the result in [ 13.3.1 I. 
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The natural logarithm of J 1  is 
n s  

r=lm=l 
ln(JI) = (1 - 1 ) E  E W,,) 

The log-likelihood in terms of zrm is then 

[13.3.2] 

(13.3.31 

where MSS stands for the modified sum of squares described in Appendix A6.1. 

The AIC for an ARMA model that is fit to the w$) series is 

AIC = - 21n(L(’$ + 2(p + q + 2 + 6 , )  + 4F,, - 2% [13.3.4] 

where p is the number of AR parameters, q is the number of MA parameters, 61 = 0 when k = 1 
and 6,  = 1 when k f 1, F,, is the number of Fourier parameters in [13.2.10] used to estimate the 

seasonal means, and S, = 1 if F, = - while & = 0 when F ,  < - 
2 2 ’  

In the deseasonalization method given in [13.2.3], each entry in the w;: series is divided 
by the appropriate standard deviation of z;2 for the mth season. The Jacobian of the transforma- 
tion from w:; to wJ.2 is 

S S 

[13.3.5] 

To derive r13.3.51, consider the mamx used in the Jacobian formulae in [13.3.5] which is written 
as 

. . .  

From [13.2.2] and 113.2.31, the relationship between w:: and w,(z determined as 
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Hence, 

Therefore, the diagonal elements in the matrix have a value of 6;' while the off-diagonal ele- 
ments arc zero. The determinant of this matrix which is used to obtain the Jacobian J 2  is deter- 
m i n d  simply by multiplying together the values of the diagonal elements to obtain [13.3.5]. 

The natural logarithm of J2 is 
12 

m=l 

I ~ ( J ~ )  = -n c In(&,) 

The log-likelihood for the zrm series is 

[ 13.3.61 

[ 13.3.71 

The AIC formula for an ARMA model that is fitted to the wt/: sequence is 

AIC = -21n(15(~9 + 2(p + q + 2 + a1) + 4(FP + Fa) - 2(6, + 83) [ 13.3.81 

where F, is the number of Fourier parameters in [13.2.11] used to estimate the seasonal standard 

deviations, S, = 1 when F, = - while & = 0 whenever F, < - 2 2 '  
S S 

For certain data sets. it may be known in advance what type of Box-Cox transformation 
should be used. Hence, it may be appropriate to set k at a specified value. In other situations, it 
may be desirable to obtain a maximum likelihood estimate for the Box-Cox exponent. This can 
be accomplished by maximizing the log-likelihood in [13.3.3] and r13.3.71 with respect to the 
model parameters. 

As explained in Section 6.3.4, the difference in the values of the AIC for various models 
which are fit to the Same data set. can be interpreted in different manners. For instance, if one 
model has an AIC value which is approximately 2k less than that for another model, this is 
analogous to the superior model having k less parameters than the other model. An alternative 
approach for interpreting the difference in AIC values between two models, is to determine the 
plausibility of model i versus model j by using the formula 

Plausibility = exp[0.5(MCi - AICi)] r13.3.91 

where AICi is the value of the AIC for the ith model, AICj is the value of the AIC for the jth 
model and the j th model is assumed to be the model having the lower AIC value. This formula 
was suggested by H. Akaike in a private communication and is also written in [6.3.2]. 
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13.4 APPLICATIONS OF DESEASONALIZED MODELS 

13.4.1 Introduction 
To demonstrate how the model construction approaches of Section 13.3 are used in prac- 

tice, deseasonalized models are developed for two natural time series by adhering to the pro- 
cedures outlined in Figure 13.3.1. In the first application, a deseasonalized model is fitted to the 
average monthly flows of the Saugeen River shown in Figure VI.1. The MAICE procedure is 
utilized in the second example for determining a deseasonalized model to describe a monthly 
ozone time series. Ozone is used as an indicator of pollution levels caused by exhausts from 
automobiles and other types of machinery driven by internal combustion engines. By using the 
MAICE procedure, very few deseasonalization parameters are needed in the fitted deseasonal- 
ized model. 

13.43 Average Monthly Saugeen Riverflows 
The average monthly flows of the Saugeen River at Walkerton, Ontario, Canada, are avail- 

able from Environment Canada (1977) from January, 1915, until December, 1976, and the last 
ten years of this time series are plotted in Figure VI.1. This particular data set is suitable for 
modelling using a deseasonalized model because there are no major reservoirs on the river and 
also the land-use activities in the river basin have not changed significantly during the aforesaid 
time period. Consequently, the technique of intervention analysis of Part VIIl does not have to 
be used to account for intervention effects. 

First consider using the modelling construction approach of Section 13.3.2. This full 
deseasonalization procedure follows the vertical path on the left in Figure 13.3.1 which does not 
use the AIC for determining the optimum number of Fourier components needed in deseasonali- 
zation. 

As pointed out in Section 12.4.4, in practice, it has been found necessary to first take 
natural logarithms of average monthly riverflow time series values. The logarithmic transforma- 
tion often precludes problems with non-normality and/or heteroscedasticity in the residuals of 
the model which is fitted to the deseasonalized data. A common procedure in water resources 
enginaxing is to fully deseasonalize the transformed data by using the estimated means and 
standard deviations from [13.2.4] and [13.2.5], respectively, in place of the fitted means and 
standard deviations in (13.2.31. 'Ihis is equivalent to setting Fr =Fa= 6 in [13.2.6] to [13.2.9]. 
Even though this may not constitute the most appropriate deseasonalization method for many 
time series, it is, however, useful for the model identification suggested in Figure 13.3.1. In 
addition, as shown by this example, most of the Fourier components are needed for deseasonali- 
zation. After taking natural logarithms of the monthly Saugeen River data which is given in 
cubic metres per second, the logarithmic data is deseasonalized following [ 13.2.31 by using the 
estimated means and standard deviations in [13.2.4] and [13.2.5]. respectively. By following the 
identification procedures described in Chapter 5 for nonseasonal ARMA models, it is found that 
a model with one AR and one MA parameter [denoted as ARMA(1,l)I may adequately model 
the deseasonalized series. 

Figure 13.4.1 displays the fully deseasonalized series for the last ten years of the average 
monthly riverflows of the Saugeen River. In order to be able to compare this figure to original 
Saugecn flows in Figure VI.1, the deseasonalized series in Figure 13.4.1 is determined for the 
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F p  

6 1  

situation where there is no Box-Cox transformation and hence X = 1.0 in [ 13.2.11 as well as the 
deseasonalization calculation in 113.2.31. As can be seen, the deseasonalized series in Figure 
13.4.1 does not contain the distinct sinusoidal patterns reflecting seasonality shown in Figure 
VI.1. Finally, as noted above, the reader should keep in mind that the ARMA(1,l) model is 
identified for the fully deseasonalized series with X = 0. 

Ftl 
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
5 6  
6 0  

6 2  
6 3  
6 4  
6 5  
6 6  

Table 13.4.1. AIC values for the AFtMA( 1.1) model fitted to the 
deseasonalized Sai [ e n  River series. 

AIC 

3383.15 
3359.17 
3365.98 
3357.93 
3355.82 
3356.77 
3361.81 
3387.13 
3363.15 
3369.96 
3361.91 
3359.81 
3360.75 
3365.79 

At the estimation stage of model development, the estimation procedure described in 
Appendix A6.1 is employed to obtain MLE’s for the parameters of the ARMA( 1 ,  I )  model which 
is fitted to the fully deseasonalized data in [ 13.2.31. Using [ 13.3.81, the AIC for this fully desea- 
sonalized model can be calculated for the case of full deseasonalization which is equivalent to 
F ,  =Fa = 6 in the Fourier series approach to deseasonalization. The value of the AIC for the 
fully deseasonalized model is given at the bottom of Table 13.4.1. This model passes the diag- 
nostic checks suggested in Figure 13.3.1 and described in detail in Chapter 7. Consequently, the 
best ARMA model to fit to fully deseasonalized logarithmic monthly Saugeen flows is an 
ARMA(1,l) model. 

Now consider how the Fourier approach to deseasonalization presented in Section 13.3.3 is 
used with the Saugeen data. As depicted in Figure 13.3.1, one must now fit the ARMA(1.1) 
model to each deseasonalized data set formed by all  possible combination of Fourier components 
for estimating the seasonal means and standard deviations. Hence, the ARMA( 1,l) model is fit- 
ted to each of the possible 49 deseasonalized data sets and [13.3.8] is used to calculate the AIC 
for each case. Table 13.4.1 lists the values of the AIC for some of the deseasonalized data sets. 
As can be seen from that table, the minimum value of the AIC occurs when 5 Fourier com- 
ponents are used for the means while the standard deviations require 4 Fourier components. 
Notice that the deseasonalization procedure which uses 6 Fourier components for both the means 
and standard deviations, is somewhat inferior to the best method. From [13.3.9], the plausibility 
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Figure 13.4.2. RACF for the ARMA(1,l) model fitted to the deseasonalized 
average monthly flows of the Saugeen River at Walkerton. 

Canada, with 1 = 0, F,, = 5 and Fa= 4. 
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of the model where the estimated means and standard deviations arc used, versus the best sea- 
sonal model, is calculated to be 0.68%. Consequently, water resources engineers should not 
necessarily assume that the best deseasonalization method is to let F,, = F,, = 6. 

Examination of the residuals for the ARMA(1,l) model which is fitted to the deseasonal- 
i d  data with F, = 5 and F, = 4, reveals that the whiteness assumption is satisfied. In partku- 
lar, the graph of the RACF (residual autocorrelation function) in Figurc 13.4.2 for this model 
shows that the values of the RACF fall within the 95% confidence limits. As discussed in 
Chapter 7 and elsewhere in this text, it has been found in practice that the important residual 
assumptions arc usually fulfilled for the model which has been chosen using the MAICE pro- 
CedUre. 

Diagnostic checks arc given in Sections 7.4 and 7.5 to determine if the model residuals arc 
approximately normally distributed and homosccdastic, respectively. If either of the aforesaid 
assumptions arc not satisfied, the Box-Cox transformation in [13.2.1] can be invoked to rectify 
the situation. For the case of the Saugeen River data, it is assumed from the outset that a loga- 
rithmic transformation may be needed. Nevertheless, various values of X in [ 13.2.11 arc exam- 
ined and 1 = 0 does i n d d  constitute a reasonable transformation. 

As would be expected all the deseasonalized models in Table 13.4.1 possess lower values 
than the AIC for the best SARIMA model fitted to the average monthly Saugeen Riverflows in 
Section 12.4.4. This is because the design of the deseasonalized model allows for a stationary 
mean and standard deviation within each season. The reader should keep in mind that because 
different estimation procedures are used for obtaining estimates of the model parameters for dif- 
ferent classes of models. one should entertain caution when comparing AIC values across fami- 
lies of models. 

13.43 Ozone Data 

Monthly values of the concentration of ozone (in pans per hundred million) at Azusa, Cali- 
fornia, are available from January 1956 until December 1970. Figure 13.4.3 shows a plot of the 
ozone data, which an available in a technical rcport by Tiao et al. (1973). Abraham and Box 
(1978) have analyzed this data and have suggested that a moving average model with one param- 
eter [denoted ARMA(O,l)] and no transformation (i.e.. X = 1 in [13.2.1]) is appropriate to model 
the deseasonalized data in [ 13.2.21 with F,, = 2. However, by employing the MAICE procedure 
in conjunction with the AIC formulae developed in Section 13.3.3. an improved ozone model is 
obtained. 

Following Figure 13.3.1, a tentative model is identifed to fit to the possible array of desea- 
sonalized data sets by first examining the w$) series in (13.2.31 with F,, = F,, = 6. The fully 
deseasonaliztd series for the omne data is displayed in Figure 13.4.3 and, as can be seen, desea- 
sonalization removes the periodic seasonal component shown in Figure 13.4.3. A perusal of the 
sample ACF and PACF for this series. reveals that an AR model with one AR parameter 
[denoted ARMA(l,O)] may be suitable for modelling the data The ARMA(1.0) model is fitted 
to the various typcs of deseasonalized time series which arc obtained by simultaneously allowing 
F,, and Fa to take on all possible values between 0 and 6. The values of the AIC obtained using 
[13.3.8] arc listed in Table 13.4.2 for some of the models considered. It can be Seen that an 
ARMA( 1,O) with no Box-Cox transformation (i.e. X = 1) and F,, = 2 and F,, = 1 is preferable to 
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Figure 13.4.3. Average monthly concentrations of ozone @arts per hundred 
million) from January, 1956, to December, 1970, at Azusa, California. 
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Figure 13.4.4. Fully deseasonalized series with L = 1 in [13.2.3] for the 
last ten years of the average monthly concentrations of ozone (parts per hundred million) 

from January, 1956, to December, 1970, at Azusa, California. 
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Figure 13.4.5. RACF for the ARMA(1.0) model fitted to the deseasonalized average 
monthly concentrations of ozone (parts per hundred million) at Azusa, California, 

with 1 = 0.5, F,, = 2 and Fu = 1. 

the case where the same model is fitted to the deseasonalized data with F,, = 2 and Fu = 0. In 
addition, as shown in Table 13.4.2, both of the aforesaid models possess lower AIC values than 
those obtained for ARMA(O.1) models which are fitted to the same deseasonalized series. How- 
ever, an examination of the residuals for the most appropriate foregoing model, reveals that the 
residuals possess both significant skewness and heteroscedasticity. Consequently, various 
values of 1 are examined in order to determine a suitable Box-Cox transformation from [ 13.2.11. 
A transformation with 1 = 0.5 corrects the anomolies in the model residuals. The graph of the 
RACF in Figure 13.4.5 for the ARMA(1.0) model fitted to the deseasonalized series with 
A = 0.5, F,, = 2 and F, = 1 demonstrates that the residuals are white. 

In Table 13.4.2, the values of the AIC are listed for various models which are fitted to the 
data having a square root transformation. It is evident that the most desirable model is an 
ARMA(1.0) model with 1 = 0.5, Fp = 2 and Fo = 0. The plausibility of the process m o m -  
mended by Abraham and Box (1978) versus the best model in Table 13.4.2, is calculated using 
[ 13.3.91 to be 0.95%. 

13.5 FORECASTING AND SIMULATING WlTH DESEASONALIZED MODELS 

As noted in the introduction in Section 13.1, deseasonalized models can bc easily used for 
forecasting and simulation by slightly extending the approaches described in Chapters 8 and 9, 
respectively. The key difference in the procedures is that one has to take into account the effects 
of deseasonalization when forecasting or simulating with the deseasonalized model. 
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Table 13.4.2. AIC values for ARMA models fitted to the 
deseasonalized ozone data. 

BOX-COX 
Transformation 
Parameter x 

1 
1 
1 
1 
0.5 
0.5 
0.5 
0.5 

g -8.19 

-12.09 
-10.27 
-1 1.32 
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Figure 13.5.1 outlines the procedure for forecasting with a deseasonalized model which is 
fitted to a seasonal time series. Firstly. the ARMA model fitted to the deseasonalized 
transformed series is used to obtain minimum mean square error forecasts of this data set. The 
procedure of Section 8.2.4 can be used for accomplishing this. Next, the forecasts for z!z are 

calculated using the inverse deseasonalization method which can be obtained from [13.2.2] or 
[13.2.3]. Thirdly, [13.2.1] can be used to determine the inverse Box-Cox transformation in order 
to obtain forecasts for z,,,,. The forecasts for z,,,, are now in the same units as the original series 
to which the deseasonalized model was fitted. In Section 8.2.7, it is explained how one should 
correctly calculate minimum mean square error forecasts in the untransformed domain when the 
data were transformed using a Box-Cox transformation before fitting the model. 

A similar procedure to that given in Figure 13.5.1 for forecasting can be used when simu- 
lating with a deseasonalized model. Simply replace the word forecast by simulate and forecasts 
by simulated values. In the first step, one of the procedures of Section 9.3 or 9.4 can be used to 
obtain the simulated sequences for the ARMA model fitted to the deseasonalized series. The rest 
of the procedure is the same as that explained for forecasting. 

13.6 CONCLUSIONS 

As exemplified by the two applications in Section 13.4, the procedures of Section 13.3 can 
be used to fit conveniently deseasonalized models to seasonal environmental time series. The 
two basic approaches to model construction presented in Sections 13.3.2 and 13.3.3 are summar- 
ized in Figurc 13.3.1. For the case of the average monthly rivertlows of the Saugeen River at 
Walkenon, Ontario. most of the Fourier components were needed to fully deseasonalize the 
series before fitting the ARMA model to the data. However, as shown by the monthly ozone 
data application in Section 13.4.3. a time series which does not possess a strongly pronounced 
seasonal smcture may requin less Fourier parameters for deseasonalization. 

Deseasonalized models are designed for preserving the mean and variance within each sea- 
son of the year. If one also wishes to capture the seasonal correlation s h u c ~ ,  the periodic 
models described in the next chapter can be employed. 
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Figure 13.5.1. Forecasting with a deseasonalized model. 

PROBLEMS 

13.1 In the SARIMA modelling approach to seasonal time series modelling in Chapter 
12. differencing is employed to rtmve periodicity or seasonality. Within this 
chapter, deseasonalization is utilized for modelling periodicity. Employing some of 
the results of Kavvas and Dellcur (1975) as well as other authors, compare the 
advantages and drawbacks of these two procedures for describing periodicity in time 
series. 
Carry out an exploratory data analysis of an average monthly riverflow time series. 
Point out the main statistical characteristics of the data set. Of the three types of 
seasonal models presented in Part VI, which type of seasonal model do you think is 
most appropriate to fit to the data set? 
Using the same monthly riverflow time series as in problem 13.2, fit the most 
appropriate fully deseasonalized model to the data stt. 

For the s a m e  time series used in problem 13.2, employ the approach of Section 
13.3.3 to obtain a mom parsimonious deseasonaliztd model. Comment upon your 
findings by comparing the results to those obtained in the two previous questions. 
Examine appropriate graphs from an exploratory data analysis study of an average 
weekly time series of your choice. After explaining your exploratory findings, fol- 
low the procedure of Section 13.3.3 to construct a parsimonious model for fitting to 
the weekly series. 

13.2 

13.3 

13.4 

13.5 



Deseasonalized Models 48 1 

13.6 

13.7 

Execute problem 13.5 for an average daily time series that is of interest to you. 
Fit the most appropriate deseasonalizcd model to a monthly riverflow time series. 
Follow the procedures of Sections 13.5 and 8.2.4 to forecast 24 steps ahead from the 
last data point in the time series. Also, plot the 90% probability interval. 
Develop the most reasonable deseasonalized model to describe a monthly riverflow 
time series. Employing the techniques of Section 13.5 and Chapter 9, simulate and 
plot five sequences that arc of the same length as the historical series. Compare the 
five simulated sequences and the historical data and then comment upon your find- 
ings. 

13.8 
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CHAPTER 14 

PERIODIC MODELS 

14.1 INTRODUCTION 

As emphasized by authors such as Moss and Bryson (1974). seasonal hydrological and 
other types of time series exhibit an autocornlation structure which depends on not only the time 
lag between observations but also the season of the year. Furthermote, within a given season, 
usually second order stationarity is preserved by natural time series. For example, at a location 
in the northern hemisphere the monthly temperature for January across the years may fluctuate 
with constant variance around an overall mean of -5' C. In addition, the manner in which the 
January temperature is correlated with December and November as well as the previous January 
may tend to remain the same over the years. As another illustration of seasonally or periodically 
varying correlation, consider the case of runoff from snowmelt in late winter or early spring in a 
northern region. If the snowmelt is an important factor in runoff which might occur in either 
March or April, the correlation between observed riverflows for these months may be negative 
whereas at other times of the year it is usually positive. To model appropriately the foregoing 
and similar types of time series, periodic models can be employed. These models are ideal, for 
instance, for describing the average monthly flows of the Saugeen River at Walkerton, Ontario, 
Canada, plotted in Figure VI.1. 

Two popular periodic models are the PAR (periodic autoregressive) and PARMA (periodic 
ARMA) models. When fitting a PAR model to a single seasonal series, a separate AR model is 
designed for each season of the year. In a similar manner, a PARMA model consists of having a 
separate ARMA model for each SeaSon of the year. Within hydrology, PAR modelling dates 
back to the research of Thomas and Fiering (1%2) who proposed a specialized type of PAR 
model whereby the order of the AR operator for each Season is fixed at unity. 

Since the early 1960's a considerable amount of resemh has been executed in the area of 
periodic modelling. This research includes contributions by authors such as Gladyshev (1961, 
1%3), Jones and Brelsford (1%7), Tao and Dellcur (1976). Croley and Rao (1977), McLeod and 
Hipel (1978). Pagano (1978). Troubnan (1979). Dunsmuir (1981). Tiao and Gmppe (1980). 
Sakai (1982), Salas et al. (1985). Cipra (1985ab). Vecchia (1985a,b), Thompstone et al. (1985a). 
Cipra and Tlusty (1987). Jimenez et d. (1989) and M c M  (1993). as well as the books on sto- 
chastic hydrology referred to in Section 1.6.3. 

As is explahed in Section 14.3, a comprehensive range of model construction tools are 
available for conveniently fitting PAR models to seasonal time series. Because the theory and 
application of the PAR family of models are well-developed, this class of flexible models is 
smsscd in this chapter. Nonetheless, some interesting developments in building PARMA 
models are pointed out in Section 14.7. 

Subsequent to presenting model construction tools for use with PAR models in Section 
14.3, a PAR model is developed for describing the average monthly flows of the Saugeen River 
plotted in Figure VI. 1.  A potential drawback of using a periodic model in an application is that 
the model often requires the use of a substantial number of parameters. Salas et al. (1980) 
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propose a Fourier series approach to reduce the number of model parameters in PAR and 
PARMA models. Thompstone et al. (1985a) suggest a procedure for combining individual AR 
models for various adjacent seasons, to obtain a single model for all of the seasons in the group. 
After joining appropriate seasons into groups, the overall periodic model that is fitted to the 
resulting data is called the pursimonious p e r i d c  autoregressive (PPAR) model. Subsequent to 
defining the PPAR model and presenting model construction methods in Section 14.5, PPAR 
models as well as other periodic models arc fitted to seasonal hydrological time series in Section 
14.6. Finally, in Section 14.8, sirnulotion experimenfs are carried out to demonstrate that PAR 
and PPAR models statistically preserve critical period srutistics which are used in reservoir 
design. 

14.2 DEFINITIONS OF PERIODIC MODELS 

14.2.1 Introduction 

The definitions of PAR and PARMA models can be made from two different points of 
view. Fustly, PAR and PARMA models can be thought of as the periodic extensions of the non- 
seasonal AR and ARMA models, respectively, defmed in Chapter 3. In other words, a PAR 
model consists of having a separate AR model for each season of the ycar whereas a PARMA 
model contains an ARMA model for each scason. For both theoretical and practical reasons, the 
PAR and PARMA families of models arc defined in these fashions in this chapter. For example, 
comprehensive model building procedures arc now available for use with PAR models (Section 
14.3) while significant progress has been made in developing model construction methods for 
employment with PARMA models (Section 14.7). 

The second approach for defining PAR and PARMA models is to consider them to be spe- 
cial types of the multivariate ARMA models defined in Section 20.2. However, this approach is 
not recommended for various reasons. From an intuitive viewpoint, when one is aying to cap- 
ture the physical characteristics of a natural phenomenon as portrayed in its timc series of obser- 
vations, it is more instructive and sensible to think of a periodic model as an extension of its 
nonseasonal counterpart. Hence, one can separately build models for each season of the year and 
then join them together to create the overall periodic model. Also, one can demonstrate theoreti- 
cally that PAR and PARMA models can be written as equivalent multivariate AR and ARMA 
models, respectively, defined in Section 20.2. Conversely, multivariate AR and ARMA models 
can be represented as PAR and PARMA models, rcspectively. 

The PAR family of models and some associated theoretical properties arc presented in the 
next section. Following this, PARMA models arc defined in Section 14.2.3. 

14.22 PAR Models 

Definition 

For convenience, an observation in a time series is written in the same way as it is in Sec- 
tion 13.2.2 for deseasonalized models. When one is considering a time series having s seasons 
per year (s = 12 for monthly data) over a period of n years, let zrF represent a time series obser- 
vation in the rth year and mth season where r = 12, , . . , n ,  and rn = 12, . . . ,s. If required. the 
given data may be transformed by the Box-Cox transformation in t13.2.11 to form the 
transformed series denoted by z$. The purpose of the Box-Cox transformation is to c o m t  
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problems such as heteroscedasticity and/or non-normality in the residuals of the PAR or 
PARMA model fitted to the time series. 

In essence, a PAR model is formed by defining an AR model for each season of the year. 
The PAR model of order (p1p2, . . , , p s )  is defined for season m as 

zr m - pm = z$p(z& - Cc,i) + urm 
P a  

i=l 
[ 14.2.11 

where pm is the mean of the series for the mth season, 4;"') is the AR coefficient for Season 
m and ith lag, and urm is the innovation or white noise disturbance. Ihe innovation series u,@ 
where r = 1.2. . . . , n ,  is assumed to have an expected value of zcro and a covariance defined by 

[14.2.2] 

Hence, the urm disturbances are distributed as IID(0,o:). By utilizing the backshift operator B ,  

where Ekz j$  = z,($-~. the model in [14.2.1] can be more succinctly written as 

+ m ) ( ~ ) ( z , ( 2  - p,,,) = urm , m = 1.2, . . . ,s [ 14.2.31 

where 

+(")(B) = 1 - @ ) B  - g4'")& . . . - $ p B P a  

is the AR operator of order pm for season m in which $t:m) is the ith AR parameter. For sta- 
tionarity in season m, the roots of the seasonal characteristic equation g('")@) = 0 must lie out- 
side the unit circle. A necessary and sufficient condition for stationarity for a PAR model is 
given in [ 14.2.261. 

Some authors recommend deseasonalizing the data using [13.2.3] before fiaing a PAR or 
PARMA model to the time series [see, for example, Tao and Delleur (1976) and Croley and Rao 
(1977)l. However, when using the PAR model in [14.2.1] or [14.2.3], this step can easily be 
shown to be unnecessary, thereby reducing the number of model parameters. For example, sup- 
pose for the mth season that only one AR parameter were required and hence p m  = 1. From 

[ 14.2.11 or [ 14.2.31, this model is written as 

zr a) m - CI, = $f%$-l - Pm-*) +arm [ 14.2.41 

which can be equivalently given as 

[ 14.24 

where 

yhm' = var(z,(z> , for m = 1.2, . . . , s; 
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and 

Stationarity 

In Chapter 20. the general multivariate ARMA model is defined. As explained by authors 
such as Rose (1977). Newton (1982). Vecchia (19854b). Obeysekera and Salas (1986), Haltiner 
and Salas (1988), Bartolini et al. (1988) and Ula (1990), a PAR model can be equivalently writ- 
ten as a special case of the multivariate ARMA model. Because the stationarity conditions for a 
multivariate ARMA are known, they are also available for a PAR model. Consider, for example, 
the caSe of a PAR model in [14.2.4] for which there is one AR parameter for each of the s sca- 
sons. The stationarity requirement for this model is (Obeysckera and Salas, 1986) 

[ 14.2.61 

Periodic Autocorrelation Function 

The theoretical ACF for the PAR model in I14.2.11 or [14.2.3] for Season m can be found 
by following a similar procedure to that used for obtaining the theoretical ACF for the nonsea- 
sonal AR model in Section 3.2.2. First, however, it is necessary to formulate some definitions. 
For season m. the theoretical periodic autocovariancefunction at lag k is defined for zj.2 as 

[ 14.2.71 

form = 12,  . . . , s. where p,,, and pm-k are the theoretical means for seasons m and m-k. respec- 
tively. When k = 0. the periodic autocovariance is simply the variance, y$'), of the random vari- 
able representing the observations in season m. 

A standardized variable that is more convenient to deal with than yim), is the theoretical 
periodic ACF which is defined for season m at lag k as 

[ 14.2.81 

Due to the form of [14.2.8], the theoretical periodic ACF is dimensionless and, hence, indepen- 
dent of the scale of measurement. Furthermore. the possible values of pi'") range from -1 to 1, 

where pi'") has a magnitude of unity at lag zcro. 

Given the above definitions of periodic linear dependence. one can find the theoretical 
periodic ACF for the PAR model in [14.2.1] or [14.2.3]. For season m ,  multiply [14.2.1] by 
z,.,,~ ou - pm-& and take expected values to obtain 
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$') = $[m+&l)+ $$'""&')+ * * * + $c+i?z-)+ E[(z,(%,~ - pm-k)arm] r14.2.91 

for k 2 0 and m = 1.2, . . . ,s. The last term on the right hand side of [14.2.9] is zero for k > 0 
because z/Z+ is only a function of the disturbances arm up to time m-k and ar,m is independent 
of these shocks. Hence, for k > 0 [ 14.2.91 becomes 

[ 14.2.101 yim' = +fm+i2i"+ +jm+&"+ . * * + +jm+k, ( m - i d  

By using the periodic AR operator given in r14.2.31. one can rcwrite r14.2.101 for season m as 

#"')(B)yLm) = 0 fork > 0 r14.2.111 

where B operates on the subscript k and the superscript (m)  in yi'"). The relationship in 
[14.2.11] is valid for each Season m = 1.2,. . . ,s. Because of the form of [14.2.10] and 
[ 14.2.1 I], the theoretical autocovariance function attenuates for a PAR process in season m when 
P m  > 0. 

Periodic Yule-Walker Equations 

Following the approach used for a nonseasonal AR model in Section 3.2.2, one can find the 
theoretical Yule-Walker equations for a PAR model. Specifically. by setting k = 1,2, . . . , p m .  in 

[ 14.2.10], one obtains the periodic Yule-Walker equations for season m as: 
,,{m) = , p + d m - l )  + 44m+;m-2) + . . . + $;,+cm-P.) 

p--1 

Pm-2 
= +l(m+l(m-l) + 4 p + d m - 2 )  + . . . + $;;+(m-P-) 

... . .  

. . .  . .  

. . .  . .  
yj,) = $ l y j y )  + L q + ; ; y  + * * * + $ p y p  

[ 14.2.121 

By writing the periodic Yule-Walker equations in [14.2.12] in matrix form, the relationship for 
expressing the AR parameters for season m is 

where 

[14.2.13] 

. . .  I *  

By Setting k = 0 in [ 14.2.91, the expression for the variance yd") is 
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[ 14.2.141 

where E[(z , ( z  - p,,,)(ar,,,)] = IS,,, 2 since z$ is only correlated with arm due to the most recent 

shock a,,,,. As is explained in Section 14.3.3, the periodic Yule-Walker equations in r14.2.121 

or I14.2.131 provide a means of obtaining efficient moment estimates for the parameters of the 
PAR model in r14.2.11 or r14.2.31. 

Periodic Partial Autocorrelation Function 

Since the periodic autocorrelation function of a PAR model in season rn for which pm > 0 
attenuates and does not truncate at a specified lag, it would be useful for identification purposes 
to define a function which cuts off. To accomplish this one can define the periodic PACF for a 
PAR model in a manner similar to that done in Section 3.2.2 for a nonseasonal AR model. 

For season rn. the periodic PACF is defined as the last AR parameter of an AR model of 
order pm. Therefore, in the Yule-Walker equations in [14.2.12], is by definition the 
periodic PACF at lag p,.  By setting pm to values of 1.2. . . . , in 114.2.121, one can define the 
periodic PACF in season rn for lags 1.2, . . . , respectively. Because of the definition of the 
theoretical periodic PACF. it must be equal to zero after lag pm in season rn when the order of 
the AR model in this season isp,. Furthermore, the possible values of the theoretical PACF fall 
between -1 and +l. 

Markov Model 

For a Markov model in season rn the order is pm = 1. A Markov model for season rn is 
written in [14.2.4]. When the PAR is Markov for each of the s seasons, the stationarity condi- 
tion for the overall Markov PAR model is the one given in r14.2.61. 

The periodic Yule-Walker equations for a PAR model are written in [14.2.12]. By setting 
$4'") to $p) equal to zero, this equation becomes 

,,jm) = $ f m + p - l )  

In general. 
= +jml,,&1) 

Hence, the theoretical periodic autocovariance function attenuates for increasing lag k .  How- 
ever, by definition the theoretical periodic PACF cuts off and is exactly equal to zero after lag 
one for a Markov model. 
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14.23 PARMA Models 

Definition 
As is also the case for the PAR model in Section 14.2.2, let z$ be an observation in the 

rth year and mth season for r = 1.2, . . . , n ,  and m = 1,2, . . . , S, wherc the exponent X indicates 
that the observation may be transformed using the Box-Cox transformation in [13.2.1]. A 
PARMA model is created by defining a separate ARMA model for each Season of the year. The 
PARMA model of order (p1,q1;p2,q2; * * * ;ps,qs) is defined for season m as 

O ( ~ ) ( B ) ( Z $  - pm) = tP)(B),+,,, , m = 1.2, . . . ,s [14.2.15] 

where p,,, is the mean for series zrm ('1 for the mth season, 
$('")(B) = 1 - $i"')B - $q")B2 - . . . - $ E ) B p - ,  is the AR operator of order pm for season m in 
which ${") is the ith AR parameter, and = 1 - efm)B - @")BZ - . * - €$~)B4' ,  is the 
MA operator of order q,,, for season m in which O{'") is the ith MA parameter. The innovation 
series urm where r = 1.2, . . . , n ,  for each m is assumed to be distributed as IID(0,cr;) which is 
the same as that for the PAR model in 114.2.11. 

Using the AR and MA operators to define the PARMA model in t14.2.151 provides an 
economical and convenient format for writing this model. Also, the operator format in f14.2.151 
can be easily manipulated for mathematical purposes. Nonetheless, one could also write the 
PARMA model for season m without the operator notation as 

Pm 4' 

i=l i= 1 
z:,? - p,,, = C$!m)(~,m-i - p,,,-;) + ur,,, - CB{m)ur,-i , m = 1,2, . . . , s  [14.2.16] 

Stationarity and Invertibility 
The PARMA model given in [14.2.15] can be equivalently written as a particular case of 

the general multivariate ARMA model presented in Chapter 20. Since the stationarity and inver- 
tibility conditions for the general multivariate ARMA model are available, they are, of course, 
also known for the PARMA model (Rose, 1977; Vecchia, 1985a,b; Obeysekera and Salas, 1986; 
Bartolini et al., 1988; Ula, 1990). As an example of how these conditions are written for a 
specific PARMA model, consider a PARMA model from [14.2.15] for which then is one AR 
and one MA parameter for each of the m seasons. The stationarity restriction for this model is 
given in [14.2.6] while the invertibility requirement is 

[ 14.2.171 

Periodic Autocorrelation Function 
In Section 3.4.2, it is explained how the theoretical autocovariance function or, 

equivalently, the theoretical ACF can be determined for a nonseasonal ARMA(p,q) model. A 
similar approach can be followed to derive the system of equations for solving for the periodic 
autocovariance function in [ 14.2.71 for a PARMA model. 
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The steps required for accomplishing this are now described. For a given season m, multi- 
ply both sides of [ 14.2.151 by z $ ~  - pm4 and take the expcctcd values to obtain 

@) - +p+iy,-l) - +p+pp - . . . - +E+y-P-) 
-PI 

= y&n)(k) el(m+$m-l)(k - 1) - . . . - e;;+(m-4+k &I - qm) [ 14.2.181 

where vim) is the theontical periodic autocovariance function in [14.2.7] and 

~&n’(k) = ~ [ ( z , O _ c  - ~,,,_ct)a,~l [ 14.2.191 

is the cross covariance function between z/$-k - pm-k and a,,,,. Since 2;Z-k is only dependent 
upon shocks which have occumd up to time ( r g - k ) .  it follows that 

y$m)(k) = 0, 

y p ( k )  # 0, 

k > 0 

k 2 0 
t14.2.201 

Because of the y&n)(k) terms in [14.2.18], one must derive other relationships before one can 
solve for the periodic autocovariances. This can be carried out by multiplying r14.2.151 by 
a,,,,-& and taking expectations to obtain 

where 

ep), k = 1.2,. . . ,qm 

[ep] = I--:, k = 0 
otherwise 

and E[u, , , ,~ , , , , -~]  is as defined in [14.2.2]. 

Equations r14.2.181 and [14.2.21] can be employed to solve for the theoretical periodic 
outocovarioncefunction for a PARMA model for each season. For k > qm, equation [14.2.18] 
reduces to 

yim) - b l m + l y ; l )  - +jm+iy;z) - . . . - +j;+y-p-) = 0 
-P. 

[ 14.2.221 

where the diffenncing operator B operates on both the subscript and superscript in vim). If 
k > max(p,g,), then i14.2.221 can be used to calculate the yim) directly from previous values. 
For k = 0.12, . . . , max(pm,qm), equation [14.2.21] can be employed for solving for the periodic 
cross covariance function y$”)(k) which can be substituted into [14.2.18] in order to solve for the 
periodic autocovariance function for the zc. By employing r14.2.81, one can easily calculate 
the theoretical periodic ACF after determining the theoretical periodic autocovariance function. 
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Recall that for a nonseasonal ARh4A model in Section 3.4.2, the theoretical autocovariance 
function or theoretical ACF attenuates for incnasing values of lag k. In a similar fashion, one 
can see from the form of (14.2.201 that the theoretical periodic autocovariance function dies off 
for a PARMA model in which pm # 0 in Season m. 

Periodic Partial Autocorrelation Function 

writing it as 
For season m ,  the PARMA model in [14.2.15] can be Written as an infinite AR model by 

a,,,, = e(m)(B)-l+m)(B)(zI'",' - pm) [ 14.2.231 

where dm)(B)-' is an infinite series in E for qm 2 1. Because the definition of the theoretical 
periodic PACF is based upon an AR process. the periodic PACF is infinite in extent for a 
PARMA model and dies off with increasing lag. At higher lags, the behaviour of the periodic 
PACF depends upon the MA parameters and is dominated by a combination of damped 
exponentials and/or damped sine waves. 

Three Formulations of a PARMA Model 
In Section 3.4.3, it is explained how a nonseasonal ARMA model can be expressed in three 

equivalent forms. These same three formats can also be used with a PARMA model in season 
m .  One formulation is to use the difference equation given in r14.2.151. A second technique is 
to write the model as a pure MA model, which is also called the random shockform. Finally, by 
formulating the model as a pure AR model one obtains the inverted form for the model. 

In random shock form, the PARMA model for season m is written as 
' rm (1) - p, = +(m)(B)-'8(m)(B)ar, 

=ar,,, + y@)ar,m-l + y4m)ar,m-2 + * . *  

= a,, + @')Bar,,, + ~ ~ ' " ) B 2 a , , ,  + . . , 
= (1 + yl")~ + + . . . )ar,m 

= y(m)(B)arm [14.2.24] 

where y("')(B) = 1 + wf"''B + y4"')B2 + * * - , is the random shock or infinite MA operator for 
season m and v!") is the ith parameter, coefficient or weight of y("')(E). There are a variety of 
reasons for expressing a model in random shock form. For example, when forecasting in season 
m the v!"') weights are needed to calculate the variance of the forecasts (see [8.2.13] for the case 
of an ARMA model). When simulating in SeaSon m using a PARMA model, one way to simu- 
late data is to Write the model in random shock form and then to use this structure for producing 
the synthetic sequences (see Section 9.3 for the case of an ARMA model). Finally, by writing 
PARMA models in random shock form. the magnitude and sign of the v:") parameters can be 
compared across models. 
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Following the arguments given in Section 3.4.3 to develop [3.4.21] for an ARMA model. 
one can obtain the vim) weights from the $f") and 9,("') parameters for a PARMA model in sea- 
son m by utilizing the expression 

$'")(B)yA'") =a,(,) [14.2.25] 

when B operates on k, v$") = 1, vim) = 0 for k < 0 and elrn) = 0 if k > q. Rules for deciding 
upon how many random shock parameters to calculate and examples for determining these 
parameters art given in Section 3.4.3. 

Because a PAR model is a special case of a PARMA model, one can, of course, write a 
PAR for season m in the random shock form given in [14.2.4]. As shown by Troutman (1979), a 
necessary and sufficient condition for periodic stationarity for a PAR model is 

[ 14.2.261 
i=Cl 

To express the PARMA model in season m in inverted form, equation [ 14.2.151 is rewritten 
as 

u,,,, = e(m)(B)-l$(m)(B)(Z,$! - p,) 

= (z:? - p,,,) - nfmtz:2-l - ~, , , - l )  - nl m )  (zr,,,-2 0.) - p m - 9  - . . . 

= (zrm - p,) - npB(Z:$ - p,) - npW(z/$ - p,) - * * ' 

= (1 - n f m ) B  - n j m ) ~ 2  - . . . )(z:2 - pm) 

= n(")(B )(z;? - pm [ 14.2.271 

where n(")(B) = 1 - ll{"')B - n~"')B* - * * * , is the inverted or infinite AR operator for season 
m and llr"') is the ith parameter, coefficient or weight of By comparing [14.2.26] and 
[ 14.2.241, one can see that 

y'")(B)-l = n(")(B) [ 14.2.281 

Given the seasonal AR and MA parameters, one may wish to determine the inverted param- 

e(m)(B)n,(m) = $1") [ 14.2.291 

where B operates on k, a") = -1. = 0 for k < 0. and I$,("') = 0 if k > p. Except for nota- 
tional differences, [14.2.28] is the same as [3.4.27] which is used for obtaining the inverted 
weights for a nonseasonal ARMA model. Representative examples for calculating the inverted 
weights are presented in Section 3.4.3. 

eters. To achieve this, one can use the expression 

Example of a PARMA Model 

I f p ,  = qm = 1 for season m ,  a PARMA model for that season is written following [14.2.15] 

as 
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[ 14.2.301 

To obtain the theoretical autocovariance function. one must solve [14.2.18] and [14.2.21] 
after setting all AR and MA parameters equal to zero except for +f") and 0f"'). The reader can 
refer to Section 3.4.3 for examples of how to calculate the random shock and inverted panmeters 
for a nonseasonal ARMA(1.I) model. The same approaches can be used for a PARMA model 
with pm = qm = 1 by replacing Oi. Bi ,  \yi. and Ili by O;"'). 0;"'). \y;"') and Il;'") in Section 3.4.3. 

14.3 CONSTRUCTING PAR MODELS 

14.3.1 Introduction 
As noted in Section 14.1, model construction techniques for PAR models are highly 

developed. Indeed, as demonstrated by research referenced in Section 14.1, PAR models can be 
conveniently used in practical applications and produce useful results. Consequently, this sec- 
tion concentrates upon how to construct PAR models by following the three stages of model 
construction. Applications for clearly illustrating how the construction techniques for PAR 
modelling are implemented in practice are presented in Sections 14.5 and 14.6 as well as Chapter 
15. Finally, model construction methods for PPAR and PARMA models are given in Sections 
14.5.3 and 14.7, respectively. 

14.3.2 Identifying PAR Models 

Introduction 
Thomas and Fiering (1962) originally suggested that one could fit PAR models of order 

one for each season to monthly hydrological time series. More recently, authors such as Salas et 
al. (1980) and Thompstone et al. (1985a.b) have suggested that the order of the AR operator for 
each season be properly identified. Based upon the results of an extensive forecasting study, 
Noakes et al. (1985) recommend that the best way to identify a PAR model is to employ the 
periodic ACF and PACF. Consequently, this approach to designing a PAR model is explained in 
this section. Another identification method which uses the AIC in conjunction with subset 
autoregression and the algorithm of Morgan and T a m  (1972) is outlined in Section 14.3.3. 
Moreover, two procedures for efficiently estimating the parameters of PAR models are described 
in Section 14.3.3 while diagnostic checks an discussed in Section 14.3.4. Finally, the results of 
the forecasting study of Noakes et al. (1985) an presented in Section 15.3 to demonstrate that 
PAR models identified using the periodic ACF and PACF forecast better than PAR models 
designed using other approaches as well as the deseasonalired and SARIMA models of Chapters 
13 and 12, respectively. 
Sample Penodic ACF: The theoretical periodic autocovariance function and ACF at lag k for 
the series zj$ are defined in [14.2.7] and [14.2.8], respectively. In a practical application, the 
theoretical variables used in these equations are estimated using the sample time series zrm. 

where the years r = 1.2, . . . , n ,  and the seasons m = 1.2, . . . ,s. To rectify problems with non- 
normality and/or heteroscedasticity in the residuals of the fitted PAR model, often the original 
series, z,,, is transformed using the Box-Cox transformation in [13.2.1] to obtain the 
transformed series z,(:. The theoretical variables in [ 14.2.71 and [ 14.2.81 arc then estimated for 
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the 2% series. MOR specifically, for the mth season, the mean. p,,,, is estimated using 

r14.3.11 

where m = 1.2,. . . ,s. To estimate the theoretical periodic autocovariance function, 71"'). in 
[14.2.7] for lag k and season m, the following formula is utilized: 

[14.3.21 

for m = 1.2, . . . , s. When the lag k is zero, one obtains the estimate of the variance of the obser- 
vations in season m ,  which is given as: 

The sample or estimated theoretical periodic ACF at lag k is determined for pirn) using 

c p  
P = '-- 

where m = 12,. . . ,s. 

[ 14.3.31 

(14.3.41 

Because the periodic ACF is symmetric about lag zero, it is only necessary to plot the sam- 
ple ACF for season m from lag one to a maximum lag of about n14. A separate sample ACF 
graph is made for each season of the year. To ascertain which values of the estimated ACF for 
period or season m are significantly different from zero, the approximate 95% confidence inter- 
val can be plotted. The sample ACF is asymptotically distributed as NID(0,-) at any lag. Con- 

sequently, the approximate 95% confidence interval is fl.96&. 

As explained in Section 14.2.2, the theoretical ACF for a PAR model in season m ,  attcnu- 
a m  if AR parameters are in the model. Consequently, if the sample periodic ACF dies off for 
season m ,  this indicates that one or more AR parameters are needed in this season for the PAR 
model which is fitted to the series. If no values of the sample periodic ACF are significantly dif- 
ferent from zero, this means that one can model this season using white noise by setting p,,, = 0 
in the PAR model in [14.2.3]. 

Sample Periodic PAW: For a given seasonal time series. the periodic PACF can be deter- 
mined for each season of the year. The definition for the periodic PACF is derived from the 
definition of the PAR model. In particular, assuming that the AR model for Season m is of order 
p,,,, the PACF for that season is $;:I. Be setting pm = 12, , . . , the PACF is defined for lags 
1.2, ... . 

For the case of a nonseasonal time series. one uses the Yule-Walker equations in [3.2.12] or 
[3.2.17] to estimate the PACE LiLewise, for the situation of a periodic or seasonal time series 
one can utilize the periodic Yule-Walker equations in [14.2.12] or [14.2.131 to estimate the 
periodic PACF. 

1 
n 
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To obtain Yule-Walker estimates for the AR parameters for SeaSon m in the PAR model in 
[14.2.1] or [14.2.3]. simply replace each 71“‘) in [14.2.12] or (14.2.131 by its estimate ci”” from 
[14.3.2]. ”kis can be canied out for each of the s seasons by estimating the +/’”” for 
i = 1.2, . . . ,pm , for each SeaSon m = 1.2, . . . , s. The resulting estimated PAR model is periodic 
stationary (Tmutman, 1979) and the estimates are asymptotically efficient (Pagano, 1978). 
Furthermore. the estimates corresponding to different seasons are asymptotically independent. 
Sakai (1982) presents a practical computational algorithm for estimating the periodic AR param 
eters and, hence, also the periodic PACF from the periodic Yule-Walker equations in (14.2.121 
or [14.2.13]. 

For period or season m. the c o r n  ordcr for a PAR model is given asp,,, in [14.2.1]. Sakai  
(1982) shows that the sample PACF for a given SeaSon is asymptotically distributed as 
NID(0,-) at any lag greater than p,,,. Therefore, the 95% confidence interval is f1.96&. The 

sample PACF and approximate 95% confidence interval can be plotted for each Season up to a 
maximum lag of about -. 

1 
n 

n 
4 

By definition the theoretical PACF in season m cuts off after lag p,,, to a value of exactly 
zero. Consequently, if the sample periodic PACF is not significantly different from zero after 
lag pm , this indicates that the order of the AR model fitted to the series in season m should be 
p,,,. If none of the values of the sample periodic PACF in season are significantly different from 
zero, the model for season m within the overall PAR model should be white noise. In this case, 
pm is set equal to zero. 

Periodic IACF and IPACF 

In Section 5.3, the sample IACF and IPACF are recommended as additional identification 
tools for determining the orders of the AR and MA operators in a nonseasonal ARMA model. 
One can define the periodic versions of these functions for use in identifying the order of the AR 
model for each Season of a PAR model. 

For season m. the theoretical periodic IACF of a PARMA model is defined to be the ACF 
of a PARMA model having the AR and MA components of orders qm and pmr respectively (i.e. 
the AR and MA operators are exchanged with one another). The PACF of this process for sea- 
son m is defined to be the theoretical periodic IPACF. 

For a PAR model having an AR operator of order p,,, in season m ,  the IACF truncates after 
lag pm. Thus, the behaviour of the periodic IACF is similar to that of the periodic PACF. Like- 
wise, the periodic IPACF nrimics the behaviour of the periodic ACF. For both of these latter 
functions, their values die off for increasing lags in season m when p,,, # 0. 

Further research is required for obtaining efficient estimates for the sample periodic IACF 
and IPACF. One could, for example, adopt estimation procedures similar to those developed for 
the nonseasonal versions of these functions in Chapter 5. 



4% Chapter 14 

Tests for Periodic Correlation 

The sample periodic ACF and PACF provide a means for detecting periodic correlation in 
seasonal time series and also information for designing a PAR model to fit to the series. Other 
approaches for fmding periodic correlation in a data set include the statistical tests described by 
Hurd and Gem (1991) and Vecchia and Ballerini (1991). When periodic correlation is present, 
one, should, of course, fit a periodic model such as a PAR or PARMA model to the time series 
under consideration. Tiao and Gruppe (1980) discuss the negative consequences of not using an 
appropriate periodic model when the data possesses periodic cornlation. 

14.33 Calibrating PAR Models 

Introduction 

A major advantage of using PAR models in practical applications is that two good algo- 
rithms are available for estimating the parameters of PAR models. In particular, the two estima- 
tion methods described in the next two subsections are the Yule-Walker estimator and multiple 
linear regression. These two estimator techniques arc efficient both from statistical and compu- 
tational viewpoints. 

For deciding upon the order of the AR operator in each season, one can use plots of the 
sample periodic ACF and PACF, as explained in Section 14.3.2. Additionally, one can employ 
the AIC which is derived for the case of PAR models in this section. Finally, it is explained how 
the algorithm of Morgan and Tam (1972) can be used in conjunction with the AIC to select the 
order of each AR operator in a PAR model. 

Periodic Yule-Walker Estimator 

The technique for obtaining Yule-Walker estimates for the parameters of a PAR model is 
explained in Section 14.3.2 under the subsection entitled Sample Periodic PACF. Even though 
this method is in fact a moment estimator, it is still efficient statistically for use with PAR 
model. 

As discussed in Section 14.3.2, the periodic Yule-Walker equation in r14.2.121 or [ 14.2.131 
can be used to obtain the estimates of the parameters for each season. Each theoretical ACF is 
replaced by its sample estimate from [14.3.2] and then the algorithm of Sakai (1982) is used to 
estimate the AR parameters for each season rn using the periodic Yule-Walker equations. The 
parameters for each season can be estimated separately and the parameter estimates are asymp- 
totically efficient (Pagano, 1978). Furthermore, the calibrated PAR model is periodic stationary 
(Troutman, 1979). 

Multiple Linear Regression 

Although k could be estimated. assume that it is fixed at some value such as k = 0.5 or 
k=O for a square root or natural logarithmic transformation, respectively. For season m ,  the 
mean parameter p, is estimated by 
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[14.3.5] 

For season or period (m), let P,,, = $f'""~$f'"", . . . , @), denote the vector of AR parameters 
for the PAR model and P, = I $ ~ ) @ " ) ,  . . . ,I$;:), stand for the vector of estimated parameters. 
An efficient conditional maximum likelihood estimate P,,, of P,,, is are obtained directly from 

A A 

the multiple linear regression of z,(z on zr,-l a) .zr,-2, 6) . . . , zr,,_p,. (1) 

The estimated innovations or residuals denoted as d,, arc calculated from [ 14.2.31 by set- 
ting initial values to zero and the residual variance, a: is then estimated by 

r14.3.61 - 2  1 " -2  
a,,, =--a,, . 

"-1 
m = 1.2,. . . ,s 

Other Estimation Results 

Pagano (1978) shows that &(B - p) is asymptotically normally distributed with mean zero 
1 
n 

and covariance mamx -I;', where 

In practice, an estimate, I,,, of I, is obtained by replacing each $) in [14.2.7] by its estimate 
ci") in [ 14.3.21. 

Pagano (1978) also demonstrates that the estimates for different periods are asymptotically 
uncorrelated. In other words, the joint information matrix of PI&, . . . , P, is block diagonal. 
Consequently, the parameters for the mth season, can be estimated entirely independently of the 
parameters of any other season. Thus, for purposes of identification, estimation, and diagnostic 
checking, each season can be modelled independently of the other seasons. 

When estimating the parameters in a PAR model, the orders of the AR operators can be dif- 
ferent across the seasons. Furthermore. subset autoregression (McClave, 1975) can be used for 
constraining AR parameters to zero. For example, in season m for a monthly time series, one 
may wish to estimate only the AR parameters $i"). @) and $fT). The parameters from $4") to 
${?), are omitted from the model and subset autoregression is used to estimate the remaining 
parameters. 

Model Selection using the AIC 

From Section 6.3, the general formula for the AIC is defined as 

AIC = -2ln(ML) + 2k 
where ML stands for the maximized value of the likelihood function and k is the number of free 
parameters. When using the MAICE procedure, one selects the model which gives the minimum 
value of the AIC. 
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Assuming normality, the maximized log likelihood of the AR model for Season m is 
derived as (McLeod and Hipel, 1978) 

[14.3.7] 

The summation term on the right hand side of I14.3.71 takes into account the Jacobian of the 
Box-Cox msformation. An explanation of how this is done is given in Section 13.3.3 for the 
descasonaliztd model. 

The AIC formula for the mth season is 

AIC, = -210gLm 4- 2pm + 4 [ 14.3.81 

wherep, is the number of AR parameters in Season m. Because the mean, p,. and the variance 
of the innovations are estimated, the last term on the right hand side of [ 14.3.81 is included in the 
seasonal AIC formula. 

For each combination of AR parameters, the AlC, can be calculated using [14.3.7] and 
[ 14.3.81. The model which yields the minimum value of the AIC, is selected for season m .  This 
procedure is executed for choosing the models for all of the remaining seasons. Subsequently, 
the AIC for the overall PAR model is 

5 

AIc= c A I c m + 2  
m=l  

[14.3.9) 

where the constant 2 allows for the Box-Cox parameter b. The calculations of AIC may be 
repeated for several values of b such as 1 = 1,0.75,0.5, . . . , -1, and the transformation yielding 
the minimum value of the AIC is selected. 

Exhaustive Enumeration for PAR Model Selection 
As mentioned earlier in Section 14.3.2, the recommended procedure for identifying the 

most appropriate PAR model or set of models to f i t  to a seasonal series is to employ the sample 
periodic ACF and PACF. If there is more than one promising model, the MAICE procedure can 
then be used to select the best one. 

Another approach for determining the best AR model for each Season where the maximum 
value of pm is specified, would be to examine all possible regressions for that season. An 
appropriate criterion, such as the AIC, could be invoked for choosing the most desirable model 
from the exhaustive set of models. This procedure could be carried out for each season and this 
would result in selecting the most suitable PAR model over all of the seasons. If, for the case of 
a monthly series, the maximum value of pm were restricted to be 12 for each month, the AR 
model for the month of March, for example, may only have AR parameters, at lags 1,2 ,3  and 12 
while the other parameters would be constrained to be zero. 

A possible difficulty with the aforesaid procedure is the amount of computer time required 
for estimating the parameters for all possible regressions for each season. For a monthly model, 
for example, there are 4096 possible regression models for each month and 2lu possible orders 
of monthly AR models with pm 5 12, m = 1.2,. . . ,12. Fortunately, Morgan and T a m  (1972) 
have devised an efficient procedure for calculating the residual sum of squares for each 
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regression. This method drastically reduces the computational effort involved when considering 
an exhaustive regression study. 

Because the residual sum of squares can be calculated efficiently for each regression (Mor- 
gan and Tam, 1972), the AIC can be employed for model discrimination. In particular the resi- 
dual sum of squares is used in r14.3.61 to estimate a: and then the value of the AIC in [14.3.8] 
can be calculated without having to estimate the AR parameters. By selecting the model with 
the minimum value of the AIC, this insures that the number of model parameters are kept to a 
minimum and also the PAR model provides a good statistical fit to the data. Using these tech- 
niques, the best fitting PAR model for monthly data can usually be selected in less than one 
minute of computer time. 

Subsequent, to identifying the most desirable model for season m according to the exhaus- 
tive enumeration approach, the AR parameter for this model can be estimated using subset 
autoregression. This procedure is repeated for each of the seasons. The value of the AIC for the 
overall PAR model can then be determined using [14.3.9]. 

A possible drawback of this exhaustive enumeration approach is that models may be identi- 
fied that cannot be justified from a physical viewpoint. For instance, is it reasonable in the 
month of July for an average monthly rivefflow series to have AR parameters for lags 2.5 and 8? 
On the other hand if there were AR parameters identified for lags 1.2 and 12, this could be jus- 
tifiable from a hydrological understanding of the physical phenomenon. Applications of the 
exhaustive enumeration approach to average monthly riverflow time series are presented by 
McLeod and Hipel (1 978). 

14.3.4 Checking PAR Models 

The adequacy of a fitted model can be ascertained by examining the properties of the resi- 
duals for each season. In particular, the residuals should be uncorrelated, normally distributed 
and homoscedastic. 

To ascertain if the residuals are white, one must estimate the periodic RACF (residual auto- 
correlation function). For Season m ,  the RACF at lag k is estimated using 

[ 14.3.101 

A I I  ^Z Note that is necessary to divide by &,&,4 rather than a,,, since in general a,,, # amd. Use of 
the incomct divisor, 6; , could result in cornlation values greater than 1. 

n 
4 

For each season, one can plot $')(dr,,,) up to about lag -. Because rc(")(Sr,) is asymp- 

totically distributed as NID(0, -), one can also draw the 95% confidence interval for each sea- 

son. If the seasonal residuals are white. they should fall within the 95% confidence limits. 
Nonwhiteness indicate that additional AR parameters are needed in season m or perhaps another 
class of models should be considered. 

1 
n 
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As a single statistic for an overall test for whiteness of the residuals, one can use the Port- 
manteau statistic for season m given by 

[ 14.3.1 11 

This statistic is x2 distributed with L -pm degrees of freedom (Box and Jenkins, 1976; Box and 
Pierce, 1970). A significantly large value of Qlm) indicates inadequacy of the model for season 
m .  Hence, one can reject the null hypothesis that the data in season rn are white if the calculated 
value of in [14.3.11] is larger than the tabulated xz value at a specified significance level. 
One can choose L to be large enough to cover lags at which correlation could be expected to 
occur. For example. for monthly data, one may wish to set L = 12 if sufficient data are available. 

As shown by McLeod (1993). a modified Portmanteau test statistic improves the small 
sample properties. In particular, the following exact result holds for the periodic correlations fo 
white noise 

k 
n - -  

[14.3.12] 

where [.] denotes the integer part and rim)@,,,) is defined in [14.3.10] by replacing the residual, 
drm,  by the theoretical innovation, urn. The modified Portmanteau statistic is then defined as 

[14.3.13] 

which is xz  distributed with L -pm degrees of M o m .  The modified statistic in [14.3.13] 
reduces to that proposed for a nonseasonal ARMA model in [7.3.5] by Davies et al. (1977) and 
Ljung and Box (1978). One can demonstrate that 

E { Q ; ( ~ ) )  = L - pm [ 14.3.141 

and 

[14.3.15] 

Across seasons the Portmanteau test statistics are asymptotically independent for 
m = 1.2,. . . ,s. Consequently, for the case of the Portmanteau test statistic in [14.3.13] an 
overall check to test if the residuals across all the seasons are white is given by 

(14.3.161 

where QL is x2 distributed on (L -pm)  degrees of freedom. The lag L used in V4.3.131 
m=l 
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could be chosen to be different across the seasons but in most applications it is reasonable to use 
the same value of L for all seasons. One can also employ Q'L'''' in place of Q;("') in [ 14.3.161 to 
obtain Q'L. 

One can use the tests for normality and homoscedasticity presented in Sections 7.4 and 7.5, 
respectively, to check that these assumptions arc satisfied for the residuals in each season. These 
tests could also be used to ensure the assumptions hold across all of the seasons. Heteroscedasti- 
city andfor non-normality, can often be comctcd using the Box-Cox transformation in [13.2.1]. 

14.4 PAR MODELLING APPLICATION 

The model construction techniques of Section 14.3 are employed for determining the most 
appropriate PAR model to fit to the average monthly flows of the Saugeen River at Walkerton, 
Ontario, Canada, which are available from Environment Canada (1977) from January, 1916 to 
December, 1976. From the sinusoidal stnrcturt contained in the graph of the last ten years of the 
average monthly Saugeen riverflows shown in Figure VI.1. one can see that the observations are 
highly seasonal. As emphasized in Section 14.3.2 and Chapter 15, the recommended approach 
for identifying the AR parameters required in each Season for the PAR model is to use the sam- 
ple periodic ACF and PACF. Because it is known a priori that most average monthly rivefflow 
series require a natural logarithmic transformation to avoid problems with the residuals of the fit- 
ted model, the logarithmic Saugeen flows are used right at the start of the identification stage. 

Figure 14.4.1, displays the graph of the periodic ACF against lag k for the logarithmic 
monthly Saugeen riverflows. Notice that each period or month possesses an ACF which is plot- 
ted vertically. The two lines above a given period show the 95% confidence interval. To keep 
the graph simple, the zero line, which falls midway between the confidence interval, is not given. 
Opposite a particular lag, the estimated value of the ACF for a given period is plotted horizon- 
tally. If the line cuts the left or right line for the confidence interval, the value of the sample 
ACF is significantly different from zero. Notice in Figure 14.4.1 that the estimated periodic 
ACF at lag 1 is significantly different from zero for all periods or months except for March 
(period 3) where the value just touches the 95% confidence limits. Because flows in one month 
are usually correlated with flows in the previous month, this behaviour would be expected. In 
addition, for some of the months such as January, October, November and December, which are 
indicated by periods 1,10,11, and 12, respectively, it appears that the ACF may be attenuating. 

To identify more clearly the order of the AR model in each season, one must examine the 
sample periodic PACF plotfed in Figurc 14.4.2. Notice that the sample PACF for each period or 
season m = 12.. . . ,12, is plotted vertically along with the 95% confidence interval. There arc 
significantly large values of the sample PACF at lag 1 across all 12 of the months, although in 
period 3 or March, the sample PACF is only just touching the 95% confidence interval. Further- 
more, for all the months the sample PACF truncates and is not significantly different from zero 
after lag 1. Therefore, the identification plots indicate that for all months except possibly March, 
one should use an AR model of order 1 or a Markov model. 

The parameters in the PAR(l,l,O,l,l,l,l,l,l,l,l,l) model are estimated using the periodic 
Yule-Walker equations in [4.2.12] for each season. The fitted model satisfies the tests for white- 
ness, heterosccdasticity and normality described in Section 14.3.4. For example. when the sam- 
ple periodic RACF is plotted, the assumption of whiteness for the values of the RACF for each 
of the months is reasonably well satisfied. In particular, Figure 14.4.3 shows a graph of the 
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periodic RACF calculated using [14.3.10] for the calibrated PAR model fitted to the logarithmic 
average monthly Saugeen riverflows. Notice that for all of the months, or periods, at most one 
value falls outside the 95% confidence limits which arc calculated assuming that the RACF 
values am asymptotically NID(0,-). Moreover. at the crucial f i s t  few lags as well as lag 12. 

none of the RACF values are significantly different from zero for any of the seasons. 
For both the periodic ACF and PACF graphs shown in Figures 14.4.1 and 14.4.2, respec- 

tively. at the fourth month or period there is a significantly large negative correlation at lag one. 
One way to interpret this behaviour from a physical viewpoint is that when spring flows in 
March cause large March flows due to the snowmelt runoff, the April flows tend to be substan- 
tially smaller. 

Table 14.4.1 provides the parameter estimate and SE (standard error) for the AR parameter 
at lag one for each of the twelve seasons or periods for the PAR model fitted to the logarithmic 
average monthly Saugeen flows. One can see that the estimates reflect what is found in the 
periodic ACF and PACF plots in Figurcs 14.4.1 and 14.4.2, respectively. In particular, the AR 
parameter estimate for April is negative, as is also the case for the values of both the sample 
periodic ACF and PACF at lag one in period four. 

1 
n 

Table 14.4.1. Parameter estimates and SE's for the PAR model having 
one AR parameter in each season, except for March, that is fitted to the 

logarithmic average monthly Saugeen riverflows. 

Seasons 
or Periods 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11  
12 

AR Parameter 
Estimates 
0.6472 
0.4977 

0 
-0.3 124 
0.5300 
0.6091 
0.7087 
0.4228 
0.7039 
1.0598 
0.7699 
0.5901 

SE's 

0.1037 
0.0886 
0 

0.0916 
0.1057 
0.0943 
0.1169 
0.0730 
0.1150 
0.1238 
0.0828 
0.1015 

An advantage of employing the PAR model is that it can capture the type of varying sea- 
sonal correlation structure just described. Because of this, one would expect that the PAR model 
would more accurately and realistically describe the behaviour of the monthly Saugeen river- 
flows than competing types of seasonal models. This fact is confirmed by comparing the calcu- 
lated value of the AIC in I14.3.91 for the Saugtcn PAR model to those computed for the best 
SARIMA and destasonalized models fitted to the average monthly Saugeen riverflow series in 
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Sections 12.4.4 and 13.4.2, respectively. The AIC value of 3357.82 for the PAR model is sub 
stantially less than those calculated for the other two models. Consequently. the PAR model is 
recommended over the SARIMA and deseasonalized models for fimng to the monthly Saugeen 
riverflows. Likewise, the forecasting experiments in Chapter 15, demonstrate that PAR models 
forecast average monthly riverflow series more accurately than its competitors and, therefore, is 
a better model to use with this type of seasonal data. 

14.5 PARSIMONIOUS PERIODIC AUTOREGRESSIVE (PPAR) MODELS 

14.5.1 Intmduction 

The PAR models described in the previous sections of this chapter attempt to preserve the 
seasonally-varying autocorrelation spuctun of a time series by fitting a separate AR model to 
each season of the year. However, one could reasonably question the necessity of going to the 
extreme of having a different model for each and every season. To decrease the number of 
model parameters required in a PAR model, one could combine individual AR models for vari- 
ous seasons in order to obtain a single model for all seasons in a given group. After grouping, 
the parameters of the more parsimonious PAR or PPAR models arc estimated and diagnostically 
checked. and the PAR and PPAR models compared. 

The approach for developing a PPAR model described in this section was originally 
presented by Thompstone et al. (1985a) and also Thompstone (1983). As an alternative pro- 
cedure for reducing the number of parameters in PAR or PARMA models, Salas et d. (1980) 
propose a Fourier series approach. Recall that a Fourier series procedure is presented in Section 
13.3.3 for reducing the number of deseasonalization parameters needed in the deseasonalized 
models of Chapter 13. 

In the next subsection, the PPAR model is formally defined. Following this, flexible model 
construction techniques are given. In Section 14.6, all of the seasonal models of Part VI are 
compared by fitting them to six hydrological time series. 

14.52 Definition of PPAR Models 

As is also the case for the PAR model in [ 14.2.31, let the number of years and seasons be n 
and s, respectively, and let a transformed observation be given by 2;:. r = 1.2,. . . , n ,  and 
m = 1.2, . . . , s. Assuming the s seasons arc grouped into G groups of one or more seasons with 
similar AR characteristics, the parsimonious periodic autoregressive model (PPAR) written as 
(p,pz, . . . , p c )  may be defined in a manner analogous to the PAR model in [14.2.3] as 

$@)(m;: - P,) = arfl  [14.5.1] 

where $@)(B) = 1 - $p)B - $p)B2 - * * - - $$)BpJ, is the AR operator of order p B  for group g, 

p,,, is the mean for season m, and U,~=NID(O,O~) .  Notice from equation [14.5.1] that within a 
given group each seasonal mean is preserved by the parameter pm. However, for the observa- 
tions in the seasons contained in the gth group, the AR parameters and the variance of the rcsidu- 
als arc assumed to be the same. 
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Figurc 14.4.1. Sample periodic ACF for the logarithmic average monthly 
flows of the Saugeen River from January, 1916, until December, 1976, at 

Walkerton. Ontario. Canada. 
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Figure 14.4.2. Sample periodic PACF for the logarithmic average monthly 
flows of the Saugeen River from January, 1916, until December, 1976, at 

Walkerton, Ontario, Canada 
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Figure 14.4.3. Periodic RACF for the PAR model having one AR parameter 
for each season, except for March, fitted to the average monthly riverflows 

of the Saugeen River from January, 1916, until December, 1976, 
at Walkerton, Ontario, Canada. 

14.53 Constructing PPAR Models 

In order to identify an appropriate grouping of seasons, the approach examined herein 
involves first fitting PAR models to the time series in question as described in Section 14.3. One 
then attempts to find seasons for which the AR models are “compatible”. The equation of sea- 
son tn2 is said to be compatible with that of season m l ,  if the residuals obtained when the equa- 
tion fit to season m2 is applied to season ml arc not significantly different from the residuals 
obtained from the equation fit to season “1. In order to test formally for compatibility, define 
ar(ml,m2> to be the residuals obtained when the model fit to season m2 is applied to season ml 
using [14.2.3] with initial values set to zero. ’Ihese residuals can be used to estimate $(ml,m2>, 

the residual variance when the model for season mZ is applied to season ml. 

Consider the null hypothesis 

Ho:a2(mlm2) = $(qml )  

Assuming that ( a ’ R M ( m l ~ 2 ) ~ R M ( m l J n l ) )  are jointly normally distributed with mean zero and 
arc independent for successive values, a test developed by Pitman (1939) can be used to test this 
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null hypothesis. For a review of how to carry out a hypothesis test, the reader can refer to Sec- 
tion 23.2. Let 

s R $ f  =aRM(mlfl$ + aR$f(mlml) r14.5.2) 

and 

DRM - a ~ ~ ( m i ~ n i )  - - O R M ~ I W  [ 14.5.31 

Pitman's rest is then quivalent to testing if the correlation, p, between SRM and DRM is signifi- 
cantly different from zero. Thus, provided n > 25, H, would be accepted at the 5% level of sig- 
nificance if I ~ I  < I.%/&. 

In practice, the residuals may not satisfy exactly the assumptions of a joint normal distribu- 
tion with mean zero and independence for successive values of the residuals. However, these 
assumptions are probably a sensible first approximation. The assumption of independence 
seems reasonable because, with annual periodicity, the residuals are chronologically one year 
apart. Furthermore, the mean of zero is assured for the case of oRM(ml,ml) due to the method of 
fitting the model. Pitman's test has often been used for testing the equality of variances of 
paired samples (Snedecor and Chochran, 1980, p. 190). It was pointed out in Lehmann (1959. 
p. 208, problem 33) that in this situation the test is unbiased and uniformly most powerful. 

The above definition of equation compatibility can be extended to mutual compatibility. In 
particular, equations for seasons ml and m2 are mutually compatible, if, at a given level of signi- 
ficance, one would accept the following two hypotheses: 

d(m2,ml )  = d ( m l . m l )  

d ( m l , m $  = d ( m 2 m 2 )  

Thus, the criteria adopted herein for identifying seasons in the same group is that each pair of 
seasons in the group must be mutually compatible at a given level of significance and have the 
same order of AR model. In addition, seasons are not grouped together unless they are chrono- 
logically adjacent. Once the groups have been identified, the parameters are estimated using 
maximum likelihood estimation. Specifically, multiple linear regression can be used to estimate 
the AR parameters for each group of seasons, where the seasonal means are estimated using 
114.3.51 and the estimated variance of the residuals for each season is calculated using the 
estimated residuals contained in the group of seasons. Diagnostic checking involves first calcu- 
lating the residuals from [14.5.1] by setting initial values to zero, and then examining the sea- 
sonal RACF and related Portmanteau test statistics plus tests for normality and homoscedasti- 
city. 

For season m in a PAR model, the maximized log likelihood is presented in [14.3.7]. 
When considering a PPAR model, the maximized log likelihood for the gth group is 

[14.5.4] 

where n8 is the product of the number of seasons in group g and the number of years of data, n. 
Notice that the summation term on the right hand side of [ 14.5.41 is for all data points contained 
in the seasons in the gth group. The value of the maximized log likelihood can be obtained by 
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summing [14.5.4] across all the Seasons to obtain 
G 

g=1 
‘PPu = c lo&, [ 1 4 . 5 4  

Likewise, for a PAR model the value of the maximized log likelihood across all s seasons is 

[14.5.6] 

where lo&,,, is defined in [14.3.7]. 

As was done for the PAR model, one can derive the AIC for a PPAR model for each group 
of seasons and also the overall model. In particular, for the gth group of seasons the AIC for- 
mula is 

[ 14.5.71 

where p8 is the number of AR parameters in the g th group seasons. The other parameters are the 
variance of the residuals and the number of means in the gth group of seasons. The AIC for the 
overall PPAR model is determined as 

AIC, = -210&, + 2p8 + 2 + 2 ( n u d e r  of means) 

G 

g = l  
AICG = CAIC, -+ 2 [ 14.5.81 

where the constant 2 allows for the Box-Cox parameter A. The overall AIC formula for the PAR 
model is presented in [ 14.3.91. 

When both PAR and PPAR models are fitted to a given series. the log-likelihood ratio 
(Rao, 1973, p. 448) can be used to test the null hypothesis that there is no significant difference 
in the residuals of the two models. It may be expressed as 

R = -2[Lppa - L p u ]  [ 14.5.91 

and, assuming the null hypothesis is true, R follows a chi-squared distribution with the number 
of degrees of freedom equal to the difference in the number of free parameters in the PAR and 
PPAR models, respectively (i.e.. the difference in the number of AR parameters and residual 
variances). 

14.6 APPLICATIONS OF SEASONAL MODELS 

All of the seasonal models presented in Part VI are fitted to three average monthly river- 
flow series and rhree average quarter-monthly riverflow time series and the resulting models axe 
compared using the AIC. More specifically, the seasonal models fitted to the series arc the SAR- 
IMA. deseasonalized. PAR and PPAR models defined in Sections 12.2, 13.2, 14.2.2 and 14.5.2, 
respectively. Grouping of seasons within the PPAR models is performed using three levels of 
sigrufcance in the Pitman test presented in Section 14.5.3. namely 50%. 20% and 5%. In gen- 
eral, as the level of significance decreases, fewer seasons are considered to have “incompatible” 
models and thus there is more grouping, or in other words, a smaller number of groups. A Box- 
Cox bansformation with A = 0 is used in all cases and, hence, the data are transformed by taking 
their natural logarithms. The above mentioned models are labelled as SARIMA, DES, PAR, 
PPAR/sO, PPARf2O and PPAR/O5, respectively, in the upcoming tables. The results of this 
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study were originally presented by Thompstone (1983, Section 3.5). 
The six example hydrological time series consist of 

(1) inflows to reservoirs of the hydroelectric system operated by Alcan Smelters and Chemi- 
cals Ltd. in the Province of Quebec, Canada mompstonc et al., 1980); 

(2) flows of the Saugeen River measured at Walkerton, Ontario, Canada (Environment Canada, 
1977); 

(3) flows of the Rio Grande measured at Furnas, Minas Gerais, Brazil (supplied by Mr. Paulo 
Roberto de Holanda Sales at Eletrobras, (national electrical company of Brazil)). 

The monthly series arc comprised of Alcan system inflows from 1943 to 1979. Saugeen River 
flows, 1919-76, and Rio Grande flows, 1931-75; the quarter-monthly flows consist of Alcan sys- 
tem inflows, 1943-79, Saugeen riverflows, 1915-76, and Rio Grande flows, 1931-72. Note that 
the quarter-monthly data consists of flows in m3/s averaged from the 1st to the 7th. from the 8th 
to the 15th. from the 16th to the 22nd, and from the 23rd to the end of the month, which consti- 
tute periods of approximately one week each. 

For all six series, the order of the AR operator in a PAR or PPAR model for a season or 
group of seasons, respectively, is usually one while the highest order is three. Very few of the 
AR models for an individual season or group of seasons are white noise. 

Table 14.6.1 summarixs the orders of the AR models contained within the PAR models 
fitted to the six series. Because there are 48 and 12 seasons for the quarter-monthly and monthly 
data, respectively, the number of AR models used in each quartermonthly PAR model must 
equal 48 whereas the total for each PAR model is 12. For the case of the PAR model for the 
average monthly Saugeen riverflows, the order of the AR operator is one for 11 of the 12 
months. As explained in Section 14.4. the month of March is white noise. Finally, the only 
other series which has white noise components in the PAR model is the Alcm system for 
monthly riverflows that contains four such months. 

In order to illusbate the degree of grouping associated with various Pitman test significance 
levels, Table 14.6.2 shows the number of groups associated with the PAR, PPAWSO, PPAWO 
and PPAR/O5 models for each series. For the case of quarter-monthly series, the highest degree 
of grouping is with the P P A m 5  model of Rio Grande flows: the 48 seasons arc divided into 16 
groups. The highest degrcc of grouping of monthly series is with the PPAWO5 model of the 
Saugeen riverflows: the 12 months are divided into 5 groups. Note that, in the case of the Alcan 
system monthly inflow series, no grouping is identified, even when using the 50% significance 
level. 

Table 14.6.3 shows how all six of the seasonal models are ranked according to the AIC for 
each of the series. The model having the lowest AIC value is ranked first whereas the one with 
the highest value is ranked as 6. When fitting the deseasonalized model, the logarithmic series is 
fully deseasonalized using [13.2.3]. Although it isn’t done in this study, one could reduce the 
number of descasonalization parameters by implementing the Fourier series approach described 
in Section 13.3.3. 

As shown in Table 14.6.3, the AIC always selects a PPAR model as the most desirable 
model. The only exception is the PAR model for the Alcan system for which no PPAR model is 
identified. As would be expected from the basic design of the SARIMA model, in all six cases 
the SARIMA model is the least desirable model, according to the AIC. This is because the 
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’ Quarter-monthly Series 
Alcan System Rio Grande Saugeen 

0 0 0 
36 42 43 
10 6 5 
2 0 0 

Alcan System Rio Grande Saugeen 
48 48 48 
40 38 40 
29 21 23 
24 16 18 

PPAWSO 
PPARRO 
PPARJO5 

Alcan System Rio Grande Saugeen 
12 12 12 
12 10 8 
12 8 7 
12 6 5 

‘8 
te 

Quarter-monthly Series 
Alcan System Rio Grande Saugeen 

6 6 6 
5 5 5 
4 3 3 
3 1 2 
1 2 1 
2 4 4 

a given order of an 
d to six series. 

Monthly Series 

Monthly Series 
Alcan System Rio Grande Saugeen 

3 6 6 
2 5 5 
1 4 4 

2 3 
1 1 
3 2 

0 0 

Table 14.6.2. Number of groups in the PAR and PPAR models. 

Quarter-monthly Series U Monthly Series 

Table 14.6.3 Ranking of the seasonal models fitted to the 
six series according to the AIC. 

Model 

SARIMA 
DES 
PAR 
PPAWSO 
PPAWO 
PPARJOS 

SAMMA model is not designed for describing stationarity within each season as well as a sea- 
sonally varying correlation smctu~e .  Because the deseasonalized model of Chapter 13 can 
account for a separate seasonal mean and variance within each season, the AIC results of Table 
14.6.3 indicate that the deseasonalized model always perfonns better than the SARIMA in all six 
applications. Moreover, due to the fact that a periodic model can handle seasonally varying 
correlation, periodic models always do better than both deseasonalized and SARIMA models. 
Finally, forecasting experiments are carried out in Section 15.4.4 to compare the forecasting 
capabilities of the models listed in Table 14.6.3. 

The log-likelihood ratio test in [14.5.9] can be used to ascertain if the residuals of the fitted 
PPAR and PAR models differ significantly from each other. In the five cases for which PPAR 
models are identified (see Tables 14.6.2 or 14.6.3), residuals of none of the PPAR models arc 
signrficantly different from those of the PAR model at the 5% level of significance. This n i n -  
forces the conclusion that even though PPAR models have fewer parameters and, hence, also the 
seasonal models, they still describe the data as well as the regular PAR model. 
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As noted in Section 14.5.1, another approach for reducing the number of AR parameters 
required in a PAR model is to use a Fourier series approach (Salas et al., 1980). However, this 
procedure assumes that a smooth sinusoidal type of curve is fitted to the AR parameters across 
the seasons or periods and, hence, also the sample periodic ACF. The question arises as to 
whether this assumption is reasonable. To investigate this, consider Figure 14.6.1, which shows 
a graph of the periodic ACF at lag one of the natural logarithms of the quarter-monthly flows of 
the Saugeen River. As can be seen. it would be impossible to fit a smooth cyclic curve through 
this plot. Notice, for example, the manner in which the first order correlation drops significantly 
downwards in the spring season (is., about the end of March in the 12th quartcr-monthly 
period). Fortunately, both the PPAR and the PAR models are designed for modelling the type of 
behaviour exhibited in Figure 14.6.1. The approach to fitting PAR and PPAR models is suffi- 
ciently general to be applicable to series with or without a cyclic pattern in the seasonal correla- 
tions and AR parameters. In a similar fashion, one can see that it would be difficult to fit a 
Fourier series curve through the AR parameter estimates in Table 14.4.1 calculated for the PAR 
model fitted to the logarithmic average monthly Saugeen riverflows. 

14.7 CONSTRUCTING PARMA MODELS 
PARMA models can be fitted to seasonal series by following the identification, estimation 

and diagnostic check stages of model construction. Because model building procedures are 
highly developed for use with PAR models, this class of periodic models is focussed upon in this 
chapter. Nonetheless, there are now some good construction techniques available for fitting 
PARMA models to seasonal data sets. As is also the case for the PAR model, the ARMA model 
for each season of the year can be identified separately. The main area where further research is 
required for PARMA model building is the development of a maximum Likelihood estimation 
technique which is computationally efficient. To obtain efficient estimates for a PARMA model, 
all parameters must be estimated simultaneously, including the innovation variances, and, more- 
over, it is necessary to use a nonlinear optimization technique since the likelihood function is 
nonlinear. Each evaluation of the likelihood function involves very lengthy computations when 
s 2 12. 

The sample periodic ACF and PACF described in Section 14.3.2 can be employed for iden- 
tifying the orders of the AR and MA operators for the PARMA model in r14.2.151 to fit to each 
of the seasons in a given seasonal time series. If a pure MA model of order q,,, is required, the 
sample periodic ACF for season rn will not be significantly different from zero after lag q,,, and 
the sample periodic PACF will die off. When a pun  AR model of order pm is needed to model 
season rn, the sample periodic ACF attenuates while the sample periodic PACF is not signifi- 
cantly different from zero after lag pm. When both AR and MA parameters should be included 
in the ARMA model to fit to the mth season, both the sample periodic ACF and PACF attenuate. 

Assuming normality, Vtcchia (1985a.b) developed a technique for obtaining MLE's of the 
parameters in a PARMA model. The approach that Vecchia (1985a,b) uses to write the Likeli- 
hood function is the same as the one of Newbold (1974) for the univariate case and Hillmer and 
Tiao (1979) for the multivariate ARMA models presented in Chapter 20. Additionally, he 
proved that PARMA models and multivariate ARMA models are equivalent. From a computa- 
tional point of view, his algorithm seems to be feasible for use in practical applications when the 
number of Seasons is small (it. ,  less than about 4 seasons per year). To overcome computational 
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Figure 14.6.1. Periodic ACF at lag one of the logarithmic quarter-monthly 
riverflows of the Saugeen River at Walkenon, Ontario, Canada, from 1915 to 1976. 

difficulties, Jimenez et al. (1989) propose a maximum likelihood parameter estimation technique 
which is implemented within a Kalman filtering framework. Finally, Li and Hui (1988) provide 
an algorithm for the exact likelihood of PARMA models. 

As explained in Section 14.3.3, the Yule-Walker equations can be used as a moment esti- 
mation approach for obtaining efficient parameter estimates for the parameters of a PAR model. 
However, one should be cautious when using moment estimators with PARMA models, since 
the parameters estimates may not be efficient. Nonetheless, some research on moment estima- 
tion of PARMA model parameters has been completed. For example, Salas et al. (1982) derived 
Yule-Walker equations for PARMA models and showed how moment estimates can be calcu- 
lated for PARMA models in which p,,, 2 0 and q,,, = 1 in season m .  Besides discussing moment 
estimation, Salas and Obeysekera (1992) described model identification and testing of model 
adequacy of PARMA models. Morcover, these authors proved a physical basis for PARMA 
models. In particular, based upon a conceptual-physical representation of a natural watershed, in 
which all inputs, storages, outputs and parameters arc assumed to be periodic and the system is a 
linear reservoir, they demonstrated that the periodic groundwater storage and streamflow 
processes belong to the class of PARMA processes. Section 3.6 describes this kind of physical 
relationships for the case of nonseasonal ARMA models. Further results on how PARMA 
models can be used in physically-based modelling are provided by Claps et al. (1993). 

When testing the adequacy of a calibrated PARMA model, one can use similar procedures 
to those suggested for PAR models in Section 14.3.4. The sample periodic RACF and related 
Portmanteau statistics can be employed to ascertain if the residuals are white. Other tests related 
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to those presented in Chapter 7 for nonseasonal ARMA models can be used for testing if the nor- 
mality and homoscedasticity assumptions arc valid. Non-normality and/or heteroscedasticity 
can often be rectified by incorporating an appropriate Box-Cox transformation from [ 13.2.11. 

In related research to PARMA modelling. Vccchia et al. (1983) investigated what happens 
when one aggregates across the seasons. Specifically, the aggregated time series resulting from 
summing over the seasons of a seasonal time series, which is assumed to be either AR(1) or 
ARMA(1,l) in each season, is shown to follow an ARMA(1.1) model at the annual level. More- 
over, when the seasonal data and the model for each season arc used rather than the annual data 
and the associated annual model, significant gain in parameter efficiency can be achieved. This, 
of course, further justifies the use of PAR and PARMA modelling in water resources and indi- 
cates that aggregation is preferable to disaggregation. A discussion of disaggregation and the 
controversy surrounding it is given in Section 20.5.2. 

For most of the PARMA model construction techniques discussed thus far, it is assumed 
that the data or, equivalently, the model residuals are normally distributed. Femandez and Salas 
(1986) studied PAR models having a Gamma marginal distribution. This Gamma or other kinds 
of distributional assumption could also be used with PARMA models. However, a substantial 
amount of theoretical research and development of flexible model building techniques arc 
needed before these and other related models can be used in practice. Lewis (1985) and authors 
referenced therein, discuss non-Gaussian distributed innovations for use in nonseasonal and mul- 
tivariate modelling. In Section 20.5.3, the employment of non-Gaussian marginal distributions 
in multivariate modelling is outlined. 

14.8 SIMULATING AND FORECASTING WITH PERIODIC MODELS 

14.8.1 Introduction 

Subsequent to fitting a PAR or PARMA model to a seasonal time series, the calibrated 
model can be used for applications such as forecasting and simulation. In the next chapter, it is 
explained how minimum mean squared error forecasts from periodic models, as well as other 
kinds of seasonal models, can be calculated. Moreover, forecasting experiments with average 
monthly rivefflow series demonstrate that PAR models forecast better than deseasonalized 
(Chapter 13) and SARIMA (Chapter 12) models. 

In Chapter 9, two simulation procedures are presented for generating synthetic data from 
nonseasonal AR and ARMA models. The simulation techniques are designed so that random 
realizations of the underlying stochastic process arc employed as starting values. Because fixed 
beginning values are not utilized, unwanted systematic bias is not introduced into the synthetic 
traces. 

Because a PAR or PARMA model consists of having a separate AR or ARMA for each 
season of the year, simulation techniques similar to those presented in Chapter 9 for use with 
nonseasonal models can be employed with seasonal models. The technique labelled WASIMZ, 
for example, in Section 9.4 exactly simulates an AR or ARMA process if the residuals are 
assumed to be normally distributed. Suppose, for example, one wishes to simulate using a PAR 
model. Let k = max(plp2 - l p 3  - 2, . . . , p s  - (s - 1)) where s is the number of seasons. By 
utilizing the covariance matrix of (zl,l,zl,z, . . . , zlJ) to generate randomly the initial values, a 
technique very similar to WASIM2 can be used for producing synthetic traces from a PAR 
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model. If deemed appropriate, parameter uncertainty can also be brought into a simulation study 
by following the WASIM3 procedure of Section 9.7. Salas and Atidelmohsen (1993) describe 
initialization techniques when simulation with single-site and multisite low-order PAR and 
PARMA models. 

As explained in Chapter 9, simulation can be used for design purposes and investigating the 
theoretical properties of models. In the next subsection. it is shown using simulation that PAR 
models can preserve statistically the critical drought statistics defined by Hall et al. (1%9). 

Stedinger and Taylor (1982a,b) describe the steps involved in the development and use of a 
stochastic smamflow model. After properly fitting a time series model to a given nonseasonal 
or seasonal riverflow data set, these authors smss the importance of model verification and 
model validation. In model verification, one should demonstrate that a model has been imple- 
mented comctly and passes diagnostic checks. With respect to model validation, one should 
show that simulated sequences from the calibrated model produce reservoir system performance 
that is consistent with or statistically indistinguishable from that obtained utilizing the historical 
riverflows. Accordingly, the simulation experiments carried out in Section 14.8.2 as well as 
Section 10.6 can be considered to be model validations. 

14.82 Preservation of Critical Period Statistics 

Introduction 

Hall et al. (1969) discuss problems related to the design and operation of a reservoir when 
water shortages must be considered. They define the critical period as the period of time for 
which a given inflow series is most critical with respect to meeting water demands. Various 
statistics, which art closely related to the critical period, are defined and, by using simulation, 
Hall et al. (1969) conclude that the stochastic model they are investigating does not adequately 
preserve the historical critical period statistics. In a more exhaustive study, Askew et al. (1971) 
find that a large variety of stochastic models are not capable of retaining the critical period statis- 
tics. The purpose of the present section is to demonstrate that, for certain sample series, when 
the PAR and PPAR models are identified and fitted using the procedures described in this 
chapter, they adequately preserve the historical critical period statistics. 

Critical Periodic Statistics for Water Supply 

Hall et al. (1%9) express the active reservoir storage as a ratio of the total volume of active 
storage in the reservoir to the volume of water due to the average annual inflow. The reservoir is 
operated to allow a seasonal extraction of X .  It is assumed that the reservoir is full at the start 
and a value of X is determined which causes the reservoir storage to research zero at one point in 
time. The length of rhe critical period is denoted by L and is calculated as the time span from 
the zero storage point backward in time to the point when the reservoir was last full. The per- 
centage deficiency, D, for the critical period is defined as 

CP D =  - 
VL 

[ 14.8.11 

where v' is the average seasonal inflow volume, V, is the seasonal inflow volume for period r ,  
and the summation extends over the entire critical period, CP. As pointed out by Hall et al. 
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(1%9), the aforesaid critical period statistics can be readily generalized to the case where the 
extraction is a function of time, the reservoir is at any level at the staR of the calculations, and 
evaporation and other losses arc considered. Note also that the critical period statistics arc obvi- 
ously a function of the length of the series for which they arc defined. As illustrated by 
McMahon and Mein (1978, pp. 19-20), there may, in rare cases. be more than one critical period 
for a given inflow series. 

Design of Simulation Experiments 

In Section 14.6, PAR and PPAR models are fitted to three qumr-monthly and thrce- 
monthly time series. These same series are used in this section in split sample simulation experi- 
ments used to show that PAR and PPAR models preserve statistically the critical period statis- 
tics. These results were originally presented by Thompstone et al. (1987) and Thompstone 
(1983). McLeod and Hipel (1978) used simulation experiments to demonstrate that critical 
period statistics are preserved by PAR models but they did not use the split sample approach 
described herein. Recall that in Sections 9.8 and 10.6, simulation experiments are used to 
demonstrate that A R M  models preserve statistically the rescaled adjusted range and other 
statistics related to the Hurst phenomenon. 

For each of the 6 seasonal series, PAR and PPAR models are identified and fit following 
the procedures of Sections 14.3 and 14.5.3, respectively. In each case, all but the last 20 years of 
available data are used to identify and fit the models. The PPAR model having the minimum 
value of the AIC is selected from three candidates, namely those with 50%,20% and 5% levels 
of significance for the Pitman test grouping criterion described in Section 14.5.3. 

As explained in Section 9.2, in order to generate synthetic sequences, it is fust necessary to 
produce independent, normally distributed random numbers with a mean of zero and a variance 
of one. In the experiments described herein, an efficient and portable pseudo-random number 
generator, developed by Wickmann and Hill (1982), is used to produce numbers rectangularly 
distributed between zero and one, and these arc then used in the algorithm of Box and Muller 
(1958) to produce the required random normal deviates. These innovations arc then fed into the 
appropriately estimated PAR model in [ 14.2.31 or the PPAR model in [ 14.5.11 for a given series. 

As pointed out in Chapter 9, an important consideration in the generation of synthetic 
hydrological sequences is the choice of initial values. Random realizations of the underlying 
stochastic process must be used to avoid introducing systematic bias into the simulation study. 
The approach to obtaining random realizations adopted in the original study by Thompstone et 
al. (1987) and Thompstone (1983) is to, in a preliminary study, set the required initial values to 
their expected values and then generate a full 40 years of synthetic dam. The last few values of 
these 40 years of synthetic data provide the required initial values for the main simulation study. 

For a given sample time series. the simulation experiment is conducted as follows. First, 
the remaining 20 years of the historical sample not used in model construction arc used to calcu- 
late what are referred to as the historical critical period statistics. These arc denoted as X(his), 
Lfiis) and Dfiis) for the historical extraction rate, historical length of the critical period, and his- 
torical deficiency, respectively. An active reservoir storage equal to the average volume of 
annual inflow is used. Next, 1,OOO synthetic seasonal sequences of 40 years each arc generated, 
and the first 20 years of each sample are dropped to provide 1,OOO effectively independent 
sequences equal in length to the series used to calculate the historical critical period statistics. 



Periodic Models 515 

It is important to note that almost all previous research concerning the preservation of 
statistics in synthetic hydrological sequence generation has not used the split-sample approach 
employed herein. In previous research, the same sample series was employed both to consmct 
the model(s) being evaluated and to estimate the statistic(s) whose preservation is being studied. 
One would generally expect the split-sample design of the current research to be a more rigorous 
validation of the models under investigation. 

In order to test if a given model preserves the critical period statistics, the P-values defined 
below are estimated: 

Px = Prob(X(syn) < X(his)} 

PL = Prob(L(syn) > L(his)) 

P, = Prob(D(syn) > D(his)} 

[14.8.2] 

[ 14.8.31 

[14.8.4] 

where Prob denotes probability, X(syn) is the extraction rate in the synthetic series, L(syn) is the 
length of the critical period in the synthetic series, D(syn) is the percentage deficiency in the 
synthetic series, and other terms are as defined earlier. 

The P-values are estimated separately for each series with the active reservoir storage equal 
to the volume of the average annual inflow for the 20-year historical sample not used to calibrate 
the models. This is done by counting the number of times the inequalities in r14.8.21 to [14.8.4] 
hold in each simulation run and dividing by 1.OOO. The P-values, as defined above, represent the 
probability of a critical period statistic in the synthetic sequence being more extreme than in the 
historical sequence. Thus a P-value of 0.05 indicates that there is only a 5% chance that the syn- 
thetic series will have a critical period statistic more extreme than the historical. Of course, this 
would happen 5% of the time even if the historical sequence were in fact generated by the 
corresponding fined stochastic model. Nevertheless, P-values less than 5% do suggest possible 
model inadequacy, and hence, P-values can be used for diagnostic checking. 

In Section 10.6.4, a x2 test is employed to ascertain, in an overall sense, if the Hurst statis- 
tics are preserved statistically by ARMA models fitted to 23 annual geophysical time series. In 
particular, when considering k time series for a given statistic, it can be shown (Fisher, 1970. p. 
99) 

[ 1 4.8.51 

where Pi can be the probability as defined in Equations r14.8.21 to [14.8.4] for the ith time 
series. 

The Results of the Simulation Experiments 

The rtsults of the simulation experiments arc summarized fvst for the PAR models. and 
then for the PPAR models. Table 14.8.1 shows the P-values for PAR models for the threc criti- 
cal period statistics and for the six example series, while Table 14.8.2 contains the chi-squared 
values calculated using [14.8.5] for the three critical period statistics with the series grouped 
according to their seasonal lengths. For a one-sided significance test, the chi-squared values 
with six degrees of freedom at the 5% and 1% significance levels are 12.592 and 16.812, respec- 
tively. For the monthly series. the critical statistics are preserved in each case at the 5% level, as 
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Rivemow series 

Quarter- Alcan System 
Monthly 

Rio Grande 
Saugeen 

Monthly Alcan System 
Rio Grande 
Saugeen 

can be seen in Table 14.8.1, and on an overall basis, also at the 5% level, as shown in Table 
14.8.2. 

For the quarter-monthly series, evidence of preservation of the critical period statistics by 
PAR models is not quite as strong. The extraction rate for the Saugeen series and the length of 
the critical period for the Alcan system inflows arc preserved at the 1% level, but not at the 5% 
level. In all other cases, the statistics are preserved at the 5% level. According to the overall 
chi-squared test, the length of the critical period and deficiency percentage are preserved at the 
5% level, but the extraction rate is preserved at only the 1% level. 

- ~~~ 

statistics 
Extraction Length of CP Deficiency 

0.233 0.040 0.730 

0.350 0.267 0.654 

0.0 17 0.267 0.257 

0.423 0.1 18 0.774 
0.521 0.090 0.825 
0.083 0.370 0.292 

Table 14.8.1. P-values for the PAR models. 

Table 14.8.2. Chi-squared values for the PAR models. 
statistics Seasonal Lengths 

1 1.720 4.196 

Monthly 11.079 3.359 

Table 14.8.3 shows the P-values for PPAR models for the three critical period statistics and 
for the six example series, while Table 14.8.4 contains the chi-squared values for the three criti- 
cal period statistics with the series grouped according to their seasonal length. For the case of 
the monthly series, there are two P-values which suggest that the critical period statistics are 
preserved at the 1% level, but not at the 5% level. "hese relate to the extraction rate and defi- 
ciency percentage for the Saugeen Series. All other cases indicate preservation at the 5% level. 
The overall chi-squared test indicates the length of the critical period and deficiency percentages 
are preserved at the 5% level, while the extraction is preserved at the 1% level. 

For the quarter-monthly series, evidence of preservation of the critical period statistics by 
PPAR models is not quite as strong as for the monthly series. Again, the extraction rate and 
deficiency for the Saugeen series are preserved at the 1% level, but not at the 5% level. The 
length of the critical period is not preserved at the 1% level for the Alcan system inflow series. 
All other statistics are preserved at the 5% level. Nevertheless, the overall chi-squared statistics 
indicate that the deficiency and the length of the critical period are preserved at the 5% level, 
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while the extraction rate is preserved at the 1% level (and very close to king preserved at the 
5% level). 

Table 14.8.3. P-values for the PPAR models. 

Rivefflow Series I statistics 
, Extraction I LengthofCP 1 Deficiency 

Table 14.8.4. Chi-squared values for the PPAR models. 
statistics Seasonal Lengths 

11.214 9.309 

Monthly 13.124 4.876 

It should be noted that in the majority of these simulation experiments (22 out of 36 combi- 
nations of models, series and critical period statistics), the coefficient of skewness of the empiri- 
cal distribution of the critical period statistics is different from zero at the 5% level. In fact, for 
the length of critical period statistic, the skewness coefficient is always significantly different 
from zero at the 0.1% level. In view of the significant skewness encountered in this study, the 
types of statistical tests used by Hall et al. (1%9) and Askew et al. (1971) are not appropriate. 
Their tests are based on the assumption of normality, and this assumption is not valid for skewed 
statistics. 

A further point that should be s a s s e d  is that the split sample approach to testing the 
preservation of critical period statistics is more exact than the approach in which an entire series 
is used for both model fitting and the calculation of the statistics to be preserved. This latter 
approach was used in the earlier studies of Hall et al. (1969). and Askew et al. (1971), as well as 
in Section 10.6.4 for the Hurst statistics. 

14.9 CONCLUSIONS 

Because the basic mathematical design of the periodic models described in this chapter 
closely reflects the statistical characteristics of many kinds of seasonal time series, especially 
those arising in the environmental sciences, periodic models are ideally suited for usc in practical 
applications. Of particular hpon is the family of PAR models for which comprehensive model 
construction techniques have been developed. If the number of model parameters has to be 
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reduced, one can employ the economical PPAR class of models. Although more nsearch is 
required to devise estimation algorithms for PARMA models that arc computationally efficient, 
good progress has been made in the practical development of this promising class of models. 

As just noted, periodic models arc well designed for use with natural time series. When 
dealing with seasonal socioeconomic time series in which the mean level and possibly other 
statistics may change within each season over the years, one may wish to experiment with the 
following modelling approach. Firstly, one can model the seasonal series, such as monthly water 
demand, using a SARIMA model (Chapter 12). Secondly, one can model the residuals of the fit- 
ted SARIMA model using a PAR or other type of periodic model. In this way, one may be able 
to model a seasonally varying cornlation structure which is not captured by the SARIMA 
model. 

I h e  simulation experiments of Section 14.8.2, demonstrate that properly fitted PAR and 
PPAR models can preserve statistically important historical statistics. In the next chapter, it is 
shown using forecasting experiments that these periodic models forecast seasonal riverflow 
series better than both deseasonalized (Chapter 13) and SARIMA (Chapter 12) models. 

PROBLEMS 

14.1 Complete the following: 

(a) 

(b) 

(c) 
The stationarity requirement for the PAR model in [ 14.2.41 having one AR parame- 
ter in each Season is given in (14.2.61. By refening to appropriate references, deter- 
mine the stationarity condition for a general PAR model that is not restricted to 
being Markov. 

Assuming that there are four seasons per year, and the order of the AR model 
in each season is two, write down the complete set of equations. 
Develop the theoretical periodic autocovariance function for the PAR model in 
Part (a). 
Determine the periodic Yule-Walker equations for this model. 

14.2 

14.3 Complete the following: 

(a) Using the notation in r14.2.151, write down the complete set of equations for a 
PARMA model having four seasons where pm =qm = 1 in the first two sea- 
sons, and pm = 2 and qm = l for the second two seasons. 

(b) Derive the theoretical periodic autocovariance function for the PARMA model 
in part (a). 

(c) Ascertain the periodic Yule-Walker equations for the model. 
The stationarity and invertibility conditions for a PARMA model having one AR 
and one MA parameter in each season arc given in [14.2.6] and [14.2.17], respec- 
tively. Present and explain the conditions for stationarity and invertibility for the 
general PARMA model in [14.2.15] for which the number of AR and MA 

14.4 
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parameters for a specific season arc not restricted in number. 
Suppose that a PARMA model for SeaSon m is given as 14.5 

where the mean of zr, is zero. 

(a) Obtain the random shock coefficients for at least eight terms and then write 
this model in random shock form as in [ 14.2.241. 

(b) Also write the model in invcrted form as in [14.2.26]. 

Carry out the instructions in problem 14.5 for the PARMA model in season rn which 
is given as 

14.6 

(1 - 0.1OB + O.24B2)z,, = (1 - O.@)a,,  

where the man of z ~ , ~  is assumed to be zero. 

Select an average monthly riverflow series and then fit a PAR model to this series 
adhering to the following steps in model construction: 
(a) Examine appropriate exploratory data analysis graphs as well as the sample 

periodic ACF and PACF plots to design the most appropriate set of PAR 
models. 

(b) Estimate the model parameters for each model selected in part (a) and then use 
the MAICE procedure to find the best one. For the most appropriate model 
compare the estimates for the model parameters employing both multiple 
linear regression and the periodic Yule-Walker equations. Comment upon the 
results. 
Carry out diagnostic checks to ensure that the best PAR model from (b) satis- 
fies the whiteness, normality, and constant variance assumptions. If there are 
any problems make suitable modifications based upon the diagnostic results 
and repeat steps (b) and (c). Whatever the case, be sure to employ the periodic 
RACF test for whiteness given in [ 14.3.101. 

Develop PAR models for describing average monthly riverflows from three dis- 
tinctly different geographical locations in the world. Using identification results 
such as the sample periodic ACF and the sample periodic PACF graphs as well as 
the structures of the calibrated PAR models, make comparisons among the fitted 
models. Wherever appropriate, provide physical explanations as to why certain 
modelling results vary across the regions. 
Develop the most appropriate PAR and PPAR models to describe an average 
monthly hydrological time series. Explain why any groupings of months within the 
PPAR model make sense or else do not Seem masonable from both statistical and 
physical viewpoints. 
Follow the instructions in problem 14.9 for an average weekly hydrological time 
series. 

14.7 

(c) 

14.8 

14.9 

14.10 
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14.11 

14.12 

14.13 

14.14 

Select a hydrological data set for which you have both average weekly and average 
monthly observations. Carry out the studies put forward in the previous two ques- 
tions for the monthly and weekly time series. Subsequently, compare the monthly 
and weekly modelling results for the PAR and PPAR models. Did you find, for 
instance, that them were more groupings of seasons for the f i n d  weeWy PPAR 
model than with the monthly version? 
In Section 14.7, model building procedures an discussed for PARMA models. 
Summarize and compare according to both advantages and disadvantages the 
PARMA estimation techniques given by Vecchia (1985a.b) and Jimcnez et al. 
(1989). 
After fitting a PAR model to average monthly riverflow time series, execute a 
proper simulation study to ascatah whether or not the historical critical period 
statistics given in r14.8.11 are prestrvcd. 
Fit a PAR model to a seasonal hydrological time series of your choice. Then carry 
out simulation experiments to determine if the sample periodic ACF in [14.3.4] at 
lag one for each season is preserved statistically by the calibrated model. 
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CHAPTER 15 

FORECASTING 

WITH 

SEASONAL MODELS 

15.1 INTRODUCTION 

Three families of models are presented in Part VI of the book for fitting to seasonal time 
series. In particular, SARIMA, deseasonalized and periodic models are described in Chapters 12 
to 14, respectively. The objective of this chapter is to employforecasting experiments for com- 
paring the capabilities of these seasonal models to forecast accurately seasonal hydrological time 
series. 

Forecasting can be utilized for model discrimination purposes. After fitting different types 
of models to one or more time series by following proper model construction procedures, the 
model or models which forecasts the best according to certain criteria can be selected for use in 
further practical applications. Because carrying out forecasting studies is a very time consuming 
undertaking, forecasting experiments cannot be used for discriminating among models in most 
applications. Nonetheless, if one finds, for example, in an extensive forecasting experiment, that 
a certain type of PAR model forecasts significantly better than its competitors when used with 
average monthly riverflow series, this would give one confidence in using PAR models in other 
applications involving average monthly riverflow series. 

After explaining how to calculate forecasts for seasonal models in Section 15.2, two main 
forecasting studies are described in the next two major sections. In thefirst set offorecasting 
experiments, mean monthly flows from thirty rivers in North and South America are used to test 
the short-term forecasting ability of SARIMA, deseasonalized and PAR models. After splitting 
each series into two sections, the seasonal models are calibrated for the first portion of the data. 
The fitted models are then used to generate one-step ahead forecasts for the second portion of 
each time series. The forecasting performance of the models is compared using various meas- 
ures of accuracy. The results suggest that PAR models identified using the sample periodic ACF 
and PACF provide the most accurate forecasts. The results of this study arc also presented by 
Noakes et al. (1985) as well as Noakes (1984, Ch. V). 

In the second forecasting shufy, the three quarter-monthly and three monthly riverflow 
series used in Sections 14.6 and 14.8.2 of the previous chapter, are used for comparing the fore- 
casting accuracy of seasonal models. Besides the SARIMA (Chapter 12), deseasonalized 
(Chapter 13) and PAR models (Sections 14.2.2, 14.3, 14.4, 14.6 and 14.8), the PPAR models 
(Sections 14.5, 14.6 and 14.8) arc also employed in this forecasting experiment. This second 
forecasting study was originally presented by Thompstone (1983, Ch. 4). 

In both Sets of forecasting experiments, one step ahead forecasts are used for comparing 
the forecasting abilities of the model. There are two reasons for doing this. Firstly, from a 
theoretical viewpoint one can show that for the families of seasonal models presented in 
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Chapters 12 to 14, the one-step ahead forecasts arc independent of one another. This property 
allows one to use statistical tesrs based upon the independence assumption to ascertain whether 
or not one model forecasts significantly better than another. Secondly, in many practical appli- 
cations the one step ahead forecasts arc of most importance to decision makers. For example, 
when deciding upon the operating rules of a reservoir for generation of hydro-electric power, an 
accurate forecast for the inflows of the next month is crucial. After the real value of next 
month’s flows is known, one can use this information in the seasonal forecasting model to pro- 
duce the one step ahead forecast for the subsequent month and so on. 

Because different kinds of time series models are not defined and calibrated in exactly the 
same way, it is not surprising that their forecasts for a given time series are not identical. In fact 
a given type of model approaches forecasting from a unique perspective based upon its own par- 
ticular strengths and weaknesses. To attempt to exploit the forecasting capabilities of each kind 
of model fitted to a time series, forecasts generated by individual models can be combined in an 
optional manner. Procedures for combining forecasts across models are presented in Section 
15.5.2. Additionally, experimental results on combining forecasts for SARIMA and PAR 
models fined to average monthly riverflows are given in Section 15.5.3, while findings on com- 
bining hydrological forecasts from transfer function-noise 0. PAR and conceptual models 
are described in Section 18.4.2. 

Before the conclusions, a brief discussion is given in Section 15.6 on aggregating forecasts 
for the purpose of producing a forecast for a longer time interval. For instance, one can employ 
a monthly model to produce 12 monthly forecasts and then sum these 12 values to obtain the 
aggregated annual forecast. 

For a summary of where material on forecasting is presented in the book, the reader can 
refer to Table 1.6.3. In particular, the table points out that forecasting with nonseasonal ARMA 
and TFN models is described in Chapters 8 and 18, respectively. Finally, for references on fore- 
casting listed outside of this chapter, the reader may wish to refer to appropriate references given 
at the end of Chapter 1 as well as Chapters 8 and 18. 

15.2 CALCULATING FORECASTS FOR SEASONAL MODELS 

15.2.1 Introduction 

Suppose that one fits an appropriate seasonal model to a seasonal time series and then 
wishes to forecast 1 steps ahead where 12 1. When using z, to represent the value of the time 
series, as is done in Chapter 12 with SARIMA models, one can employ the calibrated seasonal 
model to forecast z,,! given the observations up to and including time 1. As explained in Section 
8.2 for nonseasonal ARMA models, the minimum mean square error (MMSE) forecast €,(l)  for 
z,+/ can be obtained by minimizing E[r,+, - 4(1)]*. This minimization is equivalent to taking the 
conditional expectation of z,,~ at time t .  

For the deseasonalized and periodic models of Chapters 13 and 14, respectively, it is con- 
venient to let z,,,, stand for the observation in year r and season m .  Then frm(1) represents the 
MMSE forecast for lead time I 2 1 starting at z,,,,. 
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The general approach for calculating MMSE forecasts for the seasonal models of Part VI is 
very similar to that used for nonseasonal ARMA models in Section 8.2. The specific method for 
calculating MMSE forecasts for each of the seasonal models is described below. 

15.23 F o r d i n g  with SARIMA Models 

The SARIMA model is defined in [12.2.7]. The most convenient format to employ when 
calculating MMSE forecasts is the generalized form of the SARIMA model given in [12.2.12]. 
More specifically. to calculate the conditional expectation of z , ~  at time t and, hence, the 
MMSE forecast &(l) ,  one takes conditional expectations of [12.2.12] to obtain 

[Z,+/l = $‘1[z,+1-11+ $’2b,+1-21+ * . . 

[ 15.2.11 

where 
I = 1,2, . . . , is the lead time for the forecast, 
[z ,+~]  denotes the conditional expectation 

E[Z,+/IZ,J,-l,. . . I; 
I 

$’; is the generalized AR parameter defined by 

$’(B) = $(B)@(BS)VdVQ; and 

8’; is the generalized M A  parameter defined by 

e’(B) = e(B)e(Bs). 
The nonseasonal version of [15.2.1] is given in [8.2.22]. As explained in Section 8.2.4 for 

forecasting with a nonseasonal ARMA model, one can allow for a nonzero deterministic trend 
component by introducing the parameter 8, on the right hand side of [8.2.21] to obtain [8.2.23]. 
By taking conditional expectations of [8.2.23], one obtains [8.2.24] for calculating MMSE fore- 
casts for a nonseasonal ARMA model containing the level parameter e,,. In a similar fashion for 
a SARIMA model, one can introduce the paramtter 80 on the right hand side of [12.2.12] and 
then take conditional expectations to obtain a formula for calculating MMSE forecasts. The 
resulting formula would be the same as [15.2.1] expect for the parameter 0, which would be 
added to the right hand side. 

As is also done in Section 8.2.4 for nonseasonal ARMA models, the conditional expecta- 
tions in [ 15.2.11 can be determined using the following four N ~ S :  

(1) E[Z,-jI = 2I-j. j = 0.12, . . . , [15.2.2] 
I 

E[Z,+j] = 40’). j = 0.12, . . . , [ 15.2.31 
I 

(2) 

is the MMSE forecast for lead time j .  
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(3) E [ u , - ~ ]  = uI+ j = 0 , 1 2  . . . [ 15.2.41 
I 

and 

E[o . I  = 0, j = 12, ... . [ 15.2.51 (4) 

If the series contains a level rcprcsenttd by 0,. this can be added to the forecasts obtained using 
the above rules. 

The MMSE forecasts have a number of interesting properties which can be illustrated using 
the random shock form of the model in [12.2.15]. The forecast at time r for lead time I is 

I I+J 

f,(O = v/a,  + v / + l a l - l +  * ' * [15.2.6] 

Subtracting this from z,+/, the forecast error is 

e,(O = o1+/ + VPI+/-l+ ' ' * + Vl-1~1+1 [ 15.2.71 

Since E[e,(I)] = 0, the variance of the forecast error is 

V ( I )  = [ V U ~  e,(1>1 = [ I  + wf + y: + . . * + i4r,!1~a~ [ 15.2.81 

This variance can be utilized to estimate confidence intervals for forecasts at various lead times. 
The one step ahead forecast error is 

e,(l> = zl+l - ?,(I) = ol+l (15.2.91 

Although one step ahead forecast errors are statistically independent, forecast errors for lead 
times greater than one are correlated. For forecasts made from origin r ,  the cornlation coeffi- 
cient between forecast errors at lead times I and I + j is given as (Box and Jenkins, 1976) 

1-1 

ZViVj+i 
[ 15.2.101 

Inverse Box-Cox Transformation 

Often the given series, z,, is first transformed using the Box-Cox transformation in [12.2.1] 
to obtain the zl@) series. The SARIMA model is then fitted to the zI()') series as in [ 12.2.71. The 
above calculations for obtaining M M S E  forecasts am then carried out for the z,()') series rather 
than 5,. 

A naive approach for obtaining forecasts in the untransformed domain is to take the inverse 
Box-Cox transformation of the MMSE forecasts calculated in the transformed domain. How- 
ever, in order to produce MMSE forecasts in the untransformed domain, a modified type of 
inverse Box-Cox transformation must be employed. More specifically, the exact MMSE fore- 
cast in the untransformed domain is determined from the fact that its transformed value follows a 
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normal distribution with expected value f,‘”(l) and variance V(I) .  The expected value of the 
invmc Box-Cox transformed value is the desired MMSE forecast and it is determined numeri- 
cally by Hermite polynomial integration (Granger and Newbold, 1976). In practice, it is found 
that the MMSE forecasts are slightly smaller than the naive forecasts. Moreover, studies with 
real data have shown that these MMSE forecasts do perform better than the naive forecasts. 
When data are transformed using a natural logarithmic transformation, as is often the case for 
seasonal hydrological time series. the MMSE forecast for the unuansfonned data is 

q f )  = exp[l;  (A) (I) + -1 v(1) - c , I = 1.2, . . . , 
2 

(15.2.111 

where f , ( l )  is the MMSE forecast in the untransformed domain, Z;fi)(l) is the MMSE forecast 
produced by the model for the transformed logarithmic data, V(I) is the variance of the forecast 
error given in [15.2.8], and c is the constant in the Box-Cox transformation required to make all 
entries be greater than zero. 

For graphs of forecasts obtained using SARIMA models fitted to seasonal time series. the 
reader can refer to Section 12.5. In particular, Figures 12.5.1 and 12.5.2 display MMSE fore- 
casts for monthly water demands and concentrations of atmospheric CO,, respectively. 

15.2.3 Forecasting with Deseasonalized Models 

The main steps involved in forecasting with deseasonalized models are displayed in Figure 
13.5.1. Firstly, one must calculate the MMSE forecasts for the ARMA model fitted to the desea- 
sonalized series. This procedure is identical to that presented for the nonseasonal ARMA@g) 
model in Section 8.2. Let the deseasonalized series that is determined using either [ 13.2.21 or 
[13.2.3] be represented as w,,,,, where r and rn stand for the year and season, respectively. By 
taking conditional expectations of the ARMA@,q) model in [13.2.12], the MMSE forecasts for 
the deseasonalized series are calculated using 

[ 15.2.121 

where 
1 = 1,2, . . . , is the lead time for the forecast, and 
[w~,,,+~] denotes the conditional expectation 

~ [ w r ~ + ~ ~ w r , m ~ w r , m - l ~  * * * *I . 
I 

Equation [15.2.12] can be used to calculate MMSE forecasts for the deseasonalized series 
by following the four rules given below for 1 = 1.2. . . . , 

[15.2.13] 

E[wr,+jl= Gr;,,U)v j = 1-2,. . . , [15.2.14] 
I 

(2) 

is the MMSE forecast for w,,,,+,, 
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and 

(4) ~[a,,, , ,~] = 0. j = 1.2,... . 
I 

[ 15.2.161 

When using the above rules, one should keep in mind that the time of occurrence of the desea- 
sonalized series or the innovations can be written using a variety of equivalent subscripts. For 
instance, when there are s seasons per year wrm, w,-~,,,+~ and w,+~,,,-~ all stand for the same 

value. 
Following the procedure described in Section 3.4.3, the random shock coefficient, yri ,  

i = 1.2, . . . , can be found for the ARMA@,q) model describing the wrP series. The variance of 
the forecast e m r  for the deseasonalized series can then be determined as 

V ( / )  = [ 1 +  yrz + yr;+ - * + y:-1] [ 15.2.171 

Finally, the one step ahead forecast error is 

ei(1) =wr,m+l -$r,m(l) = a r , m + l  [ 15.2.181 

As indicated in Figure 13.5.1, the next step is to route the MMSE forecasts through the 
inverse deseasonalization filter to obtain zj*$. The inverse deseasonalization for the two tech- 
niques given in [13.2.2] and i13.2.31 are 

iz(l) = Grm( l )  + i m  [ 15.2.191 

[ 15.2.201 

respectively. To obtain forecasts in the untransfonned domain one must take the inverse Box- 
Cox transformation of $z(/). However, as noted in the previous subsection, if one wishes to 
have MMSE forecasts in the untransformed domain, one must make an appropriate adjustment 
before taking the inverse Box-Cox transformation. For the case of a logarithmic transformation, 
the MMSE forecast given in the same units as the original series is determined using 

when V ( I )  is the variance of the forecast error from [ 15.2.171. 

15.2.4 Forecasting with Periodic Models 

In Section 8.2, it is explained how to calculate MMSE forecasts for a nonseasonal ARMA 
model. A similar procedure is followed when forecasting with PAR, PPAR or PARMA models. 
For example, when calculating MMSE forecasts for a PAR model, one simply Writes down the 
difference equation for season m in [14.2.1] and then determines the conditional expectations of 
the observations and innovations to arrive at the M MSE forecasts. Likewise. for a PARMA 
model. one uses the difference equation in [14.2.151 for the ARMA model in Season m and then 
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calculates the conditional expectations. 
'fhe approach for calculating MMSE forecasts for PARMA models is explained first. 

Assuming that the observations and innovations are known up to the rth year and mth season, 
one takes the conditional expectation of r14.2.151 to obtain 

m )  (1) m )  (n) m )  (1) [z$+/I = +I [zrm+/-11+ +l [zr,+,-21+ . . . + $- [zr,m+/-p,l + [arm] 

[ 15.2.221 

where 
I = 1.2, . . . , is the lead time for the forecast, and 
[z$+,] denotes the conditional expectation 

0.) Iz (1) (1) 
E[zr,m+/ rm9 rm-1 **-I 

By following the four rules listed below, equation [ 15.2.221 can be employed for calculat- 
ing the MMSE forecasts for z,(z for lead times I = 1,2, . . . , . 
(1) = z:,:-~, j = 0,1,2, . . . , [ 15.2.231 

[ 15.2.241 (2) E[z,(,$+,I = i r ,m~) .  6) ' j = 1,2, . . . , 

is the MMSE forecast for z,(,$+~, 

E[u~,,,-~] = ur,m-j, j = 0,1,2, . . . , and 

E[u,,+~] = 0, j = 1,2, . . . , . 

[ 15.2.251 

(4) [ 15.2.261 

After calculating the forecasts for 1 = 12 , .  . . , the appropriate monthly mean pm must be added 
to each forecast when pm f 0. 

The procedure in Section 3.4.3 can be utilized to find the random shock coefficients 
y!'"), i = 1.2,. . . , for the ARMA model in season m .  To calculate the variance of the forecast 

(3) 
I 

I 

error for i,,,,(l) 0.) one uses 

v(m)(l) = [ 1 + y p 2  + yp'+ * * * + yy(_ml~]cT~ [ 15.2.271 

[ 15.2.281 

To obtain forecasts in the same units as the original series, one must take the inverse Box- 
Cox transformation of i:z(l) for 1 = 1.2, . . . , . When the data are transformed using natural log- 
arithms (i.e., X = o), equation [ 15.2.211 can be utilized to calculate the MMSE forecasts in the 
untransformed domain where V(1) is replaced by V("')(l) from [15.2.27]. 
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When determining forecasts for PAR or PPAR models, one can follow the approach 
explained for PARMA models. Consider, for example, the case of the PAR model. By raking 
conditional expectations of [ 14.2.11 or [ 14.2.31, the MMSE forecasts calculated after year r and 
season m arc determined using 

Q (m) (1) m) (x) m) (1) [zrmtll = + I  [zr,m+/-lI + $4 [zr,mtl-d+ * * * +$I [zr,m+/-p,l+ [ar,ml [15.2-291 

The four rules presented in [15.2.23] to [15.2.26] can then be used to calculate the h4MSE fore- 
casts for the transformed series. Additionally, when pm # 0, one must add the appropriate mean 
level to each of the calculated forecasts. Finally, the modified version of the inverse Box-Cox 
transformation (see [ 15.2.211 for the case of 1 = 0) must be taken to produce MMSE forecasts in 
the u n t r a n s f o d  domain. 

15.3 FORECASTING MONTHLY RIVERFLOW TIME SERIES 

15.3.1 Introduction 

To examine the efficacy of PAR models of Chapter 14, a comprehensive forecasting study 
is carried out by comparing their performance with that of several models uscd to model sea- 
sonal data. Using thirty monthly riverflow time series, the PAR models are comparcd to the 
SARIMA models of Chapter 12 as well as the deseasonalizd models presented in Chapter 13. 
Methods of model order selection for the PAR models are also compared. The experiments 
described in this section, as well as by Noakes et al. (1985), an the most comprehensive yet 
reported in the hydrological literature. Other published comparisons have used only a few series 
and usually only two models [see, for example, Dclleur et al. (1976)]. Also, the majority of the 
hydrological forecasting mearch to date has been concentrated on shorter time intervals in the 
order of a few hours or days [sce, for example, the Proceedings of the Oxford Hydrological Fore- 
casting Symposium, April 15-18 (International Association of Hydrological Sciences, 1980) and 
Thompstone et al. (1983)) However, monthly riverflow forecasts are often used for operational 
planning of reservoir systems. M a c h o  (1990) considers both short term and long term fore- 
casts in his riverflow forecasting study. Even modest improvements in the operation of large 
reservoir systems can result in multimillion dollar savings per year (see, for instance, Brocha 
(1978) as well as the comments on stochastic hydrology given in Section 1.1). Thus, the results 
of the forecasting study given in this section should be important to those concerned with the 
optimal medium and long-term operation of reservoir systems. 

The performance of the forecasts from the different seasonal models are assessed using the 
root mean square error (RMSE), mean absolute deviation (MAD),  mean absolute percentage 
error (MAPE), and median absolute percentage error (MEDIAN APE), criteria. Although these 
criteria give an indication as to which models Seem to perform better, no statement concerning 
statistically significant differences can be made from such a comparison. To address this ques- 
tion, the nonparamemc Wilcoxon signed rank test (Wilcoxon, 1945) is used to determine if a 
particular model produces significantly better forecasts when compared to another model. One 
could also employ Pitman’s (1939) cornlation test and the likelihood ratio test to check if one 
model forecasts significantly better than another. These latter two tests arc described in Section 
8.3.2 and uscd in the forecasting experiments with nonseasonal models presented in Section 
8.3.4. The nonparameuk Wilcoxon test is outlined in this section with the seasonal forecasting 
experiments and described in detail in Appendix A23.2. Noakes et al. (1983) and Noakes 
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(1984) present the results of the forecasting study of this section when Pitman’s cornlation study 
and the likelihood ratio tests are used. Finally, the overall procedure for canying out the fore- 
casting experiments in this section, Section 15.4 as well as Sections 8.3 and 15.3, is summarized 
in F i p  8.3.1. 

15.33 Data Sts 

The data used in this study comprise thirty monthly unregulated riverflow time series rang- 
ing in length from thirty-seven to sixty-eight years. The rivers are from a number of different 
physiographic regions and vary in size from a river with a mean annual flow of one cubic meter 
per second (m’ls) to a river having a mean annual flow of almost 900 m’h. The data for the 
Canadian rivers were obtained from Water Survey of Canada records, the American riverflow 
series are from the United States Geological Survey. and the Brazilian data were kindly provided 
from Electrobras (the national electrical company of Brazil). The rivers and their mean annual 
flows for the water year from October to September are displayed in Table 15.3.1. 

15.33 Seasonal Models 

The last three years or 36 observations are omitted from each of the data sets in Table 
15.3.1. After taking natural logarithms of the time series, SARIMA, deseasonalized and PAR 
models are fitted to the thirty truncated logarithmic series. 

The most appropriate SARIMA models to fit to the series are identified using the graphical 
procedures of Section 12.3.2. All of the SARIMA models identified for fitting to the monthly 
riverflow series in Table 15.3.1 are determined to be of the form (P,O,q)x(O,l,Q),, with A = 0 
and with typical values of p ,  q and Q being 1.0 and 1. 

Two types of deseasonalized models are used in the forecasting study. For the first kind of 
model, quation [13.2.2] is used to deseasonalize the logarithmic data after estimating each 
monthly mean of the logarithmic data using [13.2.4). The most appropriate ARMA model is 
then fitted to this deseasonalized series using the model construction techniques of Part III. This 
overall deseasonalized model is referred to as DSM. 

For the second type of deseasonalized model, equation [ 13.2.31 is used to deseasonalizc the 
logarithmic series before fimng an ARMA model to the resulting nonseasonal series. In 
[13.2.3], the seasonal means and standard deviations are estimated using [13.2.4] and [13.2.5], 
respectively. This overall deseasonalized model is called DES. 

Six types of PAR models are considered in this study. In the first model, a separate AR( 1) 
model is fitted to each month (called PAWl) using multiple linear regression. This model was 
originally suggested by Thomas and Fiering (1%2) and has been used extensively by hydrolo- 

The second and third PAR models are fitted to the data using the algorithm of Morgan and 
Tatar (1972) described in Section 14.3.3. This algorithm calculates the residual sum of squares 
of all possible regressions for each season. The AIC and BIC can thus be calculated for all pos- 
sible models. The PAR model which gives the minimum value of the AIC in [14.3.8] or BIC in 
[6.3.5] (with pm S 12) is selected as the most appropriate. This type of procedure has been called 
subset autoregression by McClave (1975). and thus is r e f e d  to as SUBSET/AIC or 
SUBSETBIC modelling. 

gists. 
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Table 15.3.1. Average monthly riverflow time series used in 
the forecasting experiments. 

River Location Period Obser- MeanFlow 
vations (m3/s) 

Fair Oaks, California 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
M 

American 
Boise 
Clearwater 
Columbia 
Current 
W.B. Delaware 
English 
Feather 
James 
Judith 
Mad 
Madison 
McKenzie 
Middle Boulder 
Missinaibi 
NalTlakan 
Neches 
N. Magnetawan 
Oostanaula 
Pigeon 
Rappahannock 
Ric helieu 
Rio Grande 
Saint Johns 
Saugeen 
S.F. Skykomish 
S. Saskatchewan 
Trinity 
Turtle 
wolf 

Twin Springs, Idaho 
Kamish, Idaho 
Nicholson, British Columbia 
Van Buren, Missouri 
Hale Eddy, New York 
Sioux Lookout, Ontario 
Oroville, California 
Buchanan. Virginia 
Utica, Montana 
Springfield, Ohio 
West Yellowstone, Montana 
McKenzie Bridge, Oregon 
Nederland, Colorado 
Mattice, Ontario 
Lac La Croix. Ontario 
Rockland, Texas 
Burke Falls, Ontario 
Resaca, Georgia 
Middle Falls, Ontario 
Fredericksburg. Virginia 
Fryers Rapids, Quebec 
Furnas, Minas Gerais, Brazil 
Fort Kent, New Brunswick 
Walkerton, Ontario 
Index, Washington 
Saskatoon, Saskatchewan 
Lewiston. California 
Mine Centre, Ontario 
New London, Wisconsin 

1906-1960 
1912- 1 %o 
191 1-1960 
1933-1969 
1922-1960 
191 6- 1960 
1922- 1977 
1902-1977 
191 1-1960 
1920- 1960 
1915- 1960 
1923- 1960 
1911-1960 
1912-1960 
192 1 - 1976 
1923-1977 
19 14- 1960 
19 16- 1977 
1893- 1960 
1924- 1977 
1908- 197 1 
1932-1977 
193 1 - 1978 
1927- 1977 
191 5- 1976 
1923- 1960 
1911-1963 
1912- 1960 
1921 - 1977 
19 14- 1960 

106 
588 
600 
444 
468 
540 
660 
708 
600 
492 
552 
456 
600 
588 
672 
648 
564 
732 
816 
636 
768 

576 
600 
744 
456 
624 
588 
672 
564 

468 

33 
23 1 
109 
54 
30 

123 
167 
69 

1 
14 
13 
47 
2 

103 
108 
69 
6 

78 
14 
45 

33 1 
896 
30 
68 

27 8 
272 
47 
37 
49 

The next PAR models are estimated by using the appropriate Yule-Walker equations (see 
Section 14.3.3). In the first case pm is selected on the basis of the minimum value of the AIC or 
BIC. Unlike the previous case, however, intermediate parameters are not allowed to be con- 
strained to zero. Thus, all of the parameters from ${"') to $;:) are estimated in this model for a 
given Season to produce the PAR/AIC and PAWBIC models. 

The last PAR models are identified by examining plots of the sample periodic PACF, 
presented in Section 14.3.2. In general, an AR(p,) model is fitted to month m ,  whert pm is the 
last lag for which the PACF is significantly different from zero. The adequacy of the selected 
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model is checked by testing for sigruficant residual correlation or non-normality. Thus, the 
PARPACF is the natural extension to PAR models of the modelling philosophy recommended 
by Box and Jenkins (1976) and adhered to in this book. Once again, no intermediate parameters 
arc constrained to zero. 

153.4 Forecasting Study 

After omitting the last 36 values of each of the 30 average monthly rivcrflow series in 
Table 15.3.1, the nine seasonal models are fitted to the 30 truncated series. From Section 15.3.3, 
these nine models arc labelled as the SARIMA, DSM, DES, SUBSET/AIC, SUBSET/BIC. 
PAIUAIC, PAWIC, PAW1, and PAR/PACF models. The nine models are then used to gen- 
erate tlurty-six one-step-ahead forecasts for the logarithmic flows. Figure 15.3.1 shows a time 
series plot of the last five years of the logarithmic flows along with the forecasts for the last three 
years using the PAIUPACF method for river number 14 in Table 15.3.1. As can be seen from a 
visual viewpoint, the PARPACF model forecasts quite well. 

I 0 OBSERVED 

I I I I I 

OBSERVATION NUMBER 
-2.501 540 552 564 576 588 

Figure 15.3.1. Logarithmic monthly flows and one step ahead 
PAIUPACF forecasts for the Middle Boulder Creek. 
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The monthly means of the logarithmic flows arc also considered as forecasts and are 
referred to as MEANS. The logarithmic forecast errors associated with each of the ten foncast- 
ing models arc then compared using the fortcast performance measures RMSE. MAD, MAPE 
and MEDIAN APE, mentioned in Section 15.3.1. 

RMSE results arc given in Table 15.3.2 for each river. The results for each performance 
measure are summarized in Tables 15.3.3 to 15.3.6 where rank and rank-sum comparisons 
aPpe= 

Table 15.3.2. RMSE x loo0 of the logarithmic forecast errors. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

12 

13 

14 

I5 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

21 

28 

29 

30 

857 

280 

323 

183 

426 

658 

191 

337 

516 

470 

435 

98 

175 

273 

619 

242 

909 

407 

424 

600 

530 

w) 

230 

411 

425 

380 

436 

626 

282 

355 

8% 

279 

330 

190 

418 

642 

218 

338 

495 

469 

428 

91 

175 

273 

614 

244 

909 

407 

418 

591 

546 

266 

226 

412 

402 

391 

438 

624 

283 

358 

813 

273 

334 

180 

445 

628 

187 

394 

536 

463 

416 

120 

208 

272 

601 

238 

930 

416 

425 

592 

536 

264 

265 

398 

430 

407 

420 

624 

282 

408 

864 

280 

331 

198 

410 

666 

203 

338 

544 
469 

43 I 
90 

176 

274 

618 

243 

910 

407 

420 

604 

547 

270 

229 

420 

42 1 

422 

319 

633 

283 

361 

796 

3a7 

346 

204 
464 

681 

218 

415 

562 

Mo 

481 

I 2 3  

254 

281 

634 

248 

1078 

419 

421 

627 

510 

326 

294 

414 

419 

434 

500 

603 

318 

368 

196 

289 

330 

211 

423 

664 

20 I 
335 

548 

47 1 

440 

98 

22 1 

296 

626 

238 

906 

407 

425 

618 

535 

214 

241 

428 

422 

401 

391 

632 

283 

372 

801 907 

264 289 

359 339 

184 181 

389 408 

689 690 

209 205 

354 347 

489 489 

582 427 

426 431 

9R 118 

167 171 

290 290 

707 639 

253 259 

916 907 

408 411 

44? 447 

673 707 

553 552 

277 no 
241 236 

389 385 

433 423 

411 416 

464 445 

628 639 

283 301 

352 361 

690 

213 

367 

182 

390 

698 

440 

358 

488 

576 

424 

107 

169 

302 

152 

26 1 

969 

419 

446 

694 

564 

260 

242 

398 

432 

41 1 

461 

621 

297 

352 

lzo0 

248 

544 

209 

357 

775 

633 

48 1 

579 

746 

539 

127 

186 

365 

96 1 

515 

1147 

440 

487 

1118 

569 

600 

335 

319 

532 

416 

587 

822 

410 

465 
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Table 15.3.3. RMSE of one-step MMSE forecasts of logged series 
(number of times each method has indicated rank). 

R M ~  PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/ DSM DES SARlMA MEANS 

PACF AIC BIC AIC BIC 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

RMk- 

rum 

4 3 1 3  1 

3 5 5 2  0 

10 2 3 4  1 

3 1 1  0 7  0 

5 3 5 6 1 

3 3 2 2  5 

1 1 2 4  4 

1 2 4 1 3 

0 0 2 1 1 1  

0 0 0 0  4 

110 119 127 134 230 

4 

5 

4 

2 

3 

1 

3 

5 

1 

2 

1 1  3 

4 3  3 

2 2  2 

2 3  2 

3 3  1 

7 6  1 

4 3  1 

5 5  4 

2 4  7 

0 0  0 

3 

0 

0 

0 

0 

0 

1 

0 

2 

24 

145 166 173 178 268 

Table 15.3.4. MAD of one-step MMSE forecasts of logged series 
(number of times each method has indicated rank). 

RMk PAR/ PAR/I PAR/ PAW SUBSET/ SUBSET/ DSM DES SARIMA MEANS 

PACF AIC BIC AIC BIC 

1 4 4 4 1 1 5 1 2  5 3 

2 6 4 4 4  1 4 3 3  1 0 

3 5 8 5 3  1 4 2 2  0 0 

4 6 6 2 0  1 4 1 1  1 0 

5 6 2 4 6  0 2 5 1  4 0 

6 2 3 3 2 6 3 4 4  2 1 

7 0 1 2 5  3 3 6 6  4 0 

8 1 2 4 1 3 2 6 3  8 0 

9 0 0 2 0  10 3 1 8  5 1 

10 0 0 0 0  4 0 1 0  0 25 

Rmk- 

sum 10S 1 1 1  137 135 221 133 175 18S 180 268 
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Table 15.3.5. MAPE of one-step MMSE forecasts of logged series 
(number of times each method has indicated rank). 

Rank PAR/ P W l  PAR/ PARf SUBSET/ SUBSET/ DSM DES SARIMA MEANS 
PACF AIC BIC AIC BIC 

1 3 5 3 1 3 5 1 1  5 3 
2 5 4 3 5  2 3 2 5  1 0 

3 4 7 4 4  1 3 5 1  0 1 

4 7 2 5 7 0 3 3 1  2 0 

4 0 5 7 6 4 2  1 3 1 2  
6 2 2 1 5 1 4 6 5  4 0 

7 1 1 2 5  2 3 5 7  3 1 

8 1 3 6 1 3 2 6 2  4 2 

9 0 0 2 0  1 1  4 0 6  7 0 
10 0 0 0 0  6 0 1 0  0 23 

RMk- 

rum 115 115 147 134 218 144 166 177 175 259 

Table 15.3.6. MEDIAN APE of one-step MMSE forecasts of logged series 
(number of times each method has indicated rank). 

Rank PAR/ PAR/l PAR/ PAR/ SUBSET1 SUBSET/ DSM DES SARIMA MEANS 

PACF AIC BIC AIC BIC 

1 5 1 3 1 6 4 2 1  3 4 
2 3 3 5 4 4 2 I 3 4 1 

3 4 3 6 2 0 3 3 4  2 1 
4 6 4 3 6 2 3 2 3  0 1 

5 4 5 5 6 2 1 3 2  2 0 

6 3 3 I 3 4 6 3 2  4 1 
7 3 6 2 2  2 6 2 5  2 0 

8 1 1 2 3  3 2 7 4  5 2 

9 1 1 3 1 4 2 4 5  8 1 

10 0 1 0 2  3 1 3 1  0 19 
RUIk- 

yull 123 150 131 154 160 156 190 175 177 234 

The rank-sums for the models arc the sums of the product of the rank and the associated 
table entry. Thus, models with lower rank-sums perform better than those with larger rank- 
sums. The models PARPACF, PAR/l, PAWAIC, PAR/BIC, and SUBSET/BIC fm very well 
on the basis of all performance criteria. As expected, using the MEANS proves unsatisfactory in 
most cases. The MEANS has the worst overall performance and produces the largest RMSE for 
twenty-four of the series. Table 15.3.2 shows that in the three cases (rivers 2, 5, and 24) where 
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the MEANS has the smallest RMSE then is very little difference between any of the forecasting 
methods. Morcover, in these three cases al l  methods have low MAPEs and RMSEs. At the 
other extreme, the best alternative to MEANS for rivers 7.16. and 22 has a RMSE less than half 
that of MEANS. Next to the PAR models mentioned above, the DSM, DES, and SARIMA 
models perform about equally as well. The SUBSET/AIC model performance is disappointing, 
although not totally surprising. The large number of parameters associated with the 
SUBSET/AIC model does not provide a sufficiently parsimonious and flexible model for pro- 
ducing accurate forecasts. The importance of parsimony in forecasting models is discussed by 
Ledoltcr and Abraham (198 1). 

For several of the rivers, then an large discrepancies between the MAPE and MEDIAN 
APE criteria This is found to be due to a defect in the absolute percentage error when the 
observed value is small. For example, the observed logged flow for river 14 for November, 
1959. is 0.0024 and the PARPACF forecast is -0.746. This ma tes  an absolute percentage error 
of over 3 1 ,OOO!. 

The forecasting results reported thus far arc for the logarithmic flows. To compare results 
in the untransformed domain, one converts the forecasts using [15.2.21]. Table 15.3.7 shows the 
forecasting findings for the RMSE of one-step ahead MMSE forecasts for the untransformcd 
time series. Once again, the same PAR models perform the best. However, then are some 
differences in the untransformed and transformed forecasting results. In particular, notice the 
improvement of the MEANS model and the poor performance of the DES model. The DSM and 
SARIMA models still perform reasonably well and the SUBSET/AIC improves slightly. 

Table 15.3.7. RMSE of one-step MMSE forecasts of the flows 
(number of times each method has indicated rank). 

Rank PARJ PAJYl PARl PAJY SUBSET/ SUBSET/ DSM DES SARIMA MEANS 

PACF AIC BIC AIC B IC 

1 2 5 7 0  4 

2 5 4 5 6  0 

3 1 1  3 3 5  0 

4 6 6 4 5  1 

5 I 8 2 8  2 

6 4 3 3 3  5 

7 1 0 4 1 2 

8 0 1 1 1 5 

9 0 0 1 1 10 

10 0 0 0 0  1 

4 

3 

3 

5 

6 

1 

5 

2 

1 

0 

3 0  

3 0  

2 0  

1 1  

0 0  

6 0  

3 5  

7 5  

4 1  

1 18 

2 

4 

1 

0 

3 

1 

4 

4 

8 

3 

3 

0 

2 

1 

0 

4 

5 

4 

4 

7 

RMk- 

aum 105 112 115 129 202 135 178 268 196 210 
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The Wilcoxon signed rank test (Wilcoxon, 1945) for paired data is used to test for statisti- 
cally significant differences in the forecasting ability of the various procedures. In this test, 
which is also described in Appendix A23.2, the differences in the squares of the logarithmic 
forecast errors are computed. These diffennces are ranked in ascending order, without regard to 
sign, and assigned ranks from one to thirty-six. The sum of the ranks of all positive differences 
arc then computed as T in [A23.2.3] and cornpared to tabulated values in order to ascertain if the 
forecasts from one model are significantly better than the forecasts from a competing model. 
These results are then used to examine the performance of the models across all thirty series. In 
this test, the P- value associated with each T value is calculated by estimating the area in the tail 
of the distribution. Then, the Fisher (1970, p. 99) method for combining significance levels for 
one-sided tests is 

[15.3.1] 

where p is the calculated P-value associated with T and k is the number of series considered in 
the test. This combination technique generally has greater power than alternative methods such 
as simply summing the T’s. 

Fisher’s test is employed to compare the overall performance of the PAR/PACF model to 
that of the other competing models. In addition, the PAW1 parameters are also estimated using 
the Yule-Walker equations to provide an additional model for cornparison (PAFUYWI). In this 
way, identical forecasts produced by the PAWACF and PAR/YWl models could be ignored, 
ensuring that only the differences in the forecasting procedures are compared. The results of 
Fisher’s test are presented in Table 15.3.8. The PAR/PACF model is significantly better than all 
of the models except the PAW1 and the PAIUAIC at the five-percent level. Since different esti- 
mation procedures are employed for the PAWACF and PAW1 models, there are several fore- 
casts that are almost, but not quite. identical. These are all included in the analysis, thus mask- 
ing the differences in the performance of the two models. The P A W 1  model, however, 
employs the same estimation procedure, thus resulting in identical forecasts when an AR(1) 
model is identified for a particular month for the PARPACF model. This allows ties to be 
dropped from consideration, and results in the testing of only the differences between the two 
models. All series with fewer than five untied forecasts are dropped from consideration in this 
test. The results of this comparison indicates that when ties are ignored, the PAR/PACF model 
is better than the P A W 1  model at the two-percent level of significance. Although the 
PAWAIC compares quite favourably with the PARPACF when the significance levels are com- 
bined, detailed examination of the results reveal that for three rivers the PAR/PACF forecasts 
significantly better at the five-percent level than the PAIUAIC. However, in no case are the 
PAWAIC forecasts significantly superior to those of the PARPACF. Additional details are 
given in the thesis of Noakes (1984). 

15.4 FORECASTING QUARTER-MONTHLY AND MONTHLY RIVERFLOWS 

15.4.1 Introduction 

The results of the forecasting study of Section 15.3 indicate that certain types of PAR 
models work better than other competing seasonal models when forecasting average monthly 
riverflow time series. In particular, PAR models identified using the sample periodic PACF 
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Table 15.3.8. Results of Fisher's test for the Wilcoxon tests 
when each model is compared to the PAR/PACF model. 

Mock1 PARJl PARl PARJ PAR/ SUBSET/ SUBSET/ ARMA/ ARMA/ SARIMA MEANS 

YW1 AJC BIC AIC BIC DSM DES 

x2 651 605 64.8 57.8 116.0 87.8 99.4 101.2 1133 276 

DF 6 0 4 0 5 8 4 0  60 60 60 60 60 60 

SL(46) 30 2 25 3 lo4 1 0.1 0.0s 10-~ 1 0 - l ~  

provide the most accurate forecasts. Because PPAR models are not used in the forecasting 
experiments of the previous section, one of the objectives of the forecasting study presented in 
this section as well as by Thompstone (1983) and Thompstone et al. (1985) is to show a forecast- 
ing study involving PPAR models, as well as other types of seasonal models. A second goal is 
to perform forecasting experiments with both quartcr-monthly and monthly time series. 

15.4.2 Time Series 

The data sets used in this forecasting study are identical to those utilized in the seasonal 
modelling applications of Section 14.6 and the simulation experiments with seasonal models in 
Section 14.8.2. In particular, the time series consist of both the quarter-monthly and monthly 
flows of the rivers called the Alcan system, Rio Grande and Saugeen. For all of these series, the 
last three years on record are not used when the seasonal models given in Table 14.6.3 were fit- 
ted to the six series. 

15.43 Seasonal Models 

The seasonal models used in the forecasting experiments are those listed in Table 14.6.3. 
The seasonal models consist of the SAIUMA (Chapter 12), deseasonalized (Chapter 13). PAR 
(Sections 14.2.2 and 14.3) and three types of PPAR (Section 14.5) models. The deseasonalized 
model called DES refers to the situation when the most appropriate ARMA model is fitted to a 
series fully deseasonalized using r13.2.31, for which the seasonal means and standard deviations 
are estimated by utilizing [13.2.4] and r13.2.51, respectively. In all cases, the logarithmic series 
are used and the fiaed models are identical to those described in Section 14.6. 

15.4.4 Forecasting Experiments 

For each time series and fitted model given in Table 14.6.3, one step ahead forecasts are 
calculated for the additional three year period in each series. Besides these models. forecast 
errors are also calculated for a model labelled MEANS, which simply entails using the seasonal 
means of the logarithmic series as the one step ahead forecasts. 

For each fitted model and logarithmic time series, one can calculate the MSE (tneun 
squured error) of the forecast errors. In Table 15.4.1, the models are ranked according to their 
MSE's for each of the six time series. The lowest value of MSE is ranked as 1 whereas the 
highest number refers to the model which produces the least accurate forecasts for the series. 
Because the forecast errors are approximately normally distributed, they can be employed in the 
Pitman test (Pitman, 1939) described in Section 8.3 to determine if there are significant 
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Model 

differences in the MSE's of the fortcasts between any two seasonal models. Some represcnta- 
tive results using the Pirman test an given in Table 15.4.2. 

Quuia-aumthly Saia Monthly Saia 

ALEM S y r t m  I Rio Grade I Sugecn Alm System I Rio Gnndc I S q e + n  

SARIMA 

DES 

PAR 

I I 

02871 (6) 02293 (6) 0.4214 (6) 0.3325 (2) 0.2399 (6) 0.4883 (6) 

02634 (5) 02222 (3) 0.4117 (5) 03011 (1) 0.232381 (4) 0.4788 (5) 

0.2575 (3) 02213 (1) 0.4070 (1) 03457 (3) 0.2301 (2) 0.4189 (2) 

PPAR&5* 

I I I I 1 

0.4792(+) 0.1239(=) 0.0195(=) 0.0657(=) 0.05ty=) O.ooZry=) 

~ ~~ I PPARnO I 0.2583 (4) I 02221 (2) I 0.4096 (3) I I 02321 (3) 1 0.4265 ( 8 1  

I PPARIOS I 0.2552 ( I )  I 0 2 2 7  (4) I 0.4098 (4) I I 0.2381 (4) I 0.4217 (3) I 
Note: Thc parenthetical figure ranks the MSE's for a given series &om the lowest (1) to the highest (7). 

Table 15.4.2. Pitman's correlation test statistics for comparing MSE's 
of one step ahead forecasts for seasonal models fined to the 

quarter-monthly Saugeen riverflows. 

0.0504(=) 

P P m O  

0.483 I ( - )  

0.1320(=) 

O . O 4 t y = )  

O.M27(=) 

P P r n  

0.4799(-) 

0.1205(=) 

0.0201(=) 

0.0633(-) 

P P W  

0.4792(-) 

0.1239(=) 

0.0195(-) 

0.0657(=) 
I I I I I 1 I I 

1 I 
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Consider the results for the MSE's in Table 15.4.1 for comparing the forecasting capabili- 
ties of the seasonal models. The simplistic MEANS model consistently provides the worst fore- 
casts, and this confirms that the methods of time series analysis provide meaningful improve- 
ments in fortcasting ability. In five of the six cases, SARKMA models provide the second largest 
forecast errors. This could lead to some doubts regarding the appropriateness of SARIMA 
models for forecasting the hflow series considered herein. As noted in Chapter 12 and else- 
where in Part VI, from a physical viewpoint SARIMA models am not well designed for model- 
ling riverflow time Series, like the one in Figwe VI.1. because they cannot explicitly model sta- 
tionarity within each Season as well as a seasonally varying correlation structure. 

In three cases (one quarter-monthly series and two monthly series), PPAR models provide 
the smallest MSE's of forecasts, while in two other cases (both quarter-monthly), PAR models 
produce the best forecasts. More generally, one sees that in five of the six cases, the smallest 
and second smallest MSE's arc furnished by PAR or PPAR models; in four of the six cases. the 
four smallest MSE's are provided by PAR or PPAR models. All this suggests that PAR and 
PPAR models have appealing forecasting abilities for the series considered herein. In only one 
case, the Alcan system monthly inflow series, the DES provides the smallest MSE. 

Table 15.4.2 shows the results of Pitman's correlation test for the case of the quarter- 
monthly flows of the Saugeen River. The statistic, Irl, for comparing MSE's between one step 
ahead forecasts for two seasonal models is described in Section 8.3.2. A parenthetical equal 
sign, (=), indicates that, at the 5% level, the difference between the row model emors and the 
column model errors is not significant. A parenthetical plus sign, (+), indicates that the TOW 

model provides significantly better fortcasts than the column model, and a parenthetical negative 
sign, (-), indicates the contrary. An asterisk beside the label of the row model indicates that it 
provides forecasts which are, at the 5% level, equal to or better than fortcasts from all other 
models considered. As is the situation in Table 15.4.2 and the results for the other 5 series which 
are not shown, in no case does a model furnish forecasts which are significantly better than fore- 
casts from all other models. 

In all three cases of quarter-monthly series, the DES, PAR, and PPAWO5 models give fore- 
cast errors which were statistically equivalent to or better than all other models. In two cases out 
of three, the SARIMA, PPAWSO and PPAWO models arc equal to or better than all other 
models with respect to their forecasting abilities. Only the MEANS model is, in all three cases, 
significantly worse than all other models. 

Forecasting results for the monthly Alcan system inflows an inconclusive. No PPAR 
models arc identified for this series. and there is no statistically significant difference in forecasts 
from the four other models. For the two other monthly series, forecasts are. at the 5% level of 
significance, indistinguishable for the SARIMA, DES, PAR, PPAWSO. PPARJ.20 and PPAWO5 
models. In the case of the monthly Rio Grande flows, the MEANS model is significantly worse 
than all other models. while for the monthly Saugeen riverflows, the MEANS model is indistin- 
guishable from the SARIMA and DES models, but significantly worse than the others. 

In summary. from the results of the Pitman test, it is difficult to conclude thaf amongst the 
SARIMA, DES. PAR, and various PPAR models, one type of model is particularly outstanding 
with respect to its forecasting ability for the time series considered herein. However, it is 
interesting to mall that in thrte of the five cases for which they are identified, the PPAR models 
provide the smallest MSE's of forecasts (see Table 15.4.1). and in the other two casts it is the 
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PAR models which produces the best forecasts. 

15.5 COMBINING FORECASTS ACROSS MODELS 

15.5.1 Motivation 

The selection of the “best” forecasting procedure is certainly a hopeful result of any fore- 
casting study. Invariably, however, no one method will produce optimum forecasts in all cases. 
The task then becomes one of selecting the most appropriate forecasting procedure based upon 
the available information. 

An alternative approach is to combine the forecasts from two or more procedures in accor- 
dance to their relative performances. In this way, it is hoped that the strengths of each method 
might be exploited. The S U C C ~ S S ~ S  achieved by combining economic forecasts arc documented 
in several studies (Armstrong and Lusk, 1983; Bates and Granger, 1969; Bordley, 1982; Granger 
and Ramanathan, 1984; Makridakis et al., 1982; Newbold and Granger, 1974; Winkler and Mak- 
ridakis, 1982). Within the field of water resources, McLeod et al. (1986) present experimental 
results on combining hydrologic forecasts which are also described in Sections 15.5.3 and 18.4.2 
of this book. 

In the next subsection, techniques for combining forecasts are given. Subsequently, in Sec- 
tion 15.5.3, seasonal riverflow forecasts generated using both PAR and SARIMA models are 
combined in an attempt to achieve improved forecasts. Within Section 18.4.2, seasonal river- 
flow forecasts from TFN, PAR and conceptual or physically based models are optimally com- 
bined in forecasting experiments. 

15.53 Formulae for Combining Forecasts 

There are certainly countless ways of combining forecasts from different forecasting pro- 
cedures to arrive at a combined forecast The simplest is probably to weight each forecast 
equally. If there are k forecasts available, the combined forecast f c ,  would be 

k 

i= 1 
f c  = C W i f i  [15.5.1] 

whercf; is the forecast produced by the ith model, wi is the weighting factor for the ith forecast 
and wi = wj = I lk for a l l  i and j .  

It would be expected that a better combination of forecasts could be obtained if the statisti- 
cal properties of the forecast errors were considered. Winkler and Makridakis (1983) point out 
that if the covariance matrix of the forecast errors from k methods, C. is known, then the optimal 
weights arc given by 

k 

Z a i j  
j = l  

[ 15.5.21 w i =  k k 

Z a h j  
h=lj=l  

where the ad terms arc the elements of r’. In practice, C is not known and must be estimated. 
Estimates of the weights in [ 15.5.21 can be calculated from the inverse of 2 where 
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[ 15.5.31 

e y )  is the percentage error for method i at time r and v is the number of previous forecast errors 
employed to calculate w;. 

In the study concerning the combination of economic forecasts by Winkler and Makridakis 
(1983). these authors found that estimating C’ and calculating the weights using [15.5.2] gave 
the poorest rcsults. One of the preferred procedures in their study was to ignore the cornlation 
between the forecast errors. In this case, the forecast weights were calculated as 

4; [15.5.4] 

where e,(i) and v are as defined previously. This approach ensures that all of the estimated 
weights are greater than or equal to zero. 

An alternative approach to calculating the combining weights when seasonal data are con- 
sidered is developed by McLeod et al. (1986). In th is  procedure, the model residuals are 
employed to calculate the residual variance for each season. If two forecasts are to be combined, 
then the weights are calculated for each season such that 

[ 15.5.51 

k= 1 k= I 

and 

where w1 is the weight assigned to fortcasting procedure one for the jth season, wG is the 
weight assigned to forecasting procedure two for the jth season, uI(i) is the residual at time r for 
the ith model, n is the number of years of data and s is the number of seasons per year. Since 
the data are seasonal, the forecast error variance might be expected to be seasonal and, hence, 
this procedure should account for this seasonality. 

15.53 Combining Average Monthly Riverflow Forecasts 

The thirty average monthly riverflow time series listed in Table 15.3.1 and referred to in 
Section 15.3.2 are the data sets employed in the experiments for combining forecasts among two 
models. As is also the situation in Section 15.3.3, the last three y w s  or 36 observations are 
omitted from each of the data sets. Subsequently, after taking narwaj. logarithms of each time 
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Model A 

(1) 

PAIUPACF 
SARIMA 
CMB-SMS 
CMB-3 
CMB-6 
CMB-9 
CMB-12 

series both P W A C F  and SARIMA models are fitted to each of the truncated logarithmic 
sequences. Recall from Section 15.3.3 that PAWPACF refers to a calibrated PAR model that is 
identified using the sample periodic PACF. The same 36 one-step-ahead forecasts calculated in 
Section 15.3.4 for each of these two models and each of the thirty series arc employed in the 
combination experiments reported upon here. 

"he monthly logarithmic foncasts produced by the PAIUPACF and SARIMA models arc 
combined using some of the procedures outlined previously in Section 15.5.2. Specifically, the 
combining weights arc calculated using [15.5.4] with v = 3, 6, 9. and 12. In addition, seasonal 
combining weights are also determined employing [15.5.5] and [15.5.6]. The combined fore- 
casts are then compared on the basis of MSE's. A summary of the results is presented in Table 
15.5.1. The CMB-SEAS entries nfcr to the combined forecasts produced when separate weights 
are calculated for each season. The CMB-v enmes represent the combined forecasts when the 
previous v forecast errors are employed to calculate the combining weights. The results show 
that. in general, the combined forecasts do not constitute an improvement over the PAWPACF 
forecasts, regardless of the procedure utilized to calculate the combining weights. This is 
because the PAR family of models has a better mathematical design for forecasting an average 
monthly riverflow series like the one in Figure VI.1 while the SARIMA model is more suitable 
for forecasting series such as those in Figures VI.2 and VI.3. Accordingly, the PAR model fore- 
casts better than the SARIMA model and attempting to combine inferior forecasts with better 
ones does not improve the situation for the PAR forecasts. Conversely, the SARIMA forecasts 
are almost always improved by combining them with PAR/PACF forecasts. Finally, a com- 
parison of the various procedures for combining the forecasts Seems to indicate that the more 
information employed to estimate the combining weights the better the forecasts. 

Model B 

PARA'ACF SARIMA CMB-SEAS CMB-3 CMB-6 CMB-9 CMB-12 

(96) (%I (46) (%) (96) (%I (96) 
(2) (3) (4) (5 )  (6) (7) (8) 

0 I0 56.7 60 60 56.1 56.7 
30 0 20 16.1 20 20 2.0 
43.4 80 0 46.7 43.3 56.7 56.7 
40 83.3 53.3 0 50 46.7 33.3 
40 80 46.7 50 0 43.3 26.7 
43.3 80 43.3 53.3 56.7 0 30 

, 43.3 , 8 0 .  43.3 I 66.1 I 13.3 I 70 I 0 

Table 15.5.1. Percentage of times model A gives better values 
for forecasting a series than model B. 
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15.6 AGGREGATION OF FORECASTS 

Suppose that one wishes to forecast future average annual rivemows for a given river for 
which the average monthly and hence also the annual values are known. One approach is to fit a 
nonseasonal time series model such as an ARMA model to the yearly data and then employ this 
model for forecasting annual values. Another prucedure is to fit an appropriate seasonal model 
like the PAR model of Sections 14.2.2 and 14.3 to the average monthly Series and then utilize 
this model to forecast the next 12 months. The sum of these 12 monthly forecasts would 
represent an aggregaredforecarr for the ymly value. 

Noakes (1984, Ch. 6) carried out forecasting experiments with riverflow time series to 
ascertain if aggregated forecasts can improve the accuracy of forecasts detmnincd for a larger 
time interval. For various yearly and seasonal time series models, Noakes found that for the data 
sets that he considered, the aggregated forecasts for annual values were generally not as good as 
those produced by the annual models. 

For further research on aggregation of forecasts the nader can refer to Tiao (1972) and 
Tiao and Wei (1976). Moreover, a discussion on disaggregation and aggregation in time series 
modelling within the hydrological literature is given in Section 20.5.2. 

15.7 CONCLUSIONS 

As explained in Section 15.2. MMSE forecasts can be easily calculated for all the seasonal 
models presented in Part VI. The results of the forecasting experiments of Section 15.3 for 30 
monthly riverflow series clearly indicate that PAR models identified using the sample periodic 
PACF forecast significantly better than SARIMA, deseasonalized, and PAR models identified 
using techniques other than the sample periodic PACF. When PPAR models are also con- 
sidered, the forecasting studies of Section 15.4 show that PPAR models also forccast quite well. 
Finally, forecasts can be combined across models in an attempt to achieve improved forecasts by 
using procedures described in Section 15.5.2 and applied to monthly riverflow time series in 
Section 15.5.3. 

15.1 Select a seasonal time series for which you think may be appropriate to fit a SAR- 
IMA model and then carry out the following tasks: 

(a) Examine suitable exploratory data analysis graphs for discovering the key sta- 
tistical characteristics of the time series. 

(b) Remove the final year of observations from the time series and then by follow- 
ing the threc stages of model construction, fit a SARIMA model to the nrnain- 

(c) Calculate the MMSE forecasts and 90% probability limits for the last year of 
observations to which the model was not fitted. Clearly explain how you per- 
form your calculations. 

ing values. 
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15.2 

15.3 

15.4 

15.5 

15.6 

15.7 

15.8 

15.9 

15.10 

(d) Plot the MMSE forecasts and 9096 probability limits on a graph with the his- 
torical observations for the final year. Determine the accuracy of the forecasts 
and comment upon any interesting findings. 

Follow the instructions in problem 15.1 for a descasonalized model. 
Carry out the instructions in problem 15.1 for a PAR model. 
Choose a time scries to which it seems reasonable to fit SARIMA, deseasonalized 
and PAR models. For each of these models follow the instructions of question 15.1. 
Additionally, for the timc series under study, compare the forecasting capabilities of 
the three seasonal models and ascertain if one model forecasts significantly better 
than another. 
Makridakis et al. (1982) carry out forecasting experiments for a range of models fit- 
ted to 1001 time series consisting of yearly. monthly and quarter-monthly economic 
data sets. After reading their paper. respond to the following questions: 

(a) Outline the major findings of their study. 
(b) Describe the main steps these authors followed in executing their forecasting 

experiments and comparing the forecasting results for the various models and 
data sets. 
Explain the commonalities and differences between the procedures used by the 
authors of the forecasing paper for carrying out their forecasting experiments 
with those employed in this book. 

Cany out the instructions of the previous question for the paper by Newbold and 
Granger (1 974). 

From your field of study, pick out a set of three or more seasonal time series that are 
of direct interest to you. After fitting appropriate time series models from Part VI to 
the first portion of each series, execute forecasting experiments to ascertain which 
class or classes of models provide the most accurate forecasts. A summary of how 
to perform a systematic forecasting study is given in Figure 8.3.1. 

Employing procedures described in Section 15.5.2, combine forecasts among pairs 
of models used in problem 15.7 in order to ascertain if enhanced forecasts can be 
found. Comment upon any interesting discoveries that you may make. 
Summarize the main research findings of Tiao (1972) as well as Tiao and Wei 
(1976) on the aggregation of forecasts. 
The aggregation of forecasts is discussed in Section 15.6. Select an average 
monthly riverflow time scries and then do the following: 

(a) Fit a PAR model to all but the last thne years of the monthly series. Employ 
this model to forecast the last 36 values. For each of the last 3 years, deter- 
mine the aggregated forecast for each year. 

(b) Fit an ARMA model to the average annual series for which the last 3 years are 
left out. Employ this calibrated model to forecast the next thrte years. 

(c) 
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(c) Compare the accuracy of the annual forecasts obtained in points (a) and (b) 
and comment upon the results. 

(d) Discuss the annual forecasting results when only one step ahead forecasts arc 
employed in parts (a) and (b). 
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MULTIPLE INPUT - SINGLE OUTPUT MODELS 

In many environmental systems, a single output or response variable is “caused” by one or 
more input or covariate series. For example, riverflows are caused by physical variables such as 
precipitation and temperature. To formally model the dynamic relationships which exist 
between a single output variable and the multiple input variables, a transfer function-noise 
(TFN) model can be employed. Qualitatively, a TFN model can be written as 

single output = dynamic component + noise 

where the dynamic component models the manner in which each input or covariate series affects 
the dynamic response of the output and the noise accounts for the stochastic disturbance in the 
system which cannot be modelled by the dynamic component. Because the behaviour of the out- 
put is dependent upon the way the input series affect the output over time. the overall TFN 
model is often referred to as a dynamic model. 

An array of useful tools are available for constructing TFN models when following the 
identification, estimation and diagnostic check stages of model development. At the identifica- 
tion stage, a transfer function can be designed for mathematically describing the dynamic rela- 
tionship over time which exists between each input and the output. An appropriate ARMA or 
ARIMA model can be identified as the autocorrelated noise component in the overall TFN 
model. Following the estimation of the model parameters and checking that the fitted model 
adequately describes the dynamic system being modelled, the calibrated TFN model can be used 
for applications such as forecasting and simulation. As is demonstrated in Part VII, the presence 
of the input variables in the model allows for a more accurate description of the physical system 
which in turn means more accurate forecasts (Chapter 18) and realistic simulated values can be 
produced by the model. Furthermore, TFN models can be built for either seasonal or nonsea- 
sonal time series for which the data points are evenly spaced over time. 

In certain situations it may not be obvious if one physical variable causes another. For 
instance, do sunspot numbers cause riverflows? Consequently, in Chapter 16 statistical pro- 
cedures are presented as exploratory data analysis tools for investigating possible causal rela- 
tionships between two variables. When meaningful relationships an detected between two 
series using what is called the residual cross-rorrelation function, a ‘I” model can be con- 
structed as a confirmatory data analysis procedure for rigorously describing the mathematical 
relationship between the input and output. In Chapter 17. comprehensive methods for construct- 
ing TFN models with a single output and multiple inputs arc explained for both seasonal and 
nonseasonal time series using a number of interesting hydrological applications. Subsequent to 
calibrating a TFN model, the fitted model can be employed for forecasting by following the pro- 
cedures of Chapter 18. 

Sometimes the dynamic characteristics of a system may be changed by the imposition of 
one or more external interventions. For example, in environmental engineering. pollution abate- 
ment facilities act built to reduce the levels of certain pollutants. The stochastic effects upon the 
mean level of the output can be rigorously modelled using intervention analysis. As will be 
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thoroughly explained in Chapters 19 and 22, the intervention model is in fact a special type of 
TFN model. An extensive description of exploratory and c o n h t o r y  data analysis procedures 
for use in intervention analysis is presented in these chapters. Subsequent to calibrating a 
model. the fitted model can be employed for forecasting by following the procedures of Chapter 
18. 
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CHAPTER 16 

CAUSALITY 

16.1 INTRODUCTION 

Is it possible to substantiate the claim of a Soviet hydrologist that yearly sunspot numbers 
have a si@icant affect upon the annual flows of the Volga River? What is the influence of 
temperature upon the price of wheat? In other words, how and when can one say that one 
phenomenon definitely causes another? 

The foregoing kinds of questions have been baffling scientists for decades and previously 
some research had been carried out in an attempt to answer them. For example, Brillinger 
(1969) and Rodriguez-Iturbe and Yevjevich (1968) employed cross-spectral and other statistical 
methods to investigate relationships between natural time series. However, comprehensive sta- 
tistical tools are now available to assist in solving causality problems and these useful techniques 
have yet to be applied to a large variety of environmental data sets. Consequently. the purpose of 
this chapter is to present flexible statistical procedures for formally answering causality ques- 
tions and hen to apply the methodologies to a wide range of natural time series. In particular. 
Granger's (1%9) definition of causality is fmt defined and then it is explained how a cross- 
correlation anatysis of the residuals from the stochastic models fitted to two series, can be 
employed to detect causal relationships (Pierce and Haugh, 1977). In the section on opplicarionr, 
a large number of interesting cross-correlation studies are carried out to detect possible causal 
relationships between many different phenomena. The time series studied include sunspot 
numbers, annual and monthly temperatures, seven annual riverflow series, Beveridge wheat 
price indices, and tree ring widths. Contrary to the suggestion of Smimov (1%9), it is found that 
annual sunspot numbers do not significantly affect the yearly flows of the Volga River in Russia. 
Other causality studies demonstrate that tempcrams for certain months of the year can sigruf- 
cantly affect the annual flows of rivers and also the price of wheat. 

Upon detecting significant causal connections between two phenomena, the information 
from the cross-correlation analysis can be used to design a fratuferfunction-noke (TFN) model 
to describe explicitly the mathematical relationship between the two data sets (Haugh and Box, 
1977; Box and Jenkins, 1976. Ch. 11). In Chapter 17, the conrnucrion of TFN models which 
can handle a single output series and one or mote input series, is thoroughly explained for the 
identification, estimation and diagnostic check stages of model development. Momvcr, in 
Chapter 18, it is explained how one can calculate optimal forecasts using a TFN model. As 
would be expected, the information contained in the input or covariate series in a TFN model 
allows one to obtain more accurate forecasts for the output series. Finally, for the original 
presentation of the main contents of Chapter 16, the reader can refer to the paper of Hipel et al. 
(1985). 
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162.1 Definition 

Wiener (1956) originally formulated a definition of causality between two time series, 
which is suitable for empirical detection and verification of meaningful relationships. More 
recently, Granger (1969) pnsented a formal definition of causality while Pierce and Haugh 
(1977) expanded upon the work of Granger (1969) and gave a comprehensive survey regarding 
research on causality in temporal systems. Other research which is related to Granger’s (1969) 
definition of causality can be found by referring to the appropriate statistical litenture (see for 
example Jenkins and Watts (1968), Haugh (1972, 1976), Haugh and Box (1977). and McLeod 
(1979)). 

Granger (1969) defines cuurulity between two time series in terms of predictability. A 
variable X causes another variable Y, with respect to a given universe or information set that 
includes X and Y, if the present Y can be better predicted by using past values of X than by not 
doing so (all other relevant information (including the past of Y) being used in either case). This 
definition of causality does not q u i r e  the system to be linear but when it is, linear predictions 
are compared. To be more specific, let X, and Y, be two time series and let A, for 
r =O,kl;t2,. . . , be the given information set that includes at least X, and Y, . Allow 
4 ={A, : I < t ] ,  A, = {A, : s .S 1) and in a similar fashion define K, XI. f,, and f ,  . Given the 
information set A,. let P,(Y IA,) be the minimum mean square error one step ahead predictor of Y, 
and denote the resulting mean square error by d(Y IA,) . According to Granger (1969), X causes 
Yif 

$(Y ITS(,) c a2(Y 1%) 

while X causes Y instantaneously if 

a2(Y IA,j,) < a2(Y 1%) 

[16.2.1] 

[ 16.2.21 

Causality from Y to X can be defined in the Same way. Feedback occurs when X causes Y and 
Y also causes X. 

16.22 Residual Crow+-Correlation Function 

To ascertain the type of causality relationship that exists between X and Y, the properties of 
the cross-conelations are examined for the prewhitened series. When prewhirening discrete time 
series such as X, and Y, , the first step is to consider suitable trun.#onnotions to form the 
transformed series, x, and y, . The reasons for transforming the series include stabilizing the 
variance, improving the normality assumption, eliminating trends, removing seasonality, and 
getting rid of nonstationarity. The selected transformations should allow x and y to be related 
causally in the same manner as X and Y when considering Granger’s (1969) definition of causal- 
ity. In practice, causality is pnservcd by many of the common types of transformations. For 
example, often the given series may be transformed by the Box-Cox tranrfonnafion (Box and 
Cox, 1964) given in [3.4.30] to remove non-normality and heteroscedasticity in the model resi- 
duals and following this the data may be differenced as in [4.3.3] to render the data stationary. 
As is explained in Section 13.2.2, when dealing with seasonal geophysical series the data may be 
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transformed using a Box-Cox transformation and subsequent to this the seasonality may be 
removed by invoking an appropriate deseusomlization technique. For instance, when modelling 
an average monthly riverflow series, often the series is first transformed by taking natural loga- 
rithms and then each data point is deseasonalized by subtracting out the monthly mean and 
dividing this by the monthly standard deviation as in [13.2.3]. A Box-Cox transformation such 
as natural logarithms should not alter causality relationships for series consisting of all positive 
values, since the manner in which one series affects the predictability of ~ 0 t h -  wil l  not be 
changed by a strictly monotonic transformation that prtserves the same relative position of every 
data point in the series. Deseasonalizing each time series is equivalent to removing a periodic 
component to eliminate seasonality where the periodic component is ultimately due to hydrolo- 
gic factors such as precipitation and temperature. Because the deseasonalization parameters arc 
estimated from the historical data and arc assumed to be the same in the future. the deseasonali- 
zation should not alter the causality relationship existing in the original series when entertaining 
Granger causality. However, the periodic portion still constitutes one of the components necded 
to form the overall seasonal series. 

The second step in the prewhitening procedun is to fit appropriate stochastic models to the 
x, and y, series in order to obtain white noise residuals. For instance, when the transformed 
series are nonseasonal, it my be suitable to fit  the ARMA model in i3.4.41 to x, and y, such that 

[ 16.2.31 + m x ,  - CC,) = e m u ,  
and 

$ y ( ~ ) c y ,  - Cl,) = ey(B)vl [ 16.2.41 

where px is the theoretical mean of the x, series; B is the backward shift operator defined by 
Bx, =x,-~ and B'x, =x I4  where k is a positive integer, $=(B) = 1 -$JI 
- $&- . . . - $xS,BPz. is the nonseasonal AR operator of order p x  such that the roots of the 
characteristic equation $JB)  = 0 lie outside the unit circle for nonseasonal stationarity and the 

O x @ )  = 1 - OJ? - - . . . - Ox,qxEq', is the nonseasonal MA operator of order qr such 
that the roots of OJB) = 0 lie outside the unit circle for invertibility and Ox, = 1.2, * .qx , arc 
the nonseasonal MA parameters; u, is white noise (also called innovation or disturbance) that has 
a mean of zero and variance of a: ; and similar definitions to p,, $JE) .  O,(B). and u, hold for 
b, $,(E), O,(B), and v,, respectively. As mentioned in Section 3.4.2, to indicate the orders of 
the AR and MA operators of the models in [16.2.3] or [16.2.4]. the notation ARMA@.q) is 
employed. Because of the linear nature of the operators in [16.2.3] and [16.2.4], this insures that 
u and v are causally related in the same way as X and Y. Of course, if the data were seasonal an 
appropriate seasonal model, such as one of those given in Chapters 12 to 15, could be used to 
prewhiten each series. 

Subsequent to prewhitening of the time series, the cross-correlation function (CCF), at lag 
k between the u, and v, series in [16.2.3] and [ 16.2.41, respectively, can be considered using 

h,ii = 1.2,. . . Q~ 1 are the nonseasonal AR parameters; 
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Due to the form of [16.2.5], the values of the CCF can range from negative one to positive one. 
Unlike the ACF, the CCF is not usually symmetric about lag zero and therefore the properties of 
p,(k) must be examined for k = 0, fl, f2, - - - . In addition to reflecting the type of linear 
dependence between u and v and consequently between X and Y, p,,(k) gives the kind of causal- 
ity relationship between these variables for linear systems. 

As explained by Pierce and Haugh (1977). there arc many possible types of causal intcrac- 
tions between X and Y which can be characterized by the properties of p,,(k) . Using the results 
of Piem and Haugh (1977, p. 276, Table 3), some of the important causal relationships arc 
categorized according to the restrictions on p,(k) in Table 16.2.1. Due to the findings of Price 
(1979) and also Pieme and Haugh (1979). any of the relationships in Table 16.2.1 which involve 
instantaneous causality arc only valid when there is no feedback. The entries in Table 16.2.1 arc 
self explanatory. For example, when there is unidirectional causality from X to Y. p,,(k) f 0 for 
the k > 0, p,,(k) = 0 for all k < 0, and p,(O) may either be zero or else have some real non-zero 
value. For the case where Y docs not cause X at all. there is no instantaneous causality between 
X and Y since p,,(O) = 0 .  

When there is feedback between two variables, one variable can cause the other and vice 
versa. Although feedback is not too common in many natural problems, in economics, for exam- 
ple, inflation can cause unemployment which in turn affects inflation. As indicated in Table 
16.2.1, p,(k) is nonzero at both positive and negative lags if there is feedback between X and Y. 

When checking for the type of causality between two given time series the estimated CCF 
of the model residuals must be examined to ascertain which values are sigruficantly different 
from zero. Suppose that two sequences xf and yI an given for r = 1.2, , . . , n .  By utilizing 
[16.2.3] and [16.2.4] or other appropriate linear models, the two series can be prewhitened to 
obtain the estimated innovation series or residuals, dl and V;. respectively. m e  residual CCF at 
lag k between U; and Vl is estimated using 

rJk )  = c f i (k ) /  [ci(0)c,(O)] IR [ 16.2.61 

w h m  

I I=1 

is the esrimred cross-covuriuncefwlction at lag k between the residual series; c,.(O) = n - l i i ;  

is the sample variance of the if sequence; and c,(O) = n-l i 4 '  is the estimated variance of the Cl 

series. 

1=1 

f = l  
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Table 16.2.1. Causal relationships between two variables. 

RELATIONSHIPS 

X causes Y 

Y causes X 

Instantaneous Causality 

Feedback 

X causes Y but not 
instantaneously 

Y does not cause X 

Y does not cause X at all 

Unidirectional causality 
from X to Y 

X and Y are only related 
instantaneously 

X and Y are independent 

RESTRICTIONS ON p,,(k) 
~ _ _ ~ ~  ~ ~~ 

p,,(k) # 0 for some k > 0 

p,,(k) # 0 for some k < 0 

P,,(O) * 0 
p,,(k) # 0 for some k > 0 
and for some k < 0 

p,,(k) # 0 for some k > 0 
and P d O )  = 0 

p,,(k) = 0 for all k < 0 

p,,(k) = 0 for all k S 0 

p,,(k) f 0 for some k > 0 
and p,,(k) = 0 for either 
(a) all k < 0 or (b) all k SO 

P,,(O) f 0 and 
p,,(k) = 0 for all k # 0 

p,,(k) = 0 for all k 

559 

The residual CCF can be plotted against lag k for k = -n/4 to k = n/4 . In order to plot con- 
fidence limits, the disaibution of the residual CCF must be known. Assuming that the x, and y, 
series are independent (so p,(k) = 0 for all k), Haugh (1972, 1976) shows that for large samples 
f,&) is normally independently distributed with a mean of zcro and variance of l l n .  Conse- 
quently, to obtain the approximate 95% confidence limits a line equal to 1.96 n-" can be plot- 
ted above and below the zero level for the residual CCF. McLeod (1979) presents the asymptotic 
distribution of the residual CCF for the general case where the x, and y, series do not have to be 
independent of each other and, consequently, more accurate confidence limits can be obtained by 
utilizing his results. 



560 Chapter 16 

One reason why the residual CCF is examined rather than the CCF for the x, and y, series, 
is that it is much easier to interpret the results from a plot of r&). This is because when both 
the x, and y, series arc autocomlated, the estimates of the CCF for x, and y, can have high vari- 
ances and the estimates at different lags can be highly correlated with one another (Bartlett, 
1935). In other words, the distribution of the estimated CCF for x, and y, is more complex than 
the distribution of ri;(k) . Monte Carlo studies executed by Stcdinger (1981), demonstrate the 
advantages of prewhitening two series before calculating their CCF. Additionally, from an intui- 
tive point of view it makes sense to examine the residual CCF. Certainly, if the driving mechan- 
isms or residuals of two series are significantly correlated, then meaningful relationships would 
exist between the original series. 

From an examination of the residual CCF, the type of relationship existing between X and 
Y can be ascertained by referring to the results in Table 16.2.1. Suppose, for example, the X 
variable is precipitation and the Y variable is riverflow. From a physical understanding of 
hydrology, it is obvious that precipitation causes riverflow. This knowledge would be mirrored 
in a plot of the residual CCF for these two series. For k 2 0 there would be at least one value of 
r,(k) which is significantly different from zero. However, all values of the residual CCF for 
k < 0 would not be significantly different from zero. In situations where the type of causality 
between two series is not known (for instance, do sunspots cause riverflows), an examination of 
the residual CCF can provide valuable insight into the problem (sce Section 16.3). 

Formal tests of significance may also be derived when examining causal relationships (see, 
for example, McLeod (1979) and Pierce (1977)). Suppose that it is known a priori that Y does 
not cause X so that p,(k) = 0 for k < 0 (for instance riverflows do not cause precipitation). 
Consequently, one may wish to test the null hypothesis that X does not cause Y and hence 
p,(k) = 0 for k = 1,2, . . . ,L. where L is a suitably chosen lag such that after L time periods it 
would be expected there would not be a relationship between the x, and y, series. The statistic 

[ 16.2.71 

is then approximately distributed as x2(L + 1) . A significantly large value for QL would mean 
that the hypothesis should be rejected and, therefore. X causes Y. 

A limitation of the methods explained in this section is that they are only useful when 
describing the relationships between two time series. If three or more time series an mutually 
related, then analyzing them only two at a time may lead to finding spurious relationships among 
them. Consequently, further rescarch on causality between linear systems is still required. 
Nevertheless. as shown by the applications in the next section, in many situations bivariate 
causality studies arc of direct interest to the practitioner. 

When sufficient data are available, an alternative approach for detecting causal linear rela- 
tionships is to work in the frequency domain mther than the time domain by employing the 
coherencefinction. An advantage of this procedure is that it can be extended for handling 
multiple-input and multiple-output systems (Bendat and Piersol, 1980). 
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16.3 APPLICATIONS 

16.3.1 Data 

For a long time, hydrologists have been attempting to ascertain the impact of exogenous 
forces upon specific hydrological and meteorological phenomena. In many instances, the great 
complexity of the physical problem at hand has precluded the development of suitable physical 
or statistical models to describe realistically the situation. Consequently. a wide range of 
phenomena are now studied in order to detect and model meaningful dynamic relationships. 

The time series investigated arc listed in Table 16.3.1. Except for monthly temperatures 
from the English Midlands, all of the data sets consist of annual values. The sunspot numbers, 
annual and monthly temperatures, seven riverflow series in m’/s where each average yearly flow 
is calculated for the water year from October 1st of one year to September 30th of the next year, 
and Beveridge wheat price indices, are obtained from arlicles by Waldemeier (l%l), Manley 
(1953, pp. 255-260), Yevjevich (1%3), and Beveridge (1921). respectively. The wee ring widths 
given in units of 0.01 mm are for Bristlecone Pine and were received directly from V.C. 
LaMarche of the Laboratory of Tree Ring Research, University of Arizona, Tuscon, Arizona. 
The length and accuracy of the m e  ring series make it a valuable asset in cross-correlation stu- 
dies for determining the effects of external variables such as temperature and the amount of sun- 
light. The nwn for considering the Beveridge wheat price index data is that the series could be 
closely related to climatic conditions and, therefore, may be of interest to hydrologists and 
climatologists. For example, during years when the weather is not suitable for abundant grain 
production the price of wheat may be quite high. 

16.3.2 Prewhitening 

When checking for causality, the time series under investigation must first be pnwhitcned. 
Table 16.3.2 describes the types of models which were used to prewhiten the series from Table 
16.3.1. In all cases, the models wen determined by following the three stages of model con- 
struction in conjunction with the AIC (see Section 6.3) and in some instances the most appropri- 
ate models are constrained models for which some of the model parameters art omitted. For 
example, as explained in Sections 3.4.4 and 5.4.3, the best ARMA model for the sunspot series is 
a constrained ARMA (9,O) model when to are left out of the model and the original data 
are transformed by a square root transformation for which X = 0.5 in [3.4.30] where x, replaces 
z,, and c = 1 due to some zero values in the series. Using the format in [16.2.3] or [3.4.4], the 
estimated sunspot model is written in difference equation form in r6.4.41 as 

( 1  - 1.2458 + 0.524B2 - 0.192B4(~, - 10.673) = U, r16.3.11 

where 

= (1/0.5)[(~, + 1 .0)05 - 1 .OI 

Notice for the Beveridge wheat price indices that the data are transformed using a natural 
logarithmic transformation where X = 0 and c = 0 in (3.4.301. The transformed data are then 
differenced once to remove nonstationarity by using [4.3.3] which is written as 
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Table 16.3.1. T i e  series used in the causality studies. 

DATA SET 

Sunspots 

Annual Temperatures 

12 Monthly Temperature 
Squences 

St. Lawnnce River 

Volga River 

Neumunas River 

Rhine River 

Gota River 

Danube River 

Mississippi River 

Beveridge Wheat Price 
Index 

Tree Ring Widths 

~ 

LOCATION 

SUn 

English Midlands 

English Midlands 

Ogdensburg. New York. USA 

Gorkii, USSR 

Smalininkai. USSR 

Bask. Switzerland 

Sjotorp-Vanersburg, Sweden 

Orshava, Romania 

St. Louis, Missouri, USA 

England 

Campito Mountain, 
California, USA 

PERIOD 

1700-1960 

1723-1970 

1723- 1970 

1860- 1957 

1877-1935 

181 1-1943 

1807-1957 

1 807- 1957 

1837-1957 

1861- 1957 

1500- 1869 

1500- 1969 

LENGTH 

26 1 

248 

248 
per month 

97 

58 

132 

150 

150 

120 

96 

370 

470 

Yl = hY,+l - 
for r = 12.3,. . . .n-1. Following this. identification msults explained in detail in Section 4.3.3 
reveal that an ARMA (8,l) without should be fitted to y, where the estimated model is 
written using the notation of [ 16.2.41 as 

to 

(1 - 0.7298 + 0.3648’+ 0.1 19B*)y, = (1 - 0.7838)~, r16.3.21 

The reader should bear in mind that only the family of ARMA mcdels arc entcmincd when 
selecting the best model to describe each data set in Table 16.3.2. In certain instances, it m a y  be 
appropriate to also consider other types of models. For example, Akaike (1978) n o w  that 
because of the naturc of sunspot activity a model based on some physical consideration of the 
generating mechanism may produce a better fit to the sunspot series than an ARMA model. For 
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Table 16.3.2. Models used to get residuals for the CCF studies. 

DATA SET 

Sunspots 

Annual Temperanut 

12 Monthly Temperature 
Sequences 

St Lawrence River 

Volga River 

Ncumunas River 

Rhine River 

Gota River 

Danube River 

Mississippi River 

Beveridge Wheat Price 
Indices 

Tree Ring Widths 

ARMA @,a MODEL 

(9.0) without & to $8. 

X =0.5 and c = 1 

(2,O) without $1 

(0.0) for all  months 

(3.0) without (+ as in [6.4.2] 

(8,l) without 
and series is differenced once 

to +,, A = 0, 

(4,O) without (+ 

- 
4 - 

* 

* 

* 

- 
4 - 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 
- 

modelling the sunspot series, Granger and Andersen (1978) utilized a bilinear model. Whatever 
the case, for each time series in Table 16.3.2 extensive diagnostic checking was executed to 
ensun that the best ARMA model was ultimately chosen. 

16.33 Causnlity Studiw 

Following prewhitening, [ 16.2.61 is employed to calculate the residual CCF for two speci- 
fied residual series. In the third and fourth columns of Table 16.3.2, *'s indicate when the resi- 
duals of a given series an used as i, and/or V, , respectively, in [16.2.6]. Whenever two series 
arc cross-comlated, the residual values are used for the time period during which the U; and t, 
data sets overlap. The sunspot residuals could possibly affect all the other series in Table 16.3.2 
and, therefore, the sunspot residuals arc separately crosscomlated with each of the remaining 
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series in Table 16.3.2. For the monthly temperature data, each monthly sequence is considered 
as a separate sample when the residual CCF is calculated between the sunspot series as i, and a 
given monthly temperature data set as V; , However, it is also possible that temperature can 
affect the phenomena listed below the temperature series in Table 16.3.2. For example, April 
temperatures may influence tree ring growth in the Northern Hemisphere since the month of 
April is when the growing season begins after the winter months. Consequently, the residual 
series for the annual temperature data set and the 12 monthly temperature sequences are each 
aoss-comlated with the residual series of each of the data sets given below the temperatures. 

In many situations, it may not bc known whether or not one phenomenon definitely causes 
another. Although the direction of suspected causality is often known a priori due to a physical 
understanding of the problem, proper statistical methods must be employed to ascertain if the 
available evidence confirms or denies the presence of a significant causal relationship. Consider, 
for example, determining whether or not sunspots and riverflows are causally related. Obvi- 
ously, it is only physically possible for sunspots to cause riverflows and not vice versa. Based 
upon ad hoc graphical procedures comparing annual flows of the Volga River in the USSR with 
yearly sunspot numbers, Smimov (1969) postulated that sunspots unequivocally affect river- 
flows. However, when the residual CCF is used to detect scientifically causality, the results do 
not support Smimov’s strong claim. In Figure 16.3.1, the residual CCF along with the 95% con- 
fidence limits are presented for the residuals from the ARMA model fitted to the annual flows of 
the Volga River at Gorkii, USSR, and the residuals from the ARMA model fitted to the annual 
sunspot numbers (refer to Table 16.3.1 for a description of these data sets and to Table 16.3.2 for 
the types of models fitted to the two time series). As can be seen, there are no significant values 
of the residual CCF at lag zem and the smaller positive lags. If sunspot activity did affect the 
Volga flows, it would be expected that this would happen well within the time span of a few 
years. Therefore, the absence of significant values of the CCF from lags 0 to 2 or 3 indicates 
that the cumnt information does not support the hypothesis that sunspots cause the Volga river- 
flows. The slightly large magnitudes at lags 5 and 11 are probably due to chance. Nevertheless, 
it is possible, but highly unlikely, that the value at lag 11 could bc due to the fact that the best 
A R M  model could not completely remove the periodicity present in the sunspot series. Revi-  
ously, Granger (1957) found that the periodicity of sunspot data follows a uniform distribution 
with a mean of about 11 years. However, the constrained sunspot model in [ 16.3. I ]  is designed 
to account for this. Momver, the fitted model is subjected to rigorous diagnostic checks to 
demonstrate that the periodicity is not present in the model residuals and none of the values of 
the residual ACF are significantly different bom zero. even at lag 11. 

Besides the annual flows of the Volga River, no meaningful causality relationships are 
detected when the sunspot residuals arc separately crosscomlated with the other riverflow resi- 
duals and also the remaining residuals series which are considered as Y; in Table 16.3.2. As 
emphasized earlier, if co.TtCt statistical procedures am not followed it would not be possible to 
rcach the aforesaid conclusions regarding the causality relationships between the sunspots and 
the other phenomena. For example, in Figure 16.3.2 it can be seen that the values of the CCF 
calculated for the given annual sunspot and Gota riverflows series arc large in magnitude at 
negative and positive lags (recall that the 95% confidence limits in Figure 16.3.2 are derived for 
independent series). Furthermore, the cyclic nature of the sunspot data is pom-ayed by the 
sinusoidal characteristics in the graph. To uncover the underlying causal relationship between 
the series it is necessary to examine the residual CCF. As just noted, the residual CCF for the 
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Figure 16.3.1. Residual CCF for the sunspot numbers and 
the Volga riverflows. 
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Figure 16.3.2. CCF for the given sunspot numbers 
and the Gota riverflows. 
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sunspot and Gota River series dots not reveal that sunspot numbers affect the flows of the Gota 
River. 

For the case where h e  d, sequence, as represented by the residuals of the annual tempera- 
ture data. is cross-comlatcd with each of the last nine 4 series in Table 16.3.2, no meaningful 
relationships arc found Nonetheless, some significant values of the residual CCF arc discovertd 
when each monthly temperature series is crosscomlated separately with each residual sequence 
for the riverflows and also the Beveridge wheat price indicts. Table 16.3.3 shows the lags at 
which the residual CCF possesses large values when U; is a designated monthly temperature 
series and 4 is either the annual riverflow or Bevcridge wheat price index residuals. Since it 
would be expected from a physical viewpoint that a given monthly temperature data set would 
have the most effect upon the other time series in the current year or perhaps one or two years 
into the future, large values of the residual CCF arc only indicated in Table 16.3.3 when they 
occur at lags 0 to 2. As an illustrative example, consider the graph of the residual CCF for the 
August temperatures and the Gota River residuals which is shown in Figure 16.3.3. As can be 
seen, the large negative correlation at lag zero extends well beyond the 95% confidence limits. 
When the QL statistic in [ 16.2.71 is calculated for lags 0 to 2, the estimated value for the residual 
CCF in Figurc 16.3.3 is 26.6. Because this value is much larger than the tabulated ~ ~ ( 3 )  value of 
7.8 for the 5% significance level, one must reject the null hypothesis that the August tempera- 
tures do not affect the annual flows of the Gota River. 

It would be expected that temperature could significantly affect tree ring growth. As noted 
by La Marche (1974). because Bristlecone Pines are located at the upper trctline on mountains, 
temperature is a key factor in controlling growth. However, this growth would only be sensitive 
to local temperature conditions and the temperatures recorded in the English Midlands are prob 
ably not representative of the temperatures at Campito Mountain in California. If local tempera- 
tures were available, the residual CCF between the local temperatures and tree ring widths could 
be calculated to ascertain the type of causality which is present. 

16.4 CONCLUSIONS 

Comprehensive procedures are now available for detecting causal relationships between 
two time series. The results of Table 16.3.3 demonstrate that monthly temperatures can signifi- 
cantly affect annual riverflows and also the price of wheat. However, no meaningful l inks arc 
found between the annual sunspot numbers and the other phenomena designated by 3; in Table 
16.3.2. In particular, the statistical evidence from Figurc 16.3.1 cannot support the claim (Smir- 
nov, 1%9) that sunspots significantly affect the annual flows of the Volga River. While some of 
the findings of Section 16.3 may be somewhat interesting, it is also informative to note the types 
of results that Pierce (1977) discovered in the field of econometrics. Using residual CCF studies. 
Picrce found that numerous economic variables which were generally regarded by economists as 
being strongly interrelated were in fact independent or else only weakly comlated. These con- 
clusions arc of course based upon the information included in the time series which Pierce 
analyzed. If it were possible to improve the design of the data collection scheme for a causality 
study, this would of course enhance the conclusions reached at the analysis stage. Certainly. it is 
necessary that a sufficiently wide range of values of the relevant variables appear in the sample 
in order to increase the probability of detecting relationships which do actually exist in the real 
world. However, as is the case in economics and also in the natural sciences, the experimenter 
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MONTHLY TEMPERATURES 

4 

Table 16.3.3. Residual CCF results of monthly temperature 
and other series. 

St Lawrence River 

Volga River 

Neumunas River 

February 

February 
April 
May 
July 

May 
July 

December 

Danube River 

Mississippi River 

Beveridge Wheat 
Rice Index 

LAGS FOR 
LARGER VALUES 
OF RESIDUAL CCF 

September 0 
October 0 

December 1 

February 0 
November 0 
December 0 

1 

2 
2 

0 and 1 
2 

0 
2 
2 

I 
~~ 

Rhine River October 0 

Gota River June 
July 

August 
September 

has little control over the phenomena which produce the observations and must therefore be con- 
tent with the data that can be realistically collected. Pehaps God may have a switch that can 
greatly vary the number of sunspots that appear on the sun so that mortal man can assess beyond 
a shadow of a doubt whether or not sunspots can significantly affect riverflows. 

Given the available information, it is essential that the data bc properly analyzed. For 
example, if a sample CCF were calculated for the x, and y ,  stries, spurious cornlations may 
Seem to indicate that the variables an causally related (see Figure 16.3.2, for instance). 
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Figure 16.3.3. Residual CCF for the August temperatures 
and the Gota riverflows. 

However, an examination of the rtsidual CCF for the two series may clearly reveal that based 
upon the given data no meaningful relationships do in fact exist between the two phenomena. It 
is of course possible that no significant correlations may appear in the residual CCF even though 
two variables are functionally related. This is because correlation is only a measure of linear 
association and nonlinear relationships that contain no linear component, may be missed. To 
minimize the Occurrence of this type of error, the fitted ARMA models that arc used to prewhi- 
ten the series are subjected to stringent diagnostic checks. In this way, any problems that arise 
due to the use of these linear models will be detected prior to examining the residual CCF. 

Subsequent to the revelation of causality using the residual CCF, a dynamic model can be 
built to describe mathematically the formal connections between the x, and y, series. In most 
hydrological and other geophysical applications, usually one variable c a w s  another and there is 
no feedback. For instance, precipitation causes riverflows and this unidirectional causality can- 
not be reversed. In terms of the residual CCF, for unidirectional causality from X to Y, the resi- 
dual CCF is nonzero at one or more lags for k > 0. pJ0) may be either zero or have some 
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nonzero value, and the value of the residual CCF at all negative lags must be zero (see Table 
16.2.1). To describe mathematically the formal connections between the x, and y, series, the 
TFN model described in the next chapter constitutes a flexible dynamic model which can be util- 
ized. An inherent advantage of TFN models is that well developed methodologies arc available 
for use at the three stages of model construction. For instance, at the identification step the 
results of the residual CCF study that detected the causal relationship in the first place. can be 
utilized to design the dynamic model (Haugh and Box, 1977). When the y, series has been 
altered by one or more external interventions, then intervention components can be introduced 
into the TFN model to account for possible changes in the mean level (see Chapters 19 and 22). 

When there is feedback between X and Y, Table 16.2.1 shows that p,(k) is nonzero at both 
positive and negative lags. The multivariate models in Chapters 20 and 21 are the type of 
dynamic models which can be used to model rigorously the dynamical characteristics of the 
feedback. Nevertheless, the reader should keep in mind that TFN models arc used much more 
than multivariate models in hydrology and environmental engineering, since most natural sys- 
tems do not possess feedback. Consequently, TFN models an described in more detail than 
multivariate models within this text. 

PROBLEMS 

16.1 Granger causality is defined in Section 16.2.1. Explain at least one other way in 
which scientists define causality between two phenomena. You may, for instance, 
wish to examine the path analysis procedure for studying relationships among vari- 
ables which Kaplan and Thode (1981) apply to water resources data. Another pro- 
cedure to consider for investigating causality is the coherence function (Bendat and 
Piersol, 1980) mentioned at the end of Section 6.2.2. Compare the residual CCF 
method to the other techniques for causality detection in terms of similarities and 
differences in the basic procedures, as well as advantages and drawbacks. 
As is illustrated in Figure 16.3.2, spurious relationships between two variables can 
be found by improperly comparing the two variables. One way to overcoming 
spurious statistical connections between two time series is to employ the residual 
CCF approach of section 16.2.2. Find a statistical study in a field which is of 
interest to you where you think that scientists may have discovered spurious causal 
connections between two variables which do not really exist. Point out where the 
authors followed an improper procedure and explain how it can be comctcd. 
Select two annual time series for which you suspect one variable causes the other. 
For instance, you may have a representative yearly regional precipitation series 
which causes average annual rivefflows in a river falling within the region. For 
these two data sets. cany out the following tasks: 

(a) Rewhiten each series by fitting an ARMA to the series and thereby obtaining 
the model residuals. 

16.2 

16.3 
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(b) Calculate and plot the residual CCF for the two series along with the 95% con- 
fidence limits. 

(c) Describe the stochastic relationships that you furd in part (b). Explain why 
your findings make sense by linking them with the physical characteristics of 
the system under study. If, for example, you arc examining a hydrological sys- 
tem, include aspects of the hydrological cycle described in Section 1.5.2 in 
your explanation. 

Design and calibrate a TFN model for formally describing the dynamic relationships 
between the two time series examined in problem 16.3. Perform diagnostic checks 
to ensure that your fitted model adequately links the two data sets. 

Choose a set of 6 to 10 time series in a field which you am working. Following the 
approach employed for the time series in Section 16.3, cany out a systematic causal- 
ity study among your data sets. Commcnt upon the interesting results that you dis- 
cover. 
Select two seasonal time series, such as average monthly precipitation and river- 
flows, for which it makes sense to remove the seasonality by employing a suitable 
deseasonalization technique from Section 13.2.2. After fitting an ARMA model to 
each of the deseasonalized series, cany out a causality study to examine the relation- 
ships among these series. 

16.4 

16.5 

16.6 
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CONSTRUCTING TRANSFER FUNCTION-NOISE MODELS 

17.1 INTRODUCTION 

Hydrologists and other types of natural scientists often require a stochastic model which 
realistically describes the dynamic relationships connecting a single output series with one or 
more input series. For example, a stochastic model can be developed for formally modelling the 
mathematical linkage of a single output or response series such as seasonal riverflows to one or 
more input or covariate series such as precipitation and temperature. When inputs are incor- 
porated into a stochastic model, the manner in which the input dynamically affects the output 
over time is mathematically modelled. For this reason, stochastic models which possess inputs 
are often referred to as dynamic models. Because the dynamic characteristics of the physical sys- 
tem being modelled arc incorporated into the overall stochastic or dynamic model, this allows 
for more accurate forecasts to be made (see Chapter 18) and for more realistic values to be gen- 
erated in simulation studies. Consequently, the main purpose of this chapter is to describe a 
flexible dynamic model which can be applied to many kinds of environmental problems where 
the data can be either nonseasonal or seasonal. The particular kind of dynamic model which is 
studied is called a tran@erfunction-noise model where the acronym TFN is used for denoting 
transfer function-noise. 

Throughout the chapter, practical applications are employed for clearly explaining how 
TFN models can be easily constructed by following the identification, estimation and diagnostic 
check stages of model construction. In particular, for model identification it is clearly pointed 
out how both a sound physical understanding of the problem being studied and comprehensive 
statistical procedures can be employed for designing an appropriate dynamic model to fit to a 
given set of time series. When designing a suitable dynamic model, usually it is most instructive 
and convenient to consider simpler models and to gradually increase the complexity of the 
model until a reasonable model is built. Accordingly, TFN models with a single input are enter- 
tained in the next section. The ways in which the residual CCF from Section 16.2.2, as well as 
two other techniques, can be used in model identification are thoroughly explained in Section 
17.3 along with other model building techniques. For the application in Section 17.4.2 for a 
dynamic model having a single input, a TFN model is developed for relating average monthly 
upstream riverflows to downstream flows. Also, because the causality studies in Chapter 16 
indicate that the average August temperature significantly affect the average annual flows of the 
Gota River, a dynamic model is constructed in Section 17.4.3 for rigorously describing this rela- 
tionship. 

For the situation where there is more than one input series, the efficacy of the model build- 
ing techniques is clearly demonstrated in Section 17.5.4 by designing a TFN model to describe 
the dynamic relationships connecting a monthly river flow series in Canada to precipitation and 
temperature covariate series. In the process of selecting the most appropriate model to fit to the 
series, a number of useful modelling procedures arc suggested. Often there are more than one 
precipitation and temperature series and a statistical procedure is presented for creating a single 
sequence to represent the precipitation or temperature series. This approach can be utilized in 
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place of the rather ad hoc methods such as the Isohyetal and ’Ibiessen polygon techniques (see 
Viessman et al. (1977) for a description of the Isohyetal and Thiessen polygon methods). To 
decide upon which series to include in the dynamic model and also design the form of the 
transfer function connecting a covariate series to the output, crosscornlation analyses of the 
residuals of models fitted to the series can be employed. ’Ibe TFN model which is ultimately 
chosen by following contemporary modelling procedures can be used for applications such as 
forecasting and simulation and also providing insights into the physical characteristics of the 
phenomena being examined. 

A TFN model is ideally designed for reflecting the physical characteristics of many natural 
systems. In a watershed, for example, the two basic equations that govern flow arc the con- 
tinuity equation or conservation of mass and the conservation of momentum. Delleur (1986) 
demonsrrates that a TFN model can represent the discrete-time version of the continuous-time 
differential equation that is derived from the above two consemation principles. Because a TFN 
model can bc readily calibrated by following the three stages of model construction given in this 
chapter and also the model reflects the physical characteristics of the system being described, the 
TFN model is ideally suited for real-world applications in hydrology and other sciences. For a 
discussion of the physicaljusrifcafion of ARMA models, the reader may wish to refer to Section 
3.6. 

Besides the TFN modelling applications presented in Sections 17.4.2, 17.4.3 and 17.5.4, 
other case studies are presented in Chapter 18 with the forecasting experiments. The interven- 
tion model, which in reality constitutes a special class of TFN models for modelling the affects 
of external interventions upon the mean level of the output series. can also handle multiple 
covariate series. Applications of intervention modelling for which there are input series are 
presented in Sections 19.5.4 and 22.4.2. Because TFN models work so well in practice, there are 
many published case studies of TFN in water resources, environmental engineering as well as 
other fields. Some of the many TFN modelling applications in the physical sciences include 
contributions in hydrology (Anselmo and Ubertini. 1979; Baracos et al., 1981; Hipel et al., 1992; 
Chow et al.. 1983; Thompstone et al., 1983; Snorrason et al., 1984; Hipcl et al., 1985; Maidment 
et al., 1985; Olason and Watt, 1986; Fay et al.. 1987; Gurnell and Fenn, 1984; Lcmke, 1990, 
1991). dendroclimatology (Li, 1981, Ch. 8). modelling wastewater treatment plants (Capodaglio 
et al., 1992). and fish population studies (Noakes et al., 1987; Campbell et al., 1991; Welch and 
Noakes, 1991). Finally, a stochastic model closely related to the TF” model is defined and 
evaluated in Section 17.6. 

17.2 TRANSFER FUNCTION-NOISE MODELS WITH A SINGLE INPUT 

17.2.1 Introduction 

For many natural systems it is known a pnon if one variable, or set of variables, causes 
another. Lake levels, for instance, arc obviously affected by precipitation. In situations where it 
is uncertain if one physical phenomenon causes another, the residual CCF discussed in Section 
16.2.2 can be employed. For example, one may wish to find out if sunspots cause rivertlows. as 
is done in Section 16.3.3. Whatever the case, subsequent to establishing the existence and direc- 
tion of causality between two phenomena, a TFN model can be built to model mathematically 
the dynamical characteristics of the physical system. 
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Consider the situation where a variable X causes a variable Y. Let the set of observations 
for the variables X and Y be represented by the series XI and Yf  , nsptctively. for 
t = 0,1,2, . . . , n. The X I  and Y, series may be transformed using a transformation such as the 
Box-Cox transformation in [3.4.30] to form the x, and y, series, respectively. When the data arc 
seasonal, the seasonality in each series may be removed using the deseasonalization techniques 
presented in Section 13.2.2. No matter what kinds of transformations am performed before fit- 
ting the dynamic model. x, and y, will always bc used to npresent the transformed series. 

Qualitatively, a TFN model can be written as 

output = dynamic component + noise 

The manner in which the input, x, , dynamically affects the output, y,, is modelled by the 
dynamic component. However, usually influences other than the input variable X will also 
affect Y. The accumulative effect of other such influences is called the noise or disturbance 
when the noise is usually correlated and may be modelled by an ARMA or ARIMA model. The 
dynamic and noise components arc now discussed separately. 

17.23 Dynamic Component 

The dynamic relationship between X and Y can be modelled by a transfer function model 
as 

y ,  = V& + VlX,_l+ v p , 4  + . . . 

= v(Bzr, 

where v(B) = vo + vlB + v$12 + . . . , is referred to as the transfer function and the coefficients, 
vo.vI,vz, . . . , are called the impulse response function or impulse response weights. When there 
are nonzero means p,, and px for the y, and x, series, respectively. the transfer function model 
can be written in terms of deviations from the mean level as 

Y f  - cly = v(B)(x, - px) 

The deterministic transfer function models how present and past values of X affect the current 
value of Y. The x, series is often rrferred to as the inpur, covuriufe or exogenous series, while 
the yf series is called the output, response or endogenous series. 

of two finite operators as 
Recall from [3.4.18]. that for an ARMA model. the infinite MA operator is written in terms 

w h m  Y ( B )  is the infinite MA operator. 8 ( B )  is the MA operator of order q and $(B)  is the AR 
operators of order p .  In practical applications, only a small number of AR and MA parameters 
arc required to model a given series. Hence, the infmite MA operator Y(B) can be parsimoni- 
ously represented by - . In a similar fashion, the framjerfinction, v(B) , can be economi- 

cally written as 
4(B 1 
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o ( B )  % - W l B - @ ' -  * "  - wmBm 

s(B) 1 -61B -&B2- -6,B' 
v(B) = - = 

where o ( B )  is the operator of order m in the numerator of the transfer function and 
q, ,wlr  * * * ,om, m the parameters of o ( B )  ; and s(B) is the operator of order r in the denomina- 
tor of the transfer Function and 6&, . . . , a,, the parameters of 6 ( B )  . 

If a system is stuble, a finite incremental change in the input results in a finite incremental 
change in the output. In other words, a bounded change in the covariate variable causes a 
bounded change in the response. For the case of the transfer Function model, this implies that the 
infinite series vo + vlB + v$? + ..., converges for IS I < 1 . Because the convergence of v(B) is 
controlled by the operator 6(B)  which is in the denominator of v(B) , the requirement of stobilily 
is that the roots of the characteristic quation 6 ( B )  = 0 lie outside the unit circle (Box and Jen- 
kins, 1976, Ch. 10). Notice that the requirement of stability for a discrete transfer function 
model is analogous to the stationarity requirement for an ARMA model in Section 3.4.2 where 
the roots of g(B)  = 0 must lie outside the unit circle. 

In some situations, there may be a delay rime before X affmts Y. For instance, when an 
organic pollutant is discharged into a river, there may be a delay time before certain biological 
processes take place and the dissolved oxygen level of the river drops. If this delay time is 
denoted by b ,  where b is a positive integer for use in a model using evenly spaced discrete time 
points, the transfer function model can be written as 

[ 17.2.11 

When the parameters for the w ( B )  and 6(B)  operators arc known, as is the case when they 
are estimated from the given data, the vk coefficients can be determined by equating coefficients 
ofBk in 

s (B)v(B)  = o(Wb 
The vk weights can be more conveniently determined by expressing the above equation as 

6(B)Vk+b = 4 . 0 k  for k = 1,2, ... [ 17.2.21 

when B OperakS On the Subscript h the Vk+b COCffiCient and theEfOR B J V k ,  = vk+b-j ; V b  = 00 
and vk = 0 fork < b ; ok = 0 fork < 0 and k > rn . 

00s 
As an example of how to use [17.2.2], consider the situation where v(B) = - 

1 - w  is 
necessary to determine the impulse response function where o, and a1 arc given. For this 
transfer function, [17.2.2] becomes 

(1 - 6 l B ) v k + l  = 4, 

Because there is a delay factor of one, vo = 0 and vl  = ub . When k=l in the above equation 
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(1 - 6,B)VZ = - a 1  = 0 

or 

v 2  - 6]V,  = 0 

v 2  = 6,v, = 6,ci.&J 

(1 -61B)v3=*=0 

v3 = 6,VZ = go, 

Thmfore, 

For k=2 

~3 - 6 1 ~ 2  = 0 

In general, 

V& = 6f-'% 

Because the vk weights are calculated in a similar fashion to the v& coefficients in the infinite 
MA operator for an ARMA model, the reader can refer to Section 3.4.3 for further examples of 
how to determine the impulse response weights. 

2.50 

2 . 2 4  

LAG k 

Figure 17.2.1. Impulse response function for q, = 2 and 6, = 0.6. 



578 Chapter 17 

When the calculated impulse response function is plotted for the case when q , = 2  and 
6 ,  = 0.6 , the impulse response function is as shown in Figure 17.2.1. Notice that vo = 0 due to 

and that the impulse response the delay factor of one in the transfer function v(B) = - 
function attenuates from lag 2 onwards because of the operator (1-6,B) in the denominator of 
the wnsfer function. The general form of the transfer function, especially the operator s (B)  in 
the denominator of the transfer function, allows for great flexibility in the design of a transfer 
function for ascertaining the effects of the input upon the output. For example, when a variable 
X affects Y after a delay factor of one and the magnitude of the effect upon yf of each x, 

decreases more and more for f = r+l.r+2~+3,. . . , then a transfer function of the form 

v 
(1-618) 

may be appropriate. 00s v(B) = - 
(1-61B) 

If the input, xf , in [ 17.2.11 is indefinitely held at some fixed value for a stable system, the 
output, y, , will eventually reach an equilibrium point which is called the steady state level. 
Using the form of the transfer function model in [17.2.1], the steady state relationship is 

Yf - Py = g(x1 - P J  

where g is called the steady state gain when x, is held indefinitely at a fixed level. Suppose that 
(1, - px) , which is the deviation of the input from the mean level, is kept at a value of +l .  Then 

Y, - P y  = g l  

= (vo + v,B + v# + ...) 1 

=vo+v1 +v2+ . . '  

Consequently, for a stable system, the steady state gain is 

For the case where 

in t17.2.11, the steady state gain is simply 

00 g=- 
1-51 

by substituting B = 1 into the equation. 

[ 17.2.31 
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17.23 Noise Term 

In practice. a physical system cannot be realistically modelled by using only the deter- 
ministic transfer function model in [17.2.1]. As shown qualitatively below, usually then is noise 
left in the system after the deterministic dynamic effects of the input upon the output have been 
accounted for. 

output - dynamic component = noise 

Because the noise term, which is denoted by N,  , is often autocomlated and not white, it can be 
conveniently modelled using the ARMA model in [3.4.41, as 

W ) N ,  = w ) a ,  [ 17.2.41 

or 

where +(B)  and 8 ( B )  are the AR and MA operators of orders p and q, respectively, and a, is the 
white noise which is IID(0,a:). Although the a, series can be assumed to be IID(O,a2) from a 
theoretical viewpoint, for practical reasons the a, must be assumed to follow a given distribution 
in order to be able to obtain estimates for the model parameters. Consequently. the a, are 

assumed to be NID(0,o:) and, as demonstrated by practical applications, this assumption does 
not restrict the flexibility of the TFN model in any way. In fact, if the a, series were not 
assumed to be normally distributed, it would be virtually impossible to obtain efficient estimates 
for the model parameters. As shown by the examples in this chapter and also Chapters 18, 19 
and 22, for most environmental applications the noise term is stationary and therefore can be 
modelled using an ARMA model. Neve~theless, if the noise were nonstationary and differencing 
were required, it could be modelled using an ARIMA model. 

17.2.4 Transfer Function-Noise Model 

both the dynamic characteristics and noise contained in the system is formed as 
By combining [17.2.4] and [17.2.1], an overall TFN model for simultaneously modelling 

Y, - pY = W)Cr, - PX) + NI 

[ 17.2.51 

Because the above model possesses both dynamic and stochastic or noise components, it could 
perhaps be refemd to as a stochastic dynamic model. However, since al l  of the models dis- 
cussed in this text are stochastic in nature, usually this TFN model is simply referred to as a 
dynamic model. Also, because the noise term models what the dynamic component cannot 
account for, it is assumed that N,  is independent of x, in [17.2.5]. Since N,  is generated by a, and 
x, is generated by u, in [16.2.3], this in turn means that the (I, series in [17.2.5] is independent of 
the u, series in [ 16.2.31. 
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As noted by authors such as Abraham and Ledoltcr (1983, p. 338) and Vandacle (1983, pp. 
263-264), the TFN model can be thought of as a generalization of the usual regression model for 
various reasons. Firstly, the model in [17.2.5] allows for the noise term to be correlated whereas 
the error tcrm in a regression model is assumed to be white. Secondly, due to the flexible 
manner in which the transfer function in [ 17.2.51 is designed with an operator in both the denom- 
inator and numerator, the dynamic relationships between the output and input arc more realisti- 
cally modelled with a TFN model. As pointed out by Young (1984, p. 104), linear regression 
models arc primarily utilized in the evaluation of static relationships among variables and are not 
generally suitable for use in dynamic systems analysis. Finally. as is also the case with regres- 
sion analysis, one or more input series can be incorporated into a TFN model. 

17.3 MODEL CONSTRUCI'ION FOR TRANSFER FUNCTION-NOISE MODELS WITH 
ONE INPUT 

17.3.1 Model Identification 

No matter what type of model is being fitted to a given data set it is recommended to fol- 
low the identification, estimation and diagnostic check stages of model development. As is the 
case for most of the models in this book, the three stages of model construction for a TFN model 
closely parallel those alrcady described for models such as the ARMA model (see Chapters 5 to 
7) and the seasonal models (Part VI). Nevertheless, some additional model building techniques 
are required, especially for model identification. When designing a TFN model, the number of 
parameters required in each of the operators contained in the dynamic and noise transfer hnc-  
tions in [17.2.5] must be identified. The three procedures for model identification described in 
this chapter an the empirical approach that has been used when modelling hydrological time 
series (Hipel et al., 1977, 1982, 1985), the technique of Haugh and Box (1977) which uses the 
residual CCF of Section 16.2.2. and the method of Box and Jenkins (1976) which is based upon 
suggestions by Bartlett (1935). The latter two methodologies rely heavily upon the results of 
cross-correlation studies and often the fust procedure can be used in conjunction with either the 
second or third approaches. Subsequent to a description of the identification and other model 
building procedures. two practical applications are employed in Section 17.4 for demonstrating 
how they work in practice. These and other practical applications show that the empirical iden- 
tification approach is usually the simplest to use in practice. 

Empirical Identification Approach 

lows: 

(i) 

The hvo major steps involved in model identification by the empirical method arc as fol- 

Based upon an understanding of the physical phenomena that generated the time series and 
also the mathematical properties of the TFN model, identify the transfer function v(B) in 
[17.2.5]. For example, when modelling a monthly time series where the input is a precipi- 
tation time series and the output is a riverflow sequence, it may be known from the physical 
characteristics of the watershed that the rainfall for the current month only causes direct 
runoff during the present time period and one month into the future. Therefore, it may be 
appropriate to employ in [ 17.2.51 a transfer function of the form 
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V ( B )  = 00 - COiB = Vo + V l B  

When the present value of the covariate series causes an immediate change in the output, 
y,, wherc this change attenuates as time progresses. a suitable transfer function may be 

=vo+v1B +v,B2+ * * .  

The vi coefficients daxeaw in value for inmasing lag since 16, I < 1 in order for the root 
of (1 - 6 , E )  = 0 to lie outside the unit circle. Hipel ct al. (1977. 1982, 1985) present a 
number of practical applications where a physical understanding of the process in conjunc- 
tion with some simple graphical identification techniques are utilized to design transfer 
functions for covariate series and also intervention series which are needed when the effects 
of external interventions upon the response series must be incorporated into the model (see 
Chapters 19 and 22). 

(ii) After deciding upon the form of v(B) , identify the parameters needed in the noise term in 
[17.2.5]. To accomplish this, first fit the model in [17.2.5] to the series where it is assumed 
that the noise term is white and consequently the TFN model has the form 

Y, - py = v(B)(x, - cl,) + 0, 

In practice, the noise term is usually correlated. Therefore. after obtaining the estimated 
residual series, d, , for the above model, the type of ARMA model to fit to the calculated 
noise series can be ascertained by following the usual procedures of model development for 
a single series described in Chapters 5 to 7. By using the identified form of N, for the noise 
term along with the previously designed dynamic component, the TFN model in [ 17.2.51 is 
now completely specified 

Haugh and Box Identification Method 

It seems logical that a model similar to the one in r17.2.51 that relates the x, and y, series, 
could be developed for connecting their innovation series given as p, and v,, respectively. 
Recall from Section 16.2.2 that the p, disturbances are for the ARMA model fitted to the x, 

series as 

ww,-~,) = e m u ,  
in [16.2.3]. Likewise, the v, innovations are formed by prcwhitening the y, series using the 
ARMA model written as 

9,(MY, - Py) = e,(B)v, 

in [16.2.4]. As shown by Haugh and Box (1977). a TFN model for the residual series can be 
written as 
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v, = v’(B)u, + N‘, [17.3.1] 

where v’(B) = o’o is the transfer function which has the same form as the transfer function in 

[ 17.2.51 except that a prime symbol is assigned to t ach  parameter, N’, = - a, is the ARMA 

noise term where the MA operator. 8 ’ ( B ) ,  and the AR operator. $’(B) , arc designed in the same 
fashion as their counterparts in [3.4.4], [16.2.3] or [16.2.4]. In their paper, Haugh and Box 
(1977) derive the relationships between the transfer functions in [17.2.5] and [17.3.1] as 

6’(B ) 
W B )  
O ( B )  

and 

[ 17.3.21 

[17.3.3] 

By knowing the form of the operators on the right hand sides of [17.3.2] and [ 17.3.31, the param- 
eters needed for the model in [17.2.5] can be identified. The detailed steps required for execut- 
ing this identification process are as follows, where the first two steps follow the development of 
the residual CCF described in Section 16.2.2: 

6) 

(ii) 

(iii) 

Determine the most appropriate ARMA models to fit to the x, and also the y, series by 
adhering to the three stages of model construction. In addition to the ARMA model param- 
eters, estimates are also obtained for the innovation series in [16.2.3] and [16.2.4] at the 
estimation stage of model development. The estimated innovation or residual series. d, and 
V, , arc formed from the process of prewhitening the given x, and y, series in [ 16.2.31 and 
[16.2.4], respectively using the calibrated ARMA models. 
By utilizing [16.2.6]. calculate the residual CCF for the d, and V; series, along with the 95% 

confidence limits. 
Based upon the characteristics of the residual CCF identify the parameters needed in the 
transfer function v’(B) in [17.3.1]. As demonstrated by Haugh and Box (1977, p. 126). the 
theoretical CCF for u, and v, is directly propodonal to the impulse response function given 
by V’&V’~,V’~. * * * , here 

is the transfer function in [ 17.3.11. In particular, the kth panuneter in v’(B) is related to the 
theoretical CCF by the equation 

v’k = b,b,p,,(k), k = 0.12,. ‘ . [17.3.4] 

where 0, and 0, are the theoretical standard deviations for p, and v,, respectively, while 
p,,(k) is the theoretical residual CCF in [ 16.2.51. Therefore, the form of the transfer func- 
tion can be identifed from the residual CCF and when the quantities on the right hand side 
of [ 17.3.41 arc replaced by their estimates in [16.2.6], an initial estimate can be obtained for 
V’k . If, for example, the residual CCF possesses values which a~ significantly different 
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h m  zero only at lags 0.1, and 2, the transfer function may be identified as 

v'(B) = 0'0 - o'IB - = v'O + V'1B + v '+~  

When the value of the residual CCF at lag 0 is significantly different from zero. the values 
attenuate for increasing positive lags, and the residual CCF values at negative lags are not 
significant, then the impulse response function must be designed to mimic this behaviour. 
Accordingly, an appropriate eansfer function may be 

v'(B) = U'O = ~ ' ~ ( 1  + 6',B + 6':B2 + ...) 
(1 -6'1B) 

= v'o + V'lB + v'@* + - * * 

The above transfer function is suitable btcause W1l < 1 in order for the root of 
(1 - 6',B) = O  to lie outside the unit circle and this in turn means that (1 - 6',B)-' causes 
the v'~ coefficients to decrease in absolute magnitude with increasing positive lags. A 
cyclic pattern in the residual CCF may indicate that 6'(B) should be at least second order in 
B. 

e'(B) in 6") The residual CCF from step (ii) can also be employed to ascertain the form of - 
@'(B 1 

[17.3.1]. As shown by Haugh and Box (1977), $'(B) = 6'(B) and W(B)  should be at most of 
the order of 6'(B) or o'(B) . 

(v) The results from steps (i) and (iii) can be substituted into 117.3.21 to obtain the form of 
v ( B )  . Likewise, the information from stages (i) and (iv) can be employed to get - 

$(B ) 
117.3.31. The transfer function-noise model in [ 17.24 has now been completely identified. 

W )  in 

Box and Jenkins Identification Procedure 

designed according to the following steps. 

(i) 

By following the procedure of Box and Jenkins (1976) the model in [17.2.5] can be 

Ascertain the most appropriate ARMA model in [ 16.2.31 to fit to the x, series by utilizing 
the three stages of model construction presented in Part m. At the estimation stage, esti- 
mates are obtained for the M A  model parameters and also the innovation series. 

Using the ARMA filter, - , from step (i), transform the yf series by employing (Mu 
b (B 1 

-1 

8, = [g] Y f  [ 17.3.51 

where the & sequence is usually not white noise since the filter in [16.2.4] is not used in 
[17.3.5]. 

sequence, use [ 16.2.61 to calculate the residual CCF 
for the U; and 6, series. 

(iii) Aftcr replacing the 4 series by the 
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(iv) Bascd upon the behaviour of the residual CCF from step (iii), identify the parameters 
~cquirtd in the transfer function, v(E)  , in [ 17.24. As shown by Box and Jenkins (1976, p. 
380), the theoretical CCF between the prewhitencd input, u, , and the comspondingly 
transformed output, B, , is directly proportional to the impulse response function defined in 
Section 17.2.2. Consequently, the behaviour of the residual CCF can be utilized to identify 
the form of the transfer function in [17.2.5]. If, for instance. the residual CCF values arc 
not signrficantly different from zero for negative lags, the estimated CCF at lag zero is sig- 
nificant, and the values attenuate for increasing positive lags, then the impulse response 
function must also follow this general behaviour. Therefore, an appropriate transfer func- 
tion may be 

0, 

1 - SIB 
V(B) = - = %(l+ SIB + SIB2  + ...) 

=vo+v lB+v2E2+  

since the vi weights decrease in absolute magnitude with increasing positive lags due to the 
opentor, (1 - 6 , E )  , with 16,l < 1 , in the denominator. A cyclic pattern in the residual 
CCF may imply that S(E)  should be at least second order in B. When the residual CCF 
possesses values which are significantly different from zero only at lags 0 and 1, the 
transfer function may be identified as 

v ( E )  = O, - o1B = vo + VIE 

(v) Subsequent to ascertaining the form of v(B)  , determine the parameters needed in the noise 
term in [17.2.5]. Upon obtaining moment estimates for the parameters in v ( E )  , calculate 
the noise series from [ 17.2.51 by using 

i, = (y, -jq - V(E)(X, -3 

where J and x’ are the sample means for py and ps , respectively. By examining graphs 
such as the sample ACF and the sample PACF of hi, , identify the ARMA model needed to 
fit to the noise series (see Section 5.3). Box and Jenkins (1976, pp. 384-385) also give a 
second procedure for identifying N, where the sample CCF for li, and 8, , must first be cal- 
culated. The entire TFN model has now been tentatively designed. 

Comparison of Identification Methods 

The foregoing three identification procedurts possess different inherent assets and liabili- 
ties. Although the empirical approach is straightforward and simple to apply, experience and 
understanding arc required in order to properly identify the parameters needed in v(B)  at step (i). 
Because the empirical approach does not consider cross-cornlation information in the first step, 
either the method of Haugh and Box or else BOX and Jenkins could be utilized to check that v ( E )  
is properly designed. An advantage of the Haugh and Box method is that the residual CCF 
results that arc employed for detecting causal relationships in Section 16.2.2 arc also used for 
model identification. However, due to the relationships given in [ 17.3.21 and [ 17.3.31, the pro- 
cedure is rather complicated and care should be taken that the model is not over-specified by 
having too many parameters. If this problem is not found at the identification stage, it may be 
detected at the estimation stage where some of the parameters may not be significantly different 
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from zero. Common factors that appear in both the numerator and denominator of a transfer 
function should, of course, be left out of the model. 

When using the Box and Jenkins approach, the form of v(B) is identified dirtctly from the 
CCF for the d, and 8, series. However, in most cases 0, will not be white noise and therefore the 
estimated values of the CCF are correlated with one another (Bartlett, 1935). Consequently, cau- 
tion should be exercised when examining the estimated CCF for dI and & . 

In addition to the threc identification methods presented in this section. other techniques 
are also available. For instance. Liu and Hanssens (1982) propose a procedure for identifymg 
the transfer function parameters needed in v(B)  in [17.2.1] based upon least squares estimates of 
the transfer function weights using the original or filtered series. The comer method of Beguin 
et al. (1980) is then used to identify the order of the o ( B )  and 6 ( B )  operators. An advantage of 
the technique of Liu and Hanssens (1982) is that it is specifically designed for handling the situa- 
tion where there arc multiple input series to the TFN model as in [17.5.3]. A drawback of their 
technique is that it is fairly complicated to use in practice and, therefore, is not as convenient to 
employ as the empirical approach. 

All of the identification techniques discussed in this chapter arc designed for use in the time 
domain. An alternative approach to transfer function identification in the time domain is to iden- 
tify a transfer function using frequency domain or spcctral methods such as those suggested by 
Box and Jenkins (1976) and Priestley (1971). However, as noted by Liu and Hanssens (1982), 
spectral techniques are difficult to apply to practical problems. 

When designing a TFN model, it is not necessary to adhere strictly to a given identification 
procedure. In certain situations, it may be advantageous to combine various steps from two or 
three of the three aforementioned identification methods which were discussed in detail. For 
example, either the method of Haugh and Box (1977) or the technique of Box and Jenkins (1976) 
could be employed to identify v(B) in [17.2.5]. Step (ii) in the empirical approach could then be 
utilized to determine the form of N, . In general, no matter what identification method is being 
utilized it is advantageous to begin with a fairly simple model, since the presence of too many 
parameters may cause the estimation procedure to become unstable. Because the results of the 
identification procedure can often be rather ambiguous, usually two or three possible models arc 
suggested. If a suitable model is not included within the set of identified models, this will be 
detected at the estimation or diagnostic check stages of model construction. Either a more com- 
plicated model will be needed or further simplification will be possible due to having too many 
parameters. 

17.32 Parameter Estimation 

Following the identification of one or more plausible TFN models, efficient estimates must 
be simultaneously obtained for all  of the model parameters along with their standard errors 
(SE’s) of estimation. Because the u,’s arc assumed to be normally, independently distributed, 
M E ’ S  can be conveniently calculated for the model parameters along with their SE’s. Appen- 
dix A17.1 explains how MLE’s can be determined for the TFN model in [17.2.5]. As explained 
in that appendix, because the noise term in the TFN follows an ARMA process, one can expand 
an estimator developed for ARMA models for use in obtaining MLE’s of the parameters in a 
TFN model. Momver, an estimation procedure developed for use with a TFN model can also 
be employed with the intervention model of Chapters 19 and 22. 
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Often more than one tentative TFN model arc initially identified. Subsequent to estimating 
the model parameters separately for each model, automatic selection criteria such as the AIC in 
[6.3.l] and the BIC in [6.3.5] can be utilized to asskt in selecting the most appropriate model. 
Figun 6.3.1 outlines how the AIC or another appropriate automatic selection criterion can be 
incorporated into the thrce stages of model selection. If a suitable range of models is considered, 
it has been found in practice that the model possessing the minimum AIC value usually satisfies 
diagnostic tests of the model residuals. Nevertheless, the model or set of models that arc thought 
to be most suitable should be thoroughly checked in oder to ascertain if any further model 
improvements can be made. 

17.33 D m t i c  Cbecking 

The innovation sequence. a, , is assumed to be independently distributed and a mom- 
mended procedure for checking the whiteness assumption is to examine a plot of the RACF 
(residual autocornlation function) along with confidence limits. The RACF, rdd(&) ,  can be cal- 
culated by replacing both U; and V; by d, in [16.2.6] or else using I7.3.11. Since rdd(&) is sym- 

metric about lag zero, the RACF is only plotted against lags fork = 1 to & = n14, along with the 
95% confidence limits explained in Section 7.3.2. Although a plot of the RACF is the best 
whiteness test to use, other tests which can be employed include the cumulative periodogram in 
[2.6.2] and the modified Portmanteau test. 

Three versions of the Portmanteau test for whiteness of the d, residuals are given in Section 
7.3.3 in [7.3.4] to [7.3.6]. In particular. the Portmanteau test in [7.3.6] is written as 

L L(L + 1) eL = n rj$) + 
2n k=l  

[ 17.3.61 

when n is the number of data, r,.(k) is the residual CCF from [ 16.2.61 (replace both the i, and 
V; series by the d, series in [ 16.2.6]), and L is a suitably chosen lag such that after L time periods 
a, and a , ~  would not be expected to be comlated. For instance, when deseasonalized monthly 
data are being used in a TFN model, L should bc chosen at least as large as lag 12 to make sure 
that there is no correlation between residuals which arc separated by one year. Because QL is 
distributed as x2(L - p - q )  , where p and q are the orders of the AR and MA operators. respec- 
tively in the ARMA model for N, , significance testing can be done to see if significant corrcla- 
tion of the model residuals is present. 

If the residuals are correlated, this suggests some type of model inadequacy is present in 
the noise term or the transfer function, or both of these components. To ascertain the source of 
the error in the model, the CCF for the U; and d, sequences can be studied (leave lit as U; and 
replace V, by d, in t16.2.61 to estimate r,&) ), Because the u, and u, series arc assumed to be 
independent of one another. the estimated values of r&) should not be signifrcantly different 
from zero when one standard error is approximately n-" when the CCF is normally distributed. 
When a plot of r&) from k =-n/4 to k = 1114 along with chosen confidence limits indicate 
whiteness while significant correlations arc present in r,&) , the model inadequacy is probably 
in the noise term, i, . The form of the RACF for the d, series could suggest appropriate 
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modifications to the noise structure. However, if both r&) and r&) possess one or more sig- 
nificant values, when r&) only has large values at non-negative lags, this could mean that the 
transfer function for the input series is incomt  and the noise term may or may not be suitable. 
When feedback is indicated by significant values of r&) at negative lags, a multivariate model 
(set Part Vn) should be considered rather than a TFN model. 

Even though it is probably most informative to examine a plot of r&) along with the 95% 

confidence limits, modified Portmanteau tests can also be employed to check if there arc prob 
lems with the TFN model. To see whether or not r,(k) has significantly large values at non- 
negative lags, the following modified Portmanteau statistic can be calculated. 

[ 17.3.71 

when QL is distributed as x2(L - r - rn) , and r and rn are the orders of the s (B)  and o ( B )  
operators, rcspcctively, in the transfer function for in [ 17.2.51. If the calculated QL statistic is 
greater than the value of x2(L - r - rn) from the tables at the chosen significance level, this 
could mean that the transfer function is incorrect and the noise tern may or may not be suitable. 
By choosing more appropriate values of r and rn, a model which passes this test can usually be 
found. 

To check if rlid(k) has significantly large values at negative lags, the modified Portmanteau 
statistic can be determined using 

[17.3.8] 

where QL is distributed as x2(L). If significance testing indicates that there are values of r&) 

which arc significantly different from zero at negative lags, this implies feedback and a mul- 
tivariate model should be used (see Part IX) instead of a TFN model. Because r&(-k) = rd;(k). 

equation [ 17.3.81 can be equivalently written as 

[17.3.9] 

Besides being independently distributed, the u, sequence is assumed to follow a normal dis- 
tribution and possess a constant variance (homoscedasticity). In Sections 7.4 and 7.5. tests are 
presented for checking the normality and homoscedastic suppositions. respectively. As noted in 
Section 3.4.5 as well as other parts of the book, in practice it has been found that a suitable Box- 
Cox transformation of the Y, and/or X,  series can often correct non-normality and heteroscedasti- 
city in the residuals. 

Whenever problems arise in the model building process, suitable model modifications can 
be made from information at the diagnostic check and identification stages. Subsequent to 
estimating the model parameters for the new model, the modelling assumptions should be 
checked to see if further changes arc necessary. 
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17.4 HYDROLOGICAL APPLICATIONS OF TRANSFER FUNCTION-NOISE 
MODELS WITH A SINGLE INPUT 

17.4.1 Introduction 

Two hydrological applications are presented for clearly explaining how TFN models are 
constructed in practice. In the fvst application, the residual CCF described in Section 16.2.2, is 
employed for determining the statistical relationship between monthly flows in the tributary of a 
river and the flows downstream in the main river. By using each of the three identification 
methods described in Section 17.3.1, tentative TFN models are designed for modelling the two 
monthly riverflow series and the most appropriate model is verified by diagnostic checking. 

In the second application, a TFN model is designed for formally modelling one of the 
causal relationships discovered using the residual CCF in Section 16.2.3. The residual CCF stu- 
dies from Chapter 16 can be considered as part of the exploralory data analysis stage where s h -  
ple graphical and statistical tools are employed for detecting important statistical characteristics 
of the data (Tukey, 1977). At the confirmatory data analysis step, the TFN model in [17.2.5] 
can be utilized to formally model and confirm the mathematical relationships which arc 
discovered at the exploratory data analysis stage. Accordingly, a dynamic model is developed 
for formally describing the connections between the annual Gota River flows and monthly tem- 
peratures. 

17.43 Dynamic Model for the Average Monthly Flows of the Red Deer and South 
Saskatchewan Rivers 

Identification 

The South Saskatchewan (abbreviated as S.Sask.) River originates in the Rocky Mountains 
and flows eastward on the Canadian Prairies across the province of Alberta to Saskatchewan. 
where it joins the North Saskatchewan River northwest of the city of Saskatoon. These two 
rivers form the Saskatchewan River which flows into Lake Winnipeg in Manitoba, which in turn 
drains via the Nelson River into Hudson Bay. A major tributary of the S.Sask. River is the Red 
Decr River which connects to the S.Sask. River near the Alberta-Saskatchewan border. Average 
monthly flows in m3/s are available from Environment Canada (1979a,b) for the Red Deer River 
near the city of Red Deer, Alberta and also for the S.Sask. River near Saskatoon, Saskatchewan. 
Saskatoon is located approximately 800 km downstream from the city of Red Deer and the area 
of the basin drained by the S.Sask.  River at Saskatoon is 139,600 km', whereas an area of 11,450 
h ' i ,  is drained by the Red k River at Red Deer. 

Because the Red Dter River flows into the S.Sask. River it is obvious that the Red Deer 
River contributes to the overall flow of the S.Sask. River. However, even though the direction of 
causality can be easily physically justified a priori without a cross-correlation study, the results 
from a cross-correlation analysis can be employed to validate statistically the known causal rela- 
tionship and also to design a TFN model that mathematically describes the dynamic connection 
between the input flows from the Red Deer River and output flows in the S.Sask. River. 

Before obtaining the residual CCF, the flows must be prewhitened. When prewhitening a 
series it may be necessary to transform the data using the Box-Cox transformation given in 
[3.4.30]. Previously, hydrologists found by experience that a natural logarithmic transformation 
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RIVERS PARAMETERS 

$x. I 
Red Deer e x ,  I 

X, 0s 

% , I  

SSask. %I 

Y, 0,' 

(i.e. X = 0 in r3.4.301 and c = 0 when them arc no zero flows) can prtclude problems with 
heteroscedasticity and non-normality in the model residuals. Accordingly. for the time period 
from January, 1941, until December, 1962. the 264 values of the monthly flows for both the Red 
Deer and S.Sask. Rivers arc uansformed using natural logarithms. Subsequent to this, by using 
the deseasonalization procedure in [13.2.3]. each time series is deseasonalized by subtracting out 
the monthly mean and dividing this by the monthly standard deviation for each data point in the 
logarithmic transformed data. The year 1962 is selected as the final year for which data arc used 
because a large dam came into operation on the S.Sask. River after that time. By following the 
three stages of model construction given in Chapters 5 to 7, the most appropriate models from 
[16.2.3] and [16.2.4] to fit to the x, and y, series, respectively, arc found to be ARMA(1,l) 
models. In Table 17.4.1, the MLE's and comsponding SE's for the model parameters arc 
presented where the x, series refers to the Red Deer flows and the y, sequence represents the 
S.Sask. flows after taking natural logarithms and deseasonalizing the data. 

MLE'S SE'S 
0.845 0.045 
0.292 0.080 
0.482 

0.819 0.050 

0.253 0.084 

0.507 

Table 17.4.1. Parameter estimates for the Red Deer River 
and S.Sask. River ARMA(1,l) models. 

The estimated white noise series, i, and V; , for the x, and y, series, respectively, are 
automatically calculated at the estimation stage. By utilizing [16.2.6], the residual CCF in Fig- 
ure 17.4.1 is calculated along with approximate 95% confidence limits. The large values at lags 
0 and 1 statistically confm the known physical fact that the Red Deer River causes flows in the 
S.Sask. River and not vice versa. As outlined in Table 16.2.1, because the residual CCF contains 
values which are only significantly different from zero at non-negative lags, there is unidirec- 
tional causality from X to Y. In Figure 17.4.1, the value of the residual CCF at lag -4 which just 
crosses the 95% confidence limits, can be attributed to chance. 

As demonstrated by Figure 17.4.2, when the CCF for the x, and y, series are plotted the 
kind of causality cannot be statistically ascertained (note that the approximate 95% confidence 
limits in Figure 17.4.2 are derived for independent series). The large values at negative, zero and 
positive lags hide the known reality that the Red Deer River is a tributary of the S.Sask. River. 
Consequently, practitioners arc urged to examine cautiously any CCF study where proper statist- 
ical procedures have not been followed. 
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Figure 17.4.1. Residual CCF for the Red Deer and S.Sask. riverflows. 
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Figure 17.4.2. CCF for the deseasonaliztd logarithmic flows of the 
Red Deer and S.Sask. Rivers. 
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To explain how to design a TFN model for the x, and y, series for the Red Deer and S.Sask. 
Rivers, respectively, each of the three identification methods described in Section 17.3.1 is 

Empirical Identification Approach: Because monthly flows are being considered and also 
Saskatoon is about 800 km downstream from the city of Red Decr, fiom a physical point of view 
it would be expected that current Red Deer riverflows would affect the riverflows at Saskatoon 
during the present month and perhaps one month into the future. Consequently, a suitable 
transfer function may be 

explained separately. 

v(B) = 0, - o , B  

Assuming that the noise term in [17.2.5] is white noise, a TFN model is fined to the x, and 
y, sequences, when the entries of the noise series are estimated along with the other model 
parameters. Using the standard model building procedures presented in Chapters 5 to 7, this 
series is found to be best described by an ARMA (1.1) model. 
Haugb and Box Identification Method: Due to the large values at lags 0 and 1 of the residual 
CCF in Figure 17.4.1, the transfer function v’(8) in I17.3.11 is identified to be 

v’(B) = 0’0 - o ’ l ( E )  

By employing [17.3.2] and also the results in Table 17.4.1, the transfer function in [17.2.5] 
which links x, and y, is calculated to be 

(1 - 0.2538) (“to - o’,B) (1 - 0.8458) 
(1 - 0.8198) (1 - 0.2928) 

~ ( 8 )  = 

= o ’ ~ - o ’ ~ E  = ~ 0 -  018 

where the AR and M A  operators can be dropped because 0,(B) = = I$,@) when 
the relative magnitudes of the standard errors arc consided. Note that if it had been advanta- 
geous to get moment estimates for do and o’, , [ 17.3.41 could have been utilized. 

Since $’(E) = 6’(E)  , the order of the operator I$’@) is zero. The order of W ( E )  should be at 
most of the order of S’(B) or w’(B) and, therefore. should be zero or one. Consequently, fiom 
[ 17.3.31 the noise term in [ 17.2.51 should be either ARMA (1.1) or else M A  (1.2). 

Box and Jenkins Procedure: By using [17.3.5]. the 8, sequence is determined. The residual 
CCF for the d, and 8, series is very similar to the plot in Figure 17.4.1 where there are large 
values only at lags 0 and 1. Accordingly, an appropriate transfer function for use in [17.2.5] is 

and 

v(B) = 0, - o , B  

Employing the same procedure used with the empirical identification method, the noise term is 
identified to be ARMA (1,l). 
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Parameters 

0, 
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Parameter Estimation 

The MLE's for the dynamic model linking x, and y, are listed in Table 17.4.2 where it is 
assumed that 4 B )  is first order, s (B)  is of order zero, and the noise term is ARMA (1,l). The 
difference equation form of this model is written as 

MLE's SE's 

0.572 0.049 

-0.238 0.049 

0.856 0.051 

0.494 0.085 

0.310 

(1 - 0.4948) 
(1 - 0.856~9) " y, = (0.572 + 0.23882r, + [17.4.1] 

When the noise term is considered to be ARMA (1.2) the second MA parameter is not signifi- 
cantly different from zero and the value of the AIC is increased. Consequently, the simpler 
model in [ 17.4.11 is justified. 

Table 17.4.2. Parameter estimates for the Red Deer-S.Sask. TFN model. 

Diagnostic Checking 

The model in [17.4.1] satisfies the main modelling assumptions. In particular, the plot in 
Figure 17.4.3 of the RACF for the estimated u, squence along with 95% confidence limits 
reveals that the d, series is white noise. The sample CCF and 95% confidence limits for the L, 
and d, sequences are displayed in Figure 17.4.4. Because the estimated values of the CCF and 
also the RACF in Figure 17.4.3 arc not significantly different from zero, the transfer function 
and noise term arc properly designed. Other diagnostic checks indicate that the d, sequence is 
homoscedastic (see Section 7.5) and approximately normally distributed (see Section 7.4). 
Furthermore. the residual variance of 0.507 for the S.Sask. model in Table 17.4.1 is reduced by 
39% to a value of 0.310 for the dynamic model in Table 17.4.2. 
Concluding Remarks 

Besides describing the dynamic relationship between the Red Deer and S.Sask. River, the 
model in [17.4.1] can be employed for applications such as forecasting and simulation. In fact, 
because the TFN model in Table 17.4.2 has a smaller residual variance than the ARMA (1,l) 
model in Table 17.4.1 for the S.Sask. River. it should produce more accurate forecasts. Fore- 
casting with TFN models is explained and illustrated in Chapter 18. 

17.43 Dynamic Model for the August Temperatures and Annual Flows of the Cota River 
As presented in Table 16.3.3 for the causality studies of Section 16.3.3, the monthly tem- 

perature series arc correlated with various annual riverflow series and the Beveridge wheat price 
index. The causality relationships which are found using the residual CCF as an exploratory data 
analysis tool can be further substantiated by developing a TFN model as a confmatory data 
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analysis tool. For illustrative purposes, one of the causal relationships in Table 16.3.3 is for- 
mally modelled herc using a TFN model. 

From Table 16.3.3, it can be Seen that there arc significant values of the residual CCF at lag 
zero between the flows of the Gota River and each of four monthly temperature series. This 
relationship is displayed graphically in Figure 16.3.3 for the case of the residual CCF for the 
August temperatures and the Gota rivcrflows. By following the model construction phases out- 
lined in Section 17.3. an appropriate dynamic model can be developed (Hipel et al., 1985). 
When all four temperature series arc used as covariate series in a TFN model, the transfer func- 
tion parameter estimates for June, July and September arc not significantly different from zero 
and can therefore be left out of the model. Whereas the residual CCF can only be used for pair- 
wise comparisons, the TFN model can be employed to ascertain the most meaningful relation- 
ship when there arc multiple covariate series and a single response or output series. For the case 
where only the August temperatures arc used as a covariate series, the parameter estimates and 
SE's errors arc listed in Table 17.4.3 while the difference equation for the model which follows 
the format of [ 1 7 . 2 4  is written as 

Yl - 535.464=-23.869(Xl - 15.451) + (1 -0.6728 + 0.329B2)-'a1 [ 17.4.21 

where Y, represents the annual flows of the Gota River and X, stands for the monthly tempera- 
tures. Besides portraying the dynamic relationship between the Gota River flows and August 
temperatures, the model in [ 17.4.21 can, of course, be employed for forecasting and simulation. 

17.5 TRANSFER FUNCTION-NOISE MODELS WlTH MULTIPLE INPUTS 

17.5.1 Introduction 

In many situations, more than one input series is available for use in a 'I" model and by 
incorporating all the relevant covariate series into the TFN model a dynamic model can be 
developed for producing more accurate forecasts and more realistic simulated values. For exam- 
ple, for the hydrometeorological application presented in Section 17.5.4, a flexible TFN model is 
constructed, where the average monthly precipitation and temperature series constitute the 
covariate series which affect the output or response consisting of average monthly riverflows. 
As demonstrated by this application, an inherent advantage of TFN modelling is that a TFN 
model with multiple inputs can be designed almost as easily as a model with a single input. In 
fact, the model building tools of Section 17.3 can easily be extended for use with a TFN model 
having multiple inputs. 

In addition to using the most comprehensive statistical tools for use in model construction, 
the practitioner should exercise a lot of common sense and good judgement. As is the case for 
the other kinds of models considered in this text, TFN model building is in essence both an art 
and a science. The art of model building comes into play when the modeller uses his or her 
knowledge about the physical aspects of the problem to decide upon which covariate series 
should be incorporated into the TFN model and the general manner in which this should be done. 
For instance, for the application in Section 17.5.4, a suitable TFN model is developed by first 
considering simpler models which provide guidance as to how a more complex TFN model can 
be constructed. In the process of doing this, a simple procedure is suggested for creating a single 
input series which more than one precipitation or temperature series arc available. By employ- 
ing appropriate statistical and stochastic methods. the efficacy of the decisions made in the art of 
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Figure 17.4.3. RACF for the Red Dccr - S.Sask. TFN model. 
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Figure 17.4.4. CCF of d, and d, for the Red Deer ARMA model 
and the Red Deer S.Sask. TFN model, respectively. 
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Table 17.4.3. Parameter estimates for the August temperam - 
Gota River flow transfer function-noise model. 

model building can be rigorously checked using the science of model construction. Conse- 
quently, there is interactive feedback when using both art and science for building TFN models, 
or for that matter. any other typc of stochastic model. 

17.53 Model Description 
Qualitatively, the TFN model can be written as 

output = dynamic component + noise 

The dynamic component consists of a transfer function for each covariate series which describes 
how each input dynamically affects the output. As is also the case for a TFN model with one 
input in [17.2.5], the autocontlated noise can be modelled using an ARMA model. 

More precisely, a TFN model with multiple inputs can be written in the form 

@, - PJ =fOr,w) + N, [17.5.1] 

where t is discrete time, y, is the output or response variable, py is the mean of the y, series, N, is 
the stochastic noise term which may be autocorrelated. andf0r.x.t) is the dynamic component of 
y, . The dynamic component includes a set of parameters k and a group of covariate series x . 
When required, both the response variable and one or more of the input variables may be 
transformed using a suitable Box-Cox transformation from 13.4.301. As noted earlier. the rca- 
sons for transforming the series include stabilizing the variance and improving the normality 
assumption of the white noise series which is included in N, . It should be pointed out that the 
same Box-Cox transformation need not be applied to all of the series. If the series arc seasonal, 
subsequent to invoking appropriate Box-Cox transformations each series can be deseasonalized 
separately by employing the procedures of Section 13.2.2. Following this, identification pro- 
cedures can be utilized to see which parameters should be included in the model in [ 17.5.13. 

Included in the dynamic component of the model arc the effects of all the input series upon 
the output. In general, if there are I input covariate series the dynamic component of the model 
is given by 

I 

i=l 
f(lrW) = xVj@)(X, j  - Pxj) [ 17.5.21 

where x , ~  is the ith input series which may be suitably t r a n s f o d  and pxi is the mean of x,i . 
The ith transfer function which reflects the manner in which the ith input series, xIi , affects y, , 
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is written as 

(1 - SliB - b B z  - * * - 6,B")  

when m, and ri am the orders of the operators o i ( B )  and 6 i ( B ) ,  respectively. and bi is the delay 
time required before x , ~  affects yf . Notice that the ith transfer function in [ 17.5.21 is identical to 
the one utilized in [17.2.1] and [17.2.5], except that the subscript i has been added to indicate 
that v i ( B )  is the transfer function for the ith input series xfi . 

In practice, usually only a few parameters arc requind in each transfer function and there- 
fore mi and ri are 0 or 1 (see the applications in this chapter as well as Chapters 18. 19 and 22). 
Given the parameters for the oi(B) and & ( B )  operators, it may be required to estimate the 
vji ,  j = 0,1,2, . . , , coefficients in the operator 

v i (B)  = (vgi + V I ~ B  + v2.B2 + - ) 

wi (B )B bi - - 
6, (B ) 

These coefficients can be calculated in exactly the same manner as they are in Section 17.2.2 for 
the parameters of v ( B )  which is the transfer function used for a TFN model with one input 

The noise component of the TFN model having multiple inputs is defined by 

A', = yf - f0r .x .r )  

That is, the noise term of the model is simply the difference between the response variable, y, , 
and the dynamic component. The form of the noise term, N f  , is not restricted to any particular 
form, but usually it is assumed to be an ARMA process as in [ 17.2.41. Furthermore, as noted in 
Section 17.2.3, the white noise component of the ARMA model is usually assumed to be 
NID(0,a;) . Finally, because the noise term models the pomon of y, which is not explained by 
the dynamic component, N f  is independent of each x,i series. Equivalently, since the (I, distur- 
bances drive N f  and each x , ~  series can be thought of as being genemted by its own residual 
series. the of scquence is independent of the white noise series for a given input series which can 
be formed by prewhitening the xfi sequence (six Section 16.2.2 for a discussion of prewhiten- 
ing). Finally, the x,i series or their residuals formed by prewhitening are not assumed to be 
independent of one another in a TFN model. 

In summary, by combining the dynamic and noise components, the overall TFN model 
with I inputs can be written as 
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[ 17.5.31 

17.53 Model Construction 

When developing a TFN model with multiple inputs, the parameters required in each 
transfer function within the overall dynamic component plus the orders of the ojicrators in the 
noise tern. must be identified. Subsequent to this, MLE's can be obtained for the model param 
eters and the validity of the model verified by invoking appropriate diagnostic checks. Because 
the TFN model with multiple inputs in [17.5.3] is a straightforward extension of the single input 
model in [17.2.5], most of the construction tools prcscntcd in Section 17.3 for a TFN having one 
input can be used for the multiple input case. The purpose of this section is to clearly point out 
what special problems can arise when building a TFN model with more than one input and how a 
modeller should cautiously use the identification tools of Section 17.3.1 for the multiple input 
case. 

In Section 17.3.1. the following three identification procedures are explained in detail for 
the case of a TFN model with a single input: 
(i) the empirical identification approach, 

(ii) the Haugh and Box identification method, and 
(iii) the Box and Jenkins identification procedure. 
All three methods were specially developed under the assumption that only one input series is 
present in the model and the input series only affects the output. In fact, this assumption is 
theoretically embedded into the latter two procedures. When there is more than one input series, 
the obvious way to use each identification procedure is to investigate, painvise, the relationship 
between each x,; series and the y, in order to design the form of the transfer function vi(B) . 
However, in a TFN model with more than one covariate series, two or more covariates may not 
be independent of one another and may therefore affect each other in addition to driving the 
response variable. If there is not too much interaction among the x,; series, fairly correct transfer 
functions may be identified using the pairwise identification procedure. Whatever the case, the 
assumption that the x,; 's arc independent of one another is not assumed for the TFN model itself 
in [ 17.5.31. Therefon, if required, a number of tentative models can be fitted to the series. After 
also identifying the noise term. different discrimination techniques can be used to isolate the 
most appropriate model or set of models. For example, one can select the model having the 
lowest value of the AIC in 16.3.11 or the BIC in [6.3.5]. One can also remove any parameter from 
a model whose estimated value is not significantly different from zero. Finally. one should also 
insure that this model passes diagnostic checks. especially the tests for determining the white- 
ness of the estimated a, series. 

When designing the transfer function, the most suitable approach is probably to use the 
empirical approach in conjunction with the method of Haugh and Box. Although it may be com- 
plicated to use in practice, another procedure for identifying transfer functions is to employ the 
method of Liu and Hanssens (1982) which is specifically designed for identifying TFN models 
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with multiple inputs. However, when deciding upon the parameters n d d  in the noise term, N,. 
it is recommended for most applications that the empirical technique be used. Recall from Sec- 
tion 17.3.1 for the empirical approach, that after designing the m s f e r  functions, the model in 
[17.5.3] is fitted to the set of series where it is initially assumed the noise tcrm is white, even 
though it is probably not Next. by following the model development phases of Chapters 5 to 7 
for a single series, the best ARMA model is selected for modelling the estimated noise sequence 
form the previous step. Keep in mind, that because the noise tern is assumed to be independent 
of the dynamic component, this is a theoretically valid procedure. Fmally, the identitied noise 
term can be used in [17.5.3] and then a l l  of the model parameters can be simultaneously 
e s h t e d  for the completely identifed TFN model. 

Because the a,’s are assumed to be N I D ( o , ~ , Z )  , MLE’S can be efficiently calculated using 
the method of McLeod (1977) or another appropriate estimate such as one of those listed in Sec- 
tion 6.2.3. Not only arc the MLE’s obtained using McLeod’s method almost exact MLE’s, but 
the computation time required is much lower than that needed by other available exact MLE pro- 
cedures. The estimation procedure described in Appendix A17.1 for a TFN with one input, can 
easily be expanded for use with a TFN model having multiple inputs. 

At the model validation stage, the key assumption to check is that the residuals, d, , which 
are estimated along with the model parameters, are white. As explained in Section 17.3.3, this 
can be accomplished by investigating a plot of r&k) from [16.2.6] or [7.3.1] along with the 95% 

confidence limits. If there are problems, the form of the significantly large autocorrelations 
present in r,(k) may indicate what type of model modifications should be made to either N, , 
the dynamic component, or both. Investigating the form of the residual CCF between each 
prewhitened x , ~  series and S, may also assist in detecting where the sources of the problems an 
located and how they should be rectified. However, if the x ,~  series were not previously prewhi- 
tened for use in a causality study (see Section 16.2.2) or some other purpose, obtaining the mi- 
dual CCF pairwise for each prewhitened x,; series and d, may be quite time consuming. Further- 
more, the alterations suggested by each individual residual CCF may not necessarily hold for the 
overall TFN model in [17.5.3] because of possible interactions among the x,; series themselves. 
Fortunately. the authors have found in practice that when the empirical identification approach is 
utilized in conjunction with a sound understanding of the physical realities of the problem being 
studied, usually problems with the design of the TFN model can be circumvented. 

17.5.4 Hydrometeorological Application 

Introduction 

me general procedure in many modelling problems is to s t a n  with a simple model and then 
increase the model complexity until an acceptable description of the phenomenon is achieved or 
until further improvements in the model cannot be obtained by increasing the model complexity. 
This is especially true in TFN modelling where there is a single response variable and multiple 
input series. However, the question arises as to how one can conveniently construct the most 
effective model for describing the dynamic relationships between the output and input series. 
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The purpose of the hydromcttorological application in this section is to demonstrate the art 
and science of building a suitable TFN model. As will be shown, a range of diffennt TFN 
models arc developed and the most appropriate model is systematically found. The output for 
each TFN model always represents the descasonalized average monthly logarithmic flows of the 
Saugeen River at Walkerton, Ontario, Canada, while the covariate series consist of either 
transformed precipitation or temperature data sets, or both types of series. The types, lengths 
and locations of measurement for the data sets entertained arc shown in Table 7.5.1 for the single 
riverflow sequence, the two pmipitation and the two temperature series. The riverflow data arc 
obtained from Environment Canada (1980a) and the precipitation and temperature data ~ l t  pro- 
vided by the Atmospheric Environment Service in Downsview Ontario (Environment Canada, 
198Ob). 

Table 17.5.1. Available monthly data. 

Type I Location 
Rivemows 

Precipitation 
Precipitation 
Temperature 
Temperature 

Saugeen River at 
Walkerton. Ontario 
Paisley. Ontario 
Lucknow, Ontario 
Paisley, Ontario 
Lucknow, Ontario 

Period 
1963-1979 

1%3-1979 
1950- 1979 
1963- 1979 
1950-1979 

When the data arc used in the upcoming application as series in the CCF analyses or as 
input or output series in the TFN models, the time series arc only employed for the time period 
during which all the series overlap. However, when estimating missing observations within a 
single time series, the entire time series is used (see Section 19.3). For a further discussion and 
the original presentation of this application, the reader may wish to refer to the paper of Hipel et 
al. (1982). 
Missing Data 

Prior to constructing a TFN model, any missing data in the covariate series must be 
estimated. The only missing data in this study arc ten precipitation and corresponding tempcra- 
ture data points for the Lucknow station when the dates of these missing data arc given in Table 
16.5.2. As is explained in detail in Section 19.3 in the chapter on intervention analysis, a special 
type of intervention model can be designed for obtaining good estimates of the missing data 
points. An inherent advantage of the intervention analysis approach for estimating missing data 
points is that the cornlation structure of the series is automatically taken into account when 
obtaining the estimates for the missing observations. When the intervention model in r19.3.71, 
developed in Section 19.3.6 for the entire deseasonalized Lucknow temperature data, is 
employed for data filling, the estimates and SE’s given in the third column of Table 17.5.2 arc 
obtained for the original series. The estimates for the missing observations can be compared to 
their respective monthly means in the second column of Table 17.5.2. For this particular appli- 
cation, the difference between each estimate and its monthly mean is always less than its SE. 
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Table 17.5.2. Estimates of missing temperam data at Lucknow. 

Dates 

February 1953 
May 1968 
September 1%8 
October 1973 
August 1975 
September 1975 
July 1976 
September 1978 
October 1978 
August 1979 

Monthly Means 
(C") 
-6.48 
11.99 
15.17 
9.60 

18.89 
15.17 
19.68 
15.17 
9.60 

18.89 

Estimates (Ca) 
(SE's) 

11.81 (1.78) 
15.34 (1.16) 
9.78 (1.67) 

18.59 (1.20) 
15.29 (1.16) 
19.47 (1.09) 
15.30 (1.16) 
8.30 (1.70) 

18.56 (1.18) 

-6.57 (2.32) 

When the Lucknow precipitation data is deseasonalized using [ 13.2.31, the resulting non- 
seasonal sequence is white noise. Because there is no correlation structure in the series, the 
appropriate estimate of each missing data point is simply taken as its average monthly value. 

The intervention analysis approach to data filling in Section 19.3 can be used when not 
mom than about 10% of the data arc missing. If there are many missing observations, where 
there may be rather long periods of time over which there are no data at all, the technique of Sec- 
tion 22.2 may be useful. Furthermore, when there arc two series which are causally related but 
one is longer than the other, a TFN model relating the two series can be used to obtain estimates 
of the shorter series where it doesn't overlap with the longer one. This technique is called back- 
forecasting and is explained in Section 18.5.2. Whatever the case, once the unknown observa- 
tions have been estimated for each input series. a TFN model can be built for describing the rela- 
tionships between the output and the inputs. 
Identifying the Dynamic Component 

Based upon a physical understanding of the problem and also using residual CCF analyses, 
the possible forms of the transfer functions can be identified for linking precipitation or tempera- 
ture to the riverflow output. Firstly, the Saugccn River flows arc bansformed using a loga- 
rithmic transformation ( 1 = 0 in [3.4.30]) in order to avoid problems of non-normality andor 
hetcroscedasticity in the model residuals. It is found that the precipitation and temperature series 
do not require a power transformation. Next, an ARMA model is fiaed to each deseasonalized 
series in Table 17.5.1 and the model residuals am estimated. Finally, the residual CCF between 
the residuals from the model fitted to the Saugten River flows and each of the other four residual 
series are then calculated using [16.2.6]. 

The results of the crosscornlation analyses show a positive significant relationship at lag 
zero for each of the two precipitation series. For instance, the plot of the CCF for the Lucknow 
precipitation and Saugeen riverflows is displayed in Figure 17.5.1 along with the estimated 958 
confidence interval. The value of the residual CCF at lag zero in Figurc 17.5.1 is 0.448 whereas 
for the Paisley precipitation the estimated value of 0.365 is slightly smaller. Although the resi- 
dual CCF plot for the Paisley precipitation is not shown, it is indeed similar in form to Figure 
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17.5.1. The characteristics of the residual CCF's for the two precipitation series makes intuitive 
Sense from a physical point of view since for monthly data, most of the precipitation for a partic- 
ular month will result in direct runoff in the same month. 

Figure 17.5.1. Residual CCF for the Lucknow precipitation 
and Saugeen riverflows. 

The results of the residual CCF analyses for the two temperature series and the Saugeen 
riverflows arc somewhat different. In these cases, there arc no significant cross-comlations at 
any lag. However, from a physical viewpoint, one might expect that above average temperatures 
during the winter season would increase snowmelt and thus riverflow. For this reason, the tem- 
perature series arc considered in the upcoming TFN model building. The temperature series arc 
assumed to have a significant contribution at lag zero and as will be shown later, this assumption 
is found to be justifable. 

Combining Multiple Times Series 

Often more than one covariate series of a particular kind is available to the analyst. In 
hydrological studies, data from several precipitation and temperature stations within or near the 
basin may be available. A common procedure employed by hydrologists to reduce model com- 
plexity is to combine similar types of series to form a single input covariate series. In the case of 
precipitation data, the records from the various stations arc often combined to provide a single 
series of mean precipitation for a given region or basin. Two common methods of combining 
precipitation series arc the Isohyetal and the Thiessen polygon techniques (Viessman et al.. 
1977). These procedures arc essentially graphical methods and require a skilled analyst to obtain 
reasonable and consistent results. In an effort to automate procedures for combining similar 
types of series and provide more consistent results, a technique bascd on combining transfer 
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function coefficients is presented. 
Consider the case where two input covariate series, x , ~  and x12 , arc to be combined to form 

a single input covariate series x, . If xfi causes yl instantaneously, then the TFN models for the 
two series would be 

Yf = 0 0 1 4 1  +Nil 
and 

Yl = w 1 2  + 4 2  

t17.5.41 

[17.5.5] 

where ool and are the transfer function paramet~rs for the series xl l  and x12 , respectively. 
For this example, the two series x , ~  and x12 would be combined using the relative ratio of the 
transfer function coefficients such that 

[17.5.6] 

If more than two input series were available, this procedure could simply be extended to com- 
bine all of the available data into one input covariate series. 

The Transfer Function-Noise Models 

The various TFN models and one ARMA model that are examined, as well as their associ- 
ated AIC values, arc presented in Table 17.5.3. A decrease in the value of the AIC indicates that 
the additional model complexity is probably warranted since a better statistical fit is obtained. 
As expected, each increase in model complexity leads to a corresponding decrease in the value 
of the AIC. Thus a better description of the phenomena results with each addition of available 
information. For all of the TFN models in Table 17.5.3, the noise term is identified using the 
empirical approach of Section 17.3.1 to be an ARMA(1.0) model. Furthermore, all of the 
models satisfy the diagnostic checks presented in Section 17.3.3. Details of each of the models 
are now discussed. 

The first model considers only the Saugcen riverflows. The time series is first transformed 
by taking natural logarithms of the data. This series is then deseasonalizcd by subtracting the 
estimated monthly mean and dividing by the estimated monthly standard deviation for each 
observation as in t13.2.31. An ARMA(1,O) model is found to be the best model to f i t  to these 
deseasonalized flows. The value of the AIC is %3.121 and this value is used as a basis for com- 
paring improvements in each of the subsequent models in Table 17.5.3. 
Precipitation Series as Inputs: As suggested by the results of the residual CCF analyses, each 
of the precipitation series is used as an input covariate series. Prior to fitting the TFN model, 
each of the series is first deseasonalized. Each series is then used independently as an input 
covariate Series in a TFN model. As shown in Table 17.5.3, the transfer function parameter, 00, 
for Paisley and Lucknow are estimated as 0.310 and 0.350, respectively. Note that the AIC 
value for the Lucknow precipitation series is significantly less than the AIC value for Paisley. 
This may suggest that the pattern of the overall precipitation which falls on the Saugcen River 
basin upstream from Walkerton, is more similar to the precipitation at Lucknow than the precipi- 
tation at Paisley, even though Paisley is closer to Walkerton than Lucknow. 
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Table 17.5.3. Transfer function-noise models fitted to the data. 

Summer hipi ta t ion (ql) 
Accumulated Snow 

Winter hipi ta t ion (002) 

Using the procedure outlined in the previous section, the two precipitation series arc com- 
bined to form a single input covariate series. In this study, the Lucknow and Paisley precipita- 
tion series arc combined in the ratio 53:47, respectively. This combined precipitation series is 
then deseasonalized and used as an input series for the TFN model. The resulting AIC value is 
only slightly larger than the AIC value obtained when only the Lucknow precipitation series is 
employed. Since the diffennce is small, either model would be satisfactory and for the balance 
of this section the combined precipitation series is employed. 
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In the previous models, the precipitation series arc entered as a single series having a single 
transfer function parameter. In these cases. it is therefore assumed that the contribution of pre- 
cipitation is the s ~ m t  throughout the year. Physically, however, it makes sense that the contribu- 
tion of precipitation during the winter months would be less than the contribution during the 
warmer periods of the year, since the precipitation accumulates on the ground in the form of 
snow during the cold season. In an effort to better reflect reality, the single precipitation series 
formed by combining the Lucknow and Paisley data, is divided into two separate seasons. 

In separating the precipitation into two seasons, the winter season is taken as those months 
where the mean monthly temperature is below tcro degrees Celcius. For both the Paisley and 
the Lucknow temperature series, December, January, February and March have mean monthly 
temperanuts below freezing. Therefore, the winter precipitation series consists of the deseason- 
alizcd precipitations for these four months and zeros for the other eight months of the year. Con- 
versely, the summer precipitation series has zeros for the four winter months and the deseasonal- 
ized precipitations for the remaining entries. These two series arc input as separate covariate 
series with separate transfer function parameters. The resulting calibrated TFN model is 

01 

(1 - 0.4078) 
YI = 0.444~,1+ 0.183~12 + [ 17.5.71 

where yI is the deseasonalized logarithmic riverflow at time t x, is the combined deseasonalized 
summer precipitation series; and x , ~  is the combined deseasonalized winter precipitation series. 
As expected, the transfer function coefficient for the summer precipitation is larger than the 
transfer function parameter for the winter precipitation. It is also reassuring to note that the 
better representation of the physics of the system also leads to an improved statistical fit as indi- 
cated by a lower AIC value. 

A second type of dynamic model aimed at modelling the spring runoff resulting from 
snowmelt is also considered. In this model, the summer precipitation is the same as the model in 
[ 17.5.71. However, the snow accumulated during the winter months from December to March is 
represented as a single pulse input in April where the tempcram is above zero for the first time 
and hence spring runoff occurs. For the other eleven months of the year this series has zero 
entries. This type of dynamic model has been shown to work well for river systems located in 
areas that experience Arctic climate (Baracos et al., 1981) and rarely have any thaws during the 
winter months. However, the climatic conditions in the Saugeen River basin during the winter 
arc not extremely cold and several midwinter melts result in a significant reduction in the accu- 
mulated snow cover on the ground. For this reason, the transfer function parameter for the accu- 
mulated winter precipitation is not significantly different from zero. Notice in Table 17.5.3 that 
that value of & = 4 . 1 6 2  is much less than twice the SE of 0.109. 

When dealing with quarter monthly data, another approach is presented in Section 18.3 and 
also by Thompstone (1983, Ch. 6) for incorporating snowmelt into a I" model. The advantage 
of this approach is that it closely reflects the physical processes of snowmelt. 
Temperature Series ps Inputs: Although the rrsidual CCF analyses indicate no significant rtla- 
tionships between temperature and riverflow, the two temperature series are used as input covari- 
ate series in TFN models. As before, both series arc first deseasonalized by subtracting out the 
estimated monthly mans and dividing by the estimated monthly standard deviations for each 
observation as in [13.2.3]. These series arc then entered independently as covariate series in 
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TFN models. The resulting models and their associated AIC values ~IC shown in Table 17.5.3. 
Because l.% times the SE for each parameter is larger than the parameter estimate, neither 
transfer function parameter is significant at the five percent signiticance level. Recall that the 
CCF for each temperature series and the Saugetn riverflows, also suggests that there may not be 
a marked relationship between the temperatures and riverflows. However, the Lucknow tem- 
p e r a t u r e  parameter is significantly different from zcro at the ten percent significance level. As a 
result. the Lucknow temperature series is included in the TFN models when both the tempera- 
ture and precipitation series an included. 
Precipitation and Temperature Series as Inputs: In an effort to combine all of the available 
information, both the temperature and the precipitation data arc used as input covariate series in 
TFN models. In the fist model of this type in Table 17.5.3, the combined precipitation is desea- 
sonalized and split into two seasons as is done in [17.5.7]. The deseasonalized Lucknow tem- 
perature data is used as another input covariate series. The resulting model is given by 

[ 17.5.81 

wherc y ,  is the deseasonalized logarithmic flow at time c xIl is the deseasonalized summer pre- 
cipitation; x12 is the deseasonalized winter precipitation; 4 3  is the deseasonalized Lucknow tem- 
perature data; and a, is the white noise term. The model and its associated AIC arc also shown 
in Table 17.5.3. This model provides a significant improvement over any of the models previ- 
ously employed with a decrease of almost five in the AIC when compared to the model in 
[17.5.7]. Also, the transfer function parameter for the temperature series is significantly dif- 
ferent from zero in this case. Recall from before that the transfer function parameter for either 
temperature series is not significantly different from zero at the five percent significance level. 
However, when the precipitation series is included in the model, the temperature series provides 
a sigruficant contribution. This point illustrates the need for more research in identifying the 
dynamic component of TFN models when more than one input covariate series is available. 

The last model fitted to the data employs the combined precipitation and the combined 
temperature data. The temperature series are combined in the same fashion as the precipitation 
series but are not divided into two separate seasons. The resulting model and its associated AIC 
arc shown in Table 17.5.3. Note that the AIC value is only marginally larger than that of the pre- 
vious model where the Lucknow temperature data is employed instead of the combined tempera- 
turt series. In this case. either of these last two TFN models could be employed as the most 
appropriate model for the available data. 

17.6 ARMAX MODELS 

From [17.2.7], the TFN model having a single covariate series is written as 

[ 17.6.11 

The first and second terms on the right hand side of [17.6.1] arc refemd to as the dynamic and 
noise components in Sections 17.2.2 and 17.2.3. respectively. The operators contained in the 
transfer function - B ~  for transferring the influence of the covariate series x, to the response 

series y ,  arc defined in Section 17.2.2. Finally, the operators in the transfer function 80 for 

o(B ) 
s(B ) 

$(B> 
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the white noise uf arc defined in [ 17.2.41 of Section 17.2.3 for the ARMA process describing the 
correlated or c o l o d  noise as 

[ 17.6.21 

Some authors prefer to write a dynamic model having a stochastic noise component in a 

[17.6.3] 

In the literatun, this model is most commonly called the ARMAX (ouloregressive-moving 
average-exogeneour voriubles) model (Hannan, 1970) but is also referred to as the ARTF 
(autoregressive transfer function) and ARMAV models. The exogeneous variable in [17.6.3] 
refers to the input series, xf .  By dividing [17.6.3] by $(B),  the ARMAX model can be 
equivalently given as 

different fashion than the one given in [17.6.1]. More specifically, their model is written as 

$(B)OI, - lq = o(B)BbCr, - IrJ + W ) a f  

[ 17.6.41 

A feature of the ARMAX model written in [17.6.3] is that the response variable is written 
directly as an autoregression. For example, if the order of $ ( E )  is 2, the model would be 

Y f  - Py = +Icy,-, - P h )  + 42Cyl-2 - y) + w ( w b d r ,  - P,) + Wb, 

Nonetheless, the TFN model possesses distinct theoretical and practical advantages over the 
ARMAX model. To compare these two models consider the linear filter interpretations depicted 
in Figures 17.6.1 and 17.6.2 for the TFN model in [17.4.1] and ARMAX model in [17.6.4]. 
respectively. In each figure, the inputs to the model arc the a, innovations plus the covariate x, 

series. After passing through the indicated linear filters, the plus sign indicates that the dynamic 
and noise components arc added together to crcate the y, response. In both models, the input sig- 
nal, x,, and white noise. u,, enter the linear filter system by different pathways. However, for the 

case of the ARMAX model in Figure 17.6.2, the input transfer function - o(B) and the ARMA 

noise transfer function - arc interrelated, since they have the same common denominator 

$(B) .  On the other hand, the transfer functions for the input and noise terms for the TFN model 
in Figure 17.6.1 have no common operators and arc. therefore, independent of one another. Con- 
sequently, the TFN model is a more general representation of a dynamic-noise system than the 
ARMAX model (Young, 1984, pp. 113-116). The TFN model clearly separates out the deter- 
ministic or dynamic component and the stochastic noise effects. 

As pointed out by Young (1984, pp. 116-117). one could also define other related versions 
of a dynamic-noise model outside of those given in [17.4.1] and [17.6.3]. For example, one 
could constrain the noise term in [17.6.1] or [ 17.6.41 to be purely AR or solely MA.  Overall, the 
most general and flexible definition is the TFN model given in [17.6.1]. 

A great practical advantage of TFN modelling is that comprehensive model construction 
tools are available for conveniently applying TFN models to realworld problems. As explained 
in Section 17.3, flexible techniques are known and tested for use in identification, estimation and 
diagnostic checking of TFN models. However. this is not the situation for ARMAX models. 

$(B 1 

$(B 1 
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Figure 17.6.1. Linear filter depiction of the TFN model in [17.6.1]. 

Yt-CL y 
c 

xt-Px w(B) Bb 

Q (B> 
c 

Figure 17.6.2. Linear filter interpretation of the 
ARMAX model in [17.6.4]. 



608 Chapter 17 

For example, one has to be cmfd when estimating the parameters of an ARMAX model. If the 
order of certain operators in the ARMAX model arc not specified correctly, one may obtain poor 
parameter estimates (Young, 1984, p. 117). Because of the aforesaid and other reasons, it is 
recommended that the TFN model be selected over the ARMAX model for employment in prac- 
tical applications. 

The ARMAX model was introduced into system identification by Astrom and Bohlin 
(1%5). In the past, ARMAX models have been successfully applied to hydrological and 
environmental engineering problems. For documend case studies of ARMAX modelling in 
hydrology, the reader can refer, for instance, to the research of Haltiner and Was (1988). as well 
as references cited therein. In environmental engineering, ARMAX models have bam employed 
for modelling dynamic systems problems arising in the conveyance (Capodoglio et al., 1990) 
and treatment (Capodoglio et al.. 1991, 1992; Novotny et al., 1991) of wastewater. As a matter 
of fact, ARMAX and TFN models perform well when compared to more complex deterministic 
models written as differential equations, for capturing the key dynamic aspects of wastewater 
treatment plants (Capodoglio et al., 1992). 

17.7 CONCLUSIONS 

As exemplified by the applications in this chapter, a TFN model can be conveniently con- 
structed for handling both single and multiple inputs. In addition to an understanding of the phy- 
sical properties of a system being modelled, an array of well developed statistical tools are avail- 
able for use in designing a suitable TFN model. For model identification, the empirical approach 
along with appropriate CCF analyses described in Section 17.3.1, can be used to identify the 
dynamic component of a 'I" model. To identify the noise component of the TFN model, it is 
recommended that the empirical approach be used, especially when there are more than one 
covariate series. Subsequent to identifying one or more tentative TFN models, MLE's can be 
obtained for the model parameters (see Appendix A17.1) and a number of statistical tests can be 
employed for checking the validity of the model. Automatic selection criteria, such as the AIC 
and BIC, can be quite useful for model discrimination purposes. 

If there are more than one precipitation or temperature series. a procedure is available for 
obtaining a single precipitation or temperature series. For the situation where snow accumulates 
during the winter time, the precipitation series can be incorporated into the dynamic model in 
specified manners so that the model makes sense from a physical point of view. For the case of 
the best Saugeen River dynamic model, the precipitation series was split into a winter and sum- 
mer series, and a separate m s f e r  function was designed for each of the series. An alternative 
approach for incorporating snowmelt into a TFN model is presented in Section 18.3. 

When TFN models are fined to other kinds of environmental series, the scientist can prac- 
tice the arf and science of his profession by designing physically based m s f e r  functions and 
using flexible statistical tools to isolate the best design. As shown by the TFN applications in 
the next chapter, a properly designed TFN can produce accurate forecasts which in turn can be 
used in the control and operation of a system of reservoirs. 
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APPENDIX A17.1 

ESTIMATOR FOR TFN MODELS 

An estimator for obtaining MLE’s for the parameters of a TFN model is outlined in this 
appendix. For convenience of explanation, the estimate is explained for the case of a TFN model 
having a single input series as in [17.2.5]. The expansion of this estimator for handling the situa- 
tion where there are multiple input series as in [ 17.5.31, as well as interventions (see Chapter 19 
and 22). is straightforward. 

The estimator for a TFN model is, in fact, a direct extension of the estimator for an ARMA 
model. In general, the estimator works as follows. Recall from the start of Part W that a TFN 
model can be qualitatively written as 

single output = dynamic component + noise 

where the dynamic component contains one or more input series and the correlated noise com- 
ponent is modelled as an an ARMA model process. As explained in Chapter 19, the dynamic 
component can also be designed for not only taking care of multiple input series but also the 
effects of external interventions upon the output series. Whatever the case, one can calculate the 
noise component as 

noise = single output - dynamic component 

Next, because the noise is assumed to be an ARMA process, one can calculate the white noise 
part for the correlated noise term by using an ARMA Nter. Recall that these residuals are 
assumed to be NID(0,a:). Finally, keeping in mind that one is simultaneously estimating the 
parameters for an overall TFN model, one can employ an ARh4A estimator, such as the McLeod 
(1977) algorithm described in Appendix A6.1 or one of the other estimators listed in Section 
6.2.3, to obtain MLE’s for the model parameters. Possible optimization techniques for maximiz- 
ing the likelihood function are also referred to in Section 6.2.3. 

To be more specific, consider the TFN model in [17.2.5] having one input series. which is 
written as 

Y, - Py = v(B)cr, - PJ + N, 

[A17.1 J 

where y, is the output or response series having a theoretical mean of pX and x, is the input or 
covariate series that has a thtoretical mean of ~1, .  The transfer function for the input series 
models the influence of x, upon y, and is given as 
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- o l B  - q B 2 -  . . - u,B"')Bb - N B ) B b  = (O0 
s(B 1 (1 - 6 , B - V Z -  - * .  - 6P') 

w h m  b is a positive integer for modelling any delay in time for x, to affect y,. If there is no 
delay effect, then b = 0. Lastly, because N, is assumed to follow an ARMA process as in [3.4.4], 

$(B)N, = 9(B)a, 

B(B) = $@) =I [A17.2] 

where the ARMA filter is given as 

e(~) - ( i -e lB -e#2- ... - gqEq) 

O @ )  (1 - $lB - $9'- * * * - $pBp)  
- 

and the uI's arc assumed to be NID(0,u;). 

Before fitting a TFN model to the data, the response and covariate series may undergo a 
transformation such as the Box-Cox transformation in [3.4.30]. Whatever the case, the theoreti- 
cal means of the y, and x, series can be estimated by the sample means given as 

1 "  c;y =F,= XZYl 
,=I  

and 
1 "  px =if = -Ex, 

r = 1  

[A17.3] 

[A17.4] 

respectively. where n is the number of observations in LJ x, and y, series. One could also simul- 
taneously estimate px and cl, along with the other model parameters, but for the length of series 
that arc usually analyzed, the sample means provide adequate estimates. The remaining parame- 
ters to be estimated in the transfer function in the dynamic component are 

6 = (6,,&, . . . IS,) 

0 = ( q b W l r W y ,  * . * , o m )  

where 00 is always included as a parameter in any transfer function. The parameters which must 
be estimated in the noise term are 

Q = (O1.$21 ' * * * 4p) 

e = (8,,82, . . . ,eq) 

Because the a, innovations an automatically estimated during the estimation procedure, in the 
fid iteration the variance, u,2. of the innovations can be calculated as 
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[A17.5] 

wherc S, is the estimate for a,. 

Based upon the normality assumption for the innovations, one can obtain the likelihood 
function for a model and employ an optimization procedure for iteratively finding the values of 
the parameter which converge to values that maximix the likelihood function. For a given max- 
imum likelihood estimator, at each iteration one must be able to calculate the u,’s based upon the 
cumnt values of the parameters as well as the s m c m  of the model. As explained by Box and 
Jenkins (1976, p. 389). one can determine the current values of the of’s for the TFN model in 
[A17.1], by following a thne stage p d u r e .  Firstly. the output, d,, from the dynamic com- 
ponent can be computed from 

or 

Next the noise, N , ,  can be determined using 

[A17.6] 

[A17.7] 

or 

a, = Ola,-l + 820,-2 + . . * + 84~134 + Nl - $JVl-l - $$Vf-2 - * * * - [A17.81 

In order to calculate the innovations at each iteration in the overall optimization pro- 
cedures, appropriate starting values arc required for x,’s. y,’s and ul’s in [A17.6] to [A17.8]. 

respectively. As noted by Box and Jenkins (1976, p. 389). the effects of transients can be 
minimized if the difference equations arc initiated using a value of t for which all previous 1,’s 

and y,’s are known. Consequently d, in [A17.6] is computed from t = u + 1 onwards, where u is 
the larger of r and rn + b and d,’s occurring before u + 1 arc set equal to zero. In tum, N, in 
(A17.71 can be determined from Nu+, onwards. Finally, if the unknown a,’s arc set equal to their 
unconditional expected values of zero, the 0,’s can be calculated from u , , + ~ + ~  onwards. 
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Since one knows how to calculate the u,'s in the ARMA noise component, an estimator 
developed for an ARMA model can be employed within the TFN structure to obtain MLE's for 
the parameter of both the noise and dynamic components. For example, one could employ the 
estimator of M c W  described in Appendix A6.1. The standard errors of the estimated parame- 
ters 6. 0, $ and 8 an obtained by inverting the obscrved information which is obtained by 
numerical diferentiation of the log likelihood function. 

Brockwell and Davis (1987) give an altcmative method for estimating TFN models using 
the Kalman filter. This technique yields exact maximum likelihood estimates as opposed to the 
method outlined above which is approximate. In practice, however, thcrc is normally Little 
difference bctwtcn estimates produced by the two approaches, particularly when the lengths of 
the series exceed 50 data points 

PROBLEMS 

17.1 Select two yearly series called x, and y, for which you think that x, causes y, and 
then carry out the following tasks: 

(a) Following the pmedun of Section 16.2.2, employ the residual CCF to ascer- 
tain if your suspected causality relationship between x, and y, is true. 

(b) Employing the three identification approaches of Section 17.3.1, design a TFN 
model for formally connecting x, and y,. Which identification method pro- 
vides the most clear nsults and is easiest to apply? 
After estimating the model parameters for the TFN identified in part (b), exe- 
cute suitable diagnostic checks from Section 17.3.3 and make any necessary 
changes to the model. Be sun to explain all of your results and write down the 
difference equation for the final model. 

By refemng to the paper of Haugh and Box (1977). outline how these authors derive 
their identification procedure for a TFN model. 
Explain the main steps that Box and Jenkins (1976) follow to derive their TFN iden- 
tification method. 
B a d  upon your experiences in fitting TFN models to data as well as theoretical 
attributes of the identification procedures, compare the three identification methods 
described in Section 17.3.1 according to advantages and limitations. 
By refemng to the literature in a field of interest to you, locate thne articles describ 
ing applications of TFN models. Briefly outline the types of TFN applications car- 
ried out in the papers and chapters and how the TFN modelling was of assistance to 
the authors. 
Follow the instructions of problem 17.1 for the situation where you employ average 
monthly or other types of seasonal data. 

(c) 

17.2 

17.3 

17.4 

17.5 

17.6 
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17.7 

17.8 

17.9 

17.10 

17.11 

17.12 

17.13 

17.14 

17.15 

Construct a TFN model for formally modelling a yearly output series for which you 
have two meaningful annual covariate series. For instance, you may have an aver- 
age annual riverflow series as well as yearly precipitation and tempersla~e records. 

Carry out the instructions of problem 17.7 for the case of monthly or quarter 
monthly time series. 
Obtain an average monthly riverflow data set for which you have at least two pre- 
cipitation and two temperature series. Follow the approach of Section 17.5.4, to 

systematically select the most appropriate TFN model to link your data sets. 

After reading the paper of Haltiner and Salas in which they employ the ARMAX 
model of Section 17.6 for short-term forecasting of snowmelt runoff, do the follow- 

(a) Outline the approach that they employ for modelling how stnamflow is 
affected by other hydrological variables. 

(b) Compare the procedure of Haltiner and Salas for modelling runoff to that given 
in Section 17.5.4. 

(c) Explain how Haltiner and Salas could employ a TFN model instead of an 
ARMAX model to formally model their hydrological data sets. 

Capodaglio et al. (1992) demonstrate that ARMAX or TFN models perform as well 
as deterministic differential equations for describing certain wastewater treatment 
processes. For their applications, explain how they accomplished this. Find and 
explain another physical systems problem where TFN models fare as well or better 
than their deterministic counterparts. 
The TFN model is an example of a finite difference equation that mathematically 
models the relationships among data sets available at discrete time points. In con- 
tinuous time, one employs stochastic differential equations. Explain the 
continuous-time versions of the TFN models in [ 17.2.51 and [ 17.5.31. 

As pointed out in Section 17.1. Delleur (1986) demonstrates that a TFN is physi- 
cally justified for modelling flows in a watershed. By referring to Dellcur's paper 
and using both differentid and difference equations, explain how he does this. 
Find a papa in a field which is of interest to you that clearly explains the relevance 
of TFN modelling for describing physical and/or socio-economic systems. Sum- 
marize the main findings of the paper and be sure to emphasize which results you 
think are most interesting. 
By referring to papers such as those by Novotny and Zheng (1989) and Capodaglio 
et al. (19901, explain how TFN models can be employed' for approximately model- 
ling nonlinear relationships between variables. 

ing: 
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18.1 INTRODUCTION 

A rranrferfunction-noise (TFN) model can describe the dynamic relationship between a 
single output series and one or more input series. For example, a TFN model can formally 
specify the mathematical association existing between riverflows and the temperature and pre- 
cipitation variables which caused the flows. Furthermore, the remaining noise component can be 
modelled using an ARMA model. Because its inhertnt flexible design reflects many types of 
physical situations that can take place in practice, the TFN model constitutes an important tool 
for use in water resources and environmental engineering plus many other fields. 

In the previous chapter, the TFN model is defined and comprehensive model construction 
techniques are presented so that the model can be conveniently applied in practice. Moreover, 
practical applications are given in Chapter 17 to explain clearly how model building is carried 
out. If one is confronted with a situation where the direction of causality between two series is 
not clear, the residual cross-correlation function (CCF) of Section 16.2 can be utilized. Addi- 
tionally, as explained in Section 17.3.1, after the type of causality is established, the results of a 
residual crosscorrelation function study can be employed for deciding upon the parameters to 
include in a formal mathematical model to describe the relationship between the two series. 

A particularly useful and common application of a calibrated TFN noise model is forecast- 
ing. For instance, forecasts of riverflows based upon other previous flows as well as other 
hydrological conditions are useful for optimizing the operation of multipurpose reservoir sys- 
tems. Consequently, the objective of this chapter is to demonstrate the utility of TFN models in 
forecasting by employing practical applications in hydrology. 

In the next section, it is explained how minimum mean square error (MMSE) forecasts can 
be generated using a TFN model. Then, practical forecasting applications are presented in the 
subsequent two sections. The forecasting experiments of Section 18.3 demonstrate that TFN 
models produce more accurate forecasts than other competing models, including what is called a 
conceptual hydrological model. The forecasting applications of Section 18.4 explain how fore- 
casts from TFN and other models can be combined in an optimal fashion in an attempt to obtain 
improved forecasts. In particular, a TFN, periodic autoregressive (PAR) (see Chapter 14) and a 
conceptual model (see Section 18.3.3) are employed to forecast quarter monthly riverflows. 
These models all approach the modelling and forecasting problem from three different perspec- 
tives and each has its own particular strengths and weaknesses. The forecasts generated by the 
individual models are combined in an effort to exploit the strengths of each model. The results 
of this case study indicate that significantly better forecasts can be obtained when forecasts from 
different types of models are combined. The forecasting findings of Sections 18.3 and 18.4 are 
based upon research by Thompstone et al. (1985) and McLeod et al. (1987), respectively. 
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Because TFN models have been found to produce reliable forecasts in applications, they 
are becoming popular with practitioners. In addition to the forecasting studies described in this 
book. other documented results of TFN forecasting include contributions in hydrology (Anselmo 
and Ubertini, 1979; Baracos et al. 1981; Chow et al., 1983; Snorrason et al.. 1984; Alley, 1985; 
Maidment et al., 1985; Olason and Watt, 1986; Fay et al., 1987; Haltiner and Salas, 1988), fish 
population studies (Stocker and Noakes, 1988; Noakes et al., 1990; Schweigen and Noakes, 
1990) as well as many other fields. Moreover, as explained in Section 18.5, TFN models can 
also be employed for extending time series records, control and simulation. 

For forecasting with nonseasonal ARMA and ARIMA models, the reader may wish to refer 
to Chapter 8. Fortcasting experiments are presented in Section 15.5 on the three types of sea- 
sonal models from Part VI. These seasonal forecasting studies include experiments on combin- 
ing forecasts from diffemnt seasonal models to try to procure better forecasts. 

18.2 FORECASTING PROCEDURES FOR TF" MODELS 

18.2.1 Overview 

A TFN model describes mathematically how one or more inputs dynamically affect a sin- 
gle output or response variable. Ln Section 17.2, a TFN model having one input or covariate 
series is defined in [17.2.5]. Within Section 17.5.2, a TFN model with two or more covariate 
series is given in [ 17.5.31. 

Intuitively, one would expect that forecasts for the response series should be considerably 
improved if one uses forecasting information coming from the covariate series. Consequently, 
the forecasts from a TFN model should be more accurate than those obtained from a separate 
time series model fitted only to the response series. In fact, the forecasting experiments of Sec- 
tion 18.3 demonstrate that a TFN model forecasts better than other competing time series models 
as well as a conceptual model. When a response variable CM be anticipated by changes in the 
values of a covariate, economists refer to the covariate as a leading indicator for the response. 
The future net growth in a national economy, for instance, is often anticipated by leading indica- 
tors such as trade surplus or deficits, interest rates, unemployment and inflation. 

Section 8.2 explains how to calculate minimum mean square error (MMSE) forecasts for 
nonseasonal ARMA and ARIMA models, while Section 15.2 describes how to compute MMSE 
forecasts for three types of scasonal models. The purpose of this section is to present procedures 
for determining MMSE forecasts for various types of TFN models. More specifically, in Section 
18.2.2, formulae are given for calculating MMSE forecasts for TFN models having single or 
multiple inputs, ARMA or ARIMA noise and a deterministic trend component. Moreover, these 
kinds of TFN models can be fitted to yearly or deseasonalized data sets that may first be 
transformed using a Box-Cox transformation. In Section 18.2.3. an illustrative forecasting appli- 
cation is presented for clearly explaining how to calculate MMSE forecasts and for demonstrat- 
ing that a TFN model fortcasts more accurately than an ARMA model separately fitted to the 
response series. 
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18.2.2 Forecasting Formulae 
For convenience of explanation, forecasting formulae are first developed for the case of a 

TFN model having a single covariate series. As explained below, these formulae can easily be 
extended for handling situations for which there arc two or more input series. Other complica- 
tions that are discussed in this subsection include how to handle seasonality, differencing and 
trends when forecasting with a TFN model. 

Single Input TFN Model Having ARMA Noise 
Derivation of MMSE Forecasts: As in Section 17.2, suppose that a variable X causes a 

variable Y. Let the observations for X and Y at time r be given by X, and Y,, respectively. If the 
given series are transformed using a transformation such as the Box-Cox transformation in 
[3.4.30], let the transformed series for X ,  and Y, be denoted as x, and y,, respectively. As in 
[ 17.24, a TFN model for mathematically describing the relationship between x, and y, as well 
as the noise, is written as 

[ 18.2.11 Y ,  - CLy = v(B)cr, - P,) + N, 

where py and p, are the theoretical means of y, and x,, respectively. In the above equation, 

[ 18.2.21 

is the transfer function which models the dynamic effects of the input upon the output. If there is 
a delay time, b, (where b is a positive integer) for x, to affect y,, then x, is replaced by X1-b in 

[18.2.1]. The noise term, N,, is assumed to follow an ARMA process as in [3.4.4] such that 

$(BIN, = W ) O ,  

or 

e(B) (1 - e,B - eg2 - . . . - e p q )  
N, = -11, = a, (1 -I$+ - $282 - . . . - $y) 

As pointed out later, N, could also be an ARIMA model when the data are nonstationary. 

As in [ 16.2.31, suppose that x, can be described using an ARMA model such that 

$JBM, - CL,) = ~, (B)u,  

"I 

(1 - I$&@ - b.2B2 - . . . - $x,s.Bpz) 

By substituting the above into [18.2.1], the 'I" model becomes 

[18.2.3] 

[18.2.4] 
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@(B ) U B  1 e(B ) 
01 u, + - 

6(B)bx(B) b(B) 
YI - P y  = 

= V*  (B )UI + w(B k 

V * ( B )  = v; + v;B + v ; B 2 +  . . . 

The transfer function for u, in [ 18.2.51 is expanded as 

where the V* weights can be calculated by equating coefficients in the identity 

(18.2.51 

[ 18.2.61 

[ 18.2.71 

where the wi weights can be determined using the identity in [3.4.21]. 

By replacing t by t+l in [ 1 8 . 2 3 ,  the TFN model for the actual value of the response vari- 
able at time r+l is 

Yl+/ - P y  = [v&+r + v;4+,-1 + v;u1+/-2 + . . . 

+ + v;+lPl-l + v;+2u1-2 + * * * ) 
+ [a,+/ + w101+/-1+ w201+r-2 + . . . 

+ W P I  + YI+1%I + V1/+2%2 + . . ] [ 18.2.81 

where I is a positive integer. Let Y;(l) be the forecast for yl+/ made at origin t. Keeping in mind 
that only information up to time t can be utilized, let this forecast be written as 

Y;(l)  - Py = (VpPl + Vp,IUI-I + VP,2Ul-2 + . 

+ (wP4 + wLlal-l+ YLz%z + . . [ 18.2.91 

Then, using [ 18.2.81 and [ 18.2.91 
I -  1 

i=o 
Y,+/ -YI(o = z(v.uI+/-i + yiul+/-i) 

[18.2.10] 

where wo = 1.  Following arguments put forward in Section 8.2.2 for forecasting with an ARMA 
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model, one can determine the MMSE forecast for the response variable. In particular, the mean 
square error for the forecast is calculated using l18.2.101 within the expected value given below 
as 

E[y,+/ - j l ( 1 ) ]2  = ($2 + v;2 + v;* + * * * + V/-l)G” 02 2 

+(l+y:+y;+ . * -  +V:_l>d,2 

+ z [ ( v L j  -vI+,) 0, + W/+j - ~ / + j )  001 

” 
[ 18.2.1 11 

which is minimized only if vCj = vLj and yCj = Consequently, the MMSE forecast $,(I) 

of y,+/ at origin t is given by the condiriomI apecution of y,+/ at time 1. Therefore, the MMSE 
forecast using the TFN model as written in [ 18.2.91 is simply 

0 . 2  2 0 2 2  

ia 

%(O - P y  = (v;u, + vLlul - l+  vLZul-2 + * . 

+ ( W P I  + w/+1‘1,-1+ W/+2%2 + . . * 1 [ 18.2.121 

Computing MMSE Forecasts: Equation [18.2.12] could be employed for calculating 
MMSE forecasts for a TFN model having a single input. However, a more convenient way to 
compute the forecasts is to use the TFN format from [ 18.2.11 which is written at time t+l as 

[ 18.2.131 

when the noise is modelled as an ARMA process. To eliminate the operators written in the 
denominators on the right hand side of the equation, one can multiply both sides of the equation 
by $(B)6(B) to obtain 

$ ( ~ ) ~ ( B ) 6 J , + /  - Py) = $(~)Ww,+/ - PJ + 6(~)W)a, , /  [ 18.2.141 

Subsequently, one can multiply together the operators in each term in [18.2.13] and then take 
conditional expectations to determine the MMSE forecasts. Specifically, in [ 18.2.131 let 

6 * ( B )  = $(B)S(B) = 1 - 6;B - S; - . . * - 6’ P“ BP* 

O* ( B )  = $ ( B ) ~ ( B  ) = 1 - 00‘ - O; - - . - O* P+ p+$ 
8*(B)  = 6(B)O(B) = 1 - 8;B - 8;B2 - * .  . - 8’ Bq* [ 18.2.151 q+r 

One can see that 6;, and 0; coefficients can be easily computed by multiplying together the 
known operators as defined above. Then, employing square brackets to denote conditional 
expectations at time t, the MMSE forecast for lead time 1 is 

%(I) - P y  = b,+/I - Py 

= 6;(b,+l-,I - Py) + a b I + / - 2 1  - Py) 

+ * * * + 6;*(bI+/-p-rl - Py) 



622 Chapter 18 

+ o,’(Ix,+/l - PJ - o;([x,+/-lI - P J  

- &X,+/-J - PJ - - * * - 0;+s([4+,-p-s1 - P,) + [a,+/] 

- e;[a,+,-,i - e ; [~ ,+~-~i  - . . . - fl;+~0,+~,-~1 [ 18.2.161 

In order to obtain the MMSE forecasts, the rules for iteratively calculating the conditional expec- 
tations in [18.2.5] for lead times I = 1.2, . . . , BTI: as follows: 

[18.2.17a] 

since Y,+~ is a known observation for j 5 0 and unknown for j > 0. 

[ 18.2.17bl 

where the forecasts for the input variable are determined using the ARMA model for the x, series 
in [ 18.2.41 according to the forecasting rules laid out in Section 8.2.4 for an ARMA model. 

[ 18.2.17~1 

because a,+j is known for j 5 0 and has an expected value of zero for j > 0. 

Variance of MMSE Forecasts: To obtain the v. and \vi weights for the T F N  model as 
written in [18.2.5], one can employ the identities in [18.2.6] and [3.4.21], respectively. On the 
right hand side of [18.2.10], the forecast error is given by the first summation component. From 
the first two terms on the right hand side of [ 18.2.1 11, the variance of the forecast error for lead 
time I is written as 

V ( 0  = ELYI+I - 9,(012 
2/-1 

= c v,*’ + 0, 2l-l cw; [18.2.18] 

where 0; is the variance of the noise term for the ARMA model fitted to the x, series in [ 18.2.41. 
0,’ is the variance of the ARMA noise term for the ‘I” model in [ 18.24 and [ 18.2.121, and the 
v,* and \yi coefficients arc determined using the identities in [18.2.6] and [3.4.21], respectively. 
When the p, and a, series are assumed to be NTD(0,o;) and NID(O.o:), rtspectively, one can 
conveniently calculate the probability limits for each MMSE forecast. For instance, the 95% 
probability limits for $,(I) would be %(I) f 1 . 9 6 a  where ?(I) is estimated using [18.2.18] 
when the coefficient and noise estimates appropriately replace the theoretical values given on the 
right hand side of the equation. 

i=O i=O 
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F o r e  in the Original Domain: If the y, or x,  ire transformed using a Box-Cox 
transformation from (3.4.301, the MMSE forecasts calculated above are for the transformed 
domain. To obtain forecasts in the original units or untransformed domain, one would have to 
take an inverse Box-Cox transformation as is explained in Section 8.2.7 for the case of an 
ARMA model fitted to a single series. Keep in mind that both the forecasts and comsponding 
probability limits in the transformed domain CM be determined for the untransformed domain. 

Multiple Input TFN Model Having ARMA Noise 

one could have a 'I" model with I input series which is written in [ 17.5.31 as 
The TFN model in [ 17.2.51 and [ 18.2.11 has a single covariate or input series x,, In general, 

[ 18.2.191 

To employ this model for forecasting purposes, one follows a procedure similar to that carried 
out for the TFN model having a single covariate series. In particular, first one must write the 
TFN model so that there is no operator in the denominator of any term in [18.2.19]. This is 
accomplished by multiplying [ 18.2.191 by &(B)&(B) * * S,(B)+(B)]. Next, by separately fit- 
ting an ARMA model to each of the xI, series, one calculates the MMSE forecasts for each xI, 

series by following the procedure of Section 8.2.4. Thirdly, one iteratively calculates the MMSE 
forecasts for the response or output series for lead times I = 1,2, . . . , using the rules in [8.2.16]. 
Additionally, using a formula similar to that given in [ 18.2.181 for a TFN having one input, one 
can determine the probability limits for each forecast. Finally, if the response variable and other 
input covariates have been transformed using a Box-Cox transformation. one can, if desired, cal- 
culate the corresponding forecasts and probability limits in the untransformed domain. 

Seasonal TFN Model 

As noted in Section 17.2.1, a simple procedure is available for handling seasonal data. 
Firstly, the output series and each of the input series may be transformed using a Box-Cox 
transformation in order to cause each time series to be approximately normally distributed. 
Secondly, assuming that there is approximate stationarity within each season for a given series 
so that a graph of the series follows a shape similar to that in Figure VI.1 for an average monthly 
riverflow series, one can deseasonalize the series using a procedure from Section 13.2.2. Next, 
an appropriate 'I" model is fitted to the set of deseasonalized series using the model construc- 
tion techniques explained in Sections 17.3 and 17.5.3. and an ARMA model is separately 
developed for each deseasonalized input series by following the model building methods of Part 
III. Fourthly, by employing the forecasting formulae of Section 8.2.4, MMSE forecasts can be 
iteratively generated for each deseasonalized input series using the ARMA model fitted to the 
series. Next, by utilizing the forecasting formulae for TFN models presented in this section as 
well as the forecasts for the inputs, MMSE forecasts can be iteratively determined for the 
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response variable for lead times I = 1,2, . . . , . Finally, to obtain forecasts in the untransfonned 
domain, one must first take the inverse deseasonalization transformation of the forecasts and 
then invoke the inverse Box-Cox transformation. The procedure for forecasting seasonal data 
using a TFN model is depicted in Figure 18.2.1. 

Another approach for handling seasonal data is to employ a periodic TFN model. The 
interested reader may wish to explore this possibility by answering problem 18.5. 

TFN Model Having ARIMA Noise 

Suppose that one wishes to fit a 'I" model to a nonseasonal response series which has one 
nonseasonal input series and that these two series are nonstationary. One way to remove this 
nonstationarity is to introduce the differencing operator of Section 4.3.1 into the noise term of 
the TFN model so that the noise component follows an ARIMA rather than an ARMA process. 
Accordingly, the nonstationary version of the TFN model in [18.2.1] is 

1 8.2.201 

where 

V d  = ( 1 - B)d 

is the differencing operator defined for d taking on values of zero when the data are stationary 
and positive integers when the data are nonstationary. As exemplified by the examples in Sec- 
tion 4.3.3, usually d = 1 or 2 when an ARIMA model is fitted to a single yearly nonstationary 
time series. Because of the differencing operator in [18.2.20], both the y ,  and x, series are 
assumed not to have mean levels. 

To obtain MMSE forecasts for the TFN model in [18.2.20], the procedure is similar to that 
for the stationary case. Firstly, one must eliminate operators in the denominator by multiplying 
[ 18.2.201 by s(B)+(B)Vd to obtain 

6(B)W)VdY,  = $@)Vdw(BZr, + s ( m W ) a ,  L18.2.211 

Next, after multiplying together the operators in each term in [ 18.2.211, one can iteratively calcu- 
late the MMSE forecasts by employing the rules in [18.2.17]. Finally, after taking into account 
the fact that there is a differencing operator, probability limits can be calculated for each forecast 
using a formula similar to that in [ 18.2.181. 

If one were dealing with seasonal time series that follow graphs similar to those in Figures 
VI.2 or VI.3, one could possibly model a set of these time series using a TFN model by having a 
SARIMA noise term. As defined in Section 12.2.1, a SARIMA model contains nonseasonal and 
seasonal differencing operators to remove nonseasonal and seasonal nonstationarity. respec- 
tively. Moreover, the SARIMA model also has seasonal AR and MA operators in addition to the 
nonseasonal AR and MA operators. 
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Figure 18.2.1. Forecasting seasonal series using a TFN model. 
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TFN Model Having a Deterministic Trend 

As discussed in Sections 4.5 and 4.6, differencing is designed for nmoving stochastic 
trends in a time series. However, differencing may not eliminate a deterministic trend contained 
in a time series. To explain how a deterministic trend can be modelled and fomasted rewrite 
[18.2.20] as 

[ 18.2.221 

where C L ~  is a level in the y, series that the differencing cannot eliminate. By multiplying 
[ 18.2.221 by 6(E)$(E).  one obtains 

S(B)$(B)Vd~, = 80 + b@)o(B)Vdx, + 6(B)W)a t  [ 18.2.231 

where 

80 = 6 ( m W c L ,  

= W)6(1)KY 

In the expression for 9,. one replaces each B by unity in the two operators because Ekp,,, = p.,+ 

fork = 0.1.2,. . . . 
The procedure for calculating MMSE forecasts using (18.2.231 is the same as before except 

for the 9, term on the right hand side of [18.2.23]. Consequently, the rules for conditional 
expectations in [18.2.17] are employed to determine the MMSE forecasts for the response and 
input series, keeping in mind that [e,] = 8, in [18.2.23]. 

18.23 Application 

The Red Deer River is a tributary of the South Saskatchewan (abbreviated as S.Sask.) River 
which flows eastwards from the Rocky Mountains across the Canadian prairies. In Section 
17.4.2, a TFN model is constructed for describing the influence of the deseasonalized loga- 
rithmic Red Deer riverflows upon the deseasonalized logarithmic S.Sask. riverflows. From 
[ 17.4.11, this calibrated TFN model is written as 

(1 - 0.494E) 
(1 - 0.856s) " y, = (0.572 + 0.238BLr, + [ 18.2.241 

where y, and x, are the deseasonalized logarithmic S.Sask. and Red Deer riverflows, respec- 
tively, and 6; = 0.310. 

multiply the difference equation by the operator (1 - 0.856s) to get 
To write the model in [18.2.24] in a convenient form to calculate MMSE forecasts, first 

(1 - 0 . 8 5 6 8 ) ~ ~  = (1 - 0.8568)(0.572 + 0 . 2 3 8 E ) ~ ~  + (1 - 0.494B)Ul 

or 

y, = 0.856yt-l+ 0 . 5 7 2 ~ ~  - 0.25h1-1 - 0.204X,-2 + 0, - O.494,-1 

By nplacing r by r+l and taking conditional expectations in the above equations, the MMSE 
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forecast for lead timc 1 is 

f i ( 1 )  = 0.8561v,+,-1] + O.572$(1) - O.252[X,+,-1I - 0*204[X,+,-2I 

+ ta,+,l - 0.494[a,+,-11 [ 18.2.251 

For the case of a one-step-ahead forecast where 1 = 1 the above equation becomes 

fi(1) = 0.856lV,] + 0.572X;(l) - 0.252[~,] - 0.204[~,-1] + [ ~ , + l ]  - 0.494[~,] 

= 0.856~~ + 0.572ff(1) - 0.252.~~ - 0.204~,-1- 0.49&, r18.2.261 

Notice in [18.2.25] and r18.2.261, one requires MMSE forecasts for the x, series. Conse- 
quently, one must separately fit an ARMA model to the x, series and then use this model to gen- 
erate MMSE forecasts for the x, series. When M ARMA model is separately designed for 
describing the x, series for the deseasonalized logarithmic Red Deer flows, the most appropriate 
ARMA model is found to be an ARMA(1,l). The estimated ARMA(1,I) model for the x, series 
is given as 

(1 - 0.845B)x, = (1 - 0.292B)~, [ 18.2.271 

where U, is the innovation series at time t and 6: = 0.482. By substituting r+l for t and taking 
conditional expectations in [18.2.27], the formula for iteratively generating MMSE forecasts for 
x, is 

x;( l )  = 0.845[x,+,-11 + [U,+,l - 0.292[U,+,-11 [ 18.2.281 

To obtain the one-step-ahead MMSE forecast in [ 18.2.281 simply replace 1 by unity to obtain 

x;(l) = 0.845[x,] + [U,+11 - 0.292[U,] 

= 0.845~~ - 0 . 2 9 2 ~ ~  [ 18.2.29) 

To calculate MMSE forecasts for the y, series in the TFN model in [18.2.25], one can 
employ (18.2.281 to determine the MMSE forecasts for the x, series which are needed as input 
forecasts in [18.2.25]. Consider the case where one wishes to find Y,(l) using t18.2.261. Firstly, 
&(l) is found by utilizing [ 18.2.291 and then 2, (1) is substituted into [ 18.2.261 to get Y;( 1). From 
[ 18.2.181, the variance of the one-stepahead MMSE forecast error for Y;( 1)  is given theoretically 
as 

V(1) = 00'0.' + 0,' [18.2.30] 

where the estimate is calculated as 

v(1) = (0.572)%.482 + 0.310 = 0.468 

To calculate the lead one MMSE forecast for the original untransformed series, the deseasonali- 
zation and logarithmic transformations must be taken into account. Accordingly, from time t ,  
the lead one MMSE forecast fi (1)  for the untransformed series is estimated using 
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[ 18.2.311 

where i,,, and & are the estimated mean and standard deviation calculated using [ 13.2.41 and 
[ 13.2.51. respectively, for the month that is currently connected with time r+l of the y, series. As 
explained in Section 8.2.7, the last term in the exponent in [18.2.31] is the correction required for 
producing the MMSE forecast in the unuansformed domain. 

When calculating MMSE forecasts for the yf series using the TFN model in [18.2.251, 
information from the input series is used in the forecast calculation. Consequently, a priori, one 
would expect a TFN model to forecast more accurately than an ARMA model that is separately 
fitted to the response series. For the case of the y, series representing the deseasonalized loga- 
rithmic flows of the S. Sask. River, the most appropriate model to fit to this series is an 
ARMA(1,I) model which is calibrated as 

(1 - 0.8 19)y, = (1 - 0 . 2 5 3 ) ~ ~  [ 18.2.321 

where v, is the innovation series at time t and 6: = 0.507. Notice that the variance of the noise 
has a value of 6; = 0.507 for the ARMA model in [ 18.2.321 and a magnitude of G: = 0.310 for 
the TFN model in [18.2.24]. Consequently, the TFN model provides a better fi t  to the available 
information than the single ARMA model and has a residual variance which is about 40% 
smaller. By replacing t by r+l and taking conditional expectations in [ 18.2.321, the formula for 
iteratively determining MMSE forecasts for y, using an ARMA model is 

Y;(O = 0.819b,,r-,l+ Iv,+rI - 0.2~3[Vf,,-,I [ 18.2.331 

To ascertain the one-step-ahead MMSE forecast in r18.2.331, simply assign I a value of one to 
get 

Y;(l) = 0 . 8 1 9 ~ , ]  + [v,+,] -0.253[~,]  

= 0.819~, - 0 . 2 5 3 ~ ~  [ 18.2.341 

In the untransformed domain, the lead one MMSE forecast, Y;< 1)  is calculated using 

1 1 
2 

+ i,,, + -(0.507)0: [ 18.2.351 

where Y;(l) is determined using [18.2.34], 6: =0.507 as in I18.2.321, and G,,, as well as i,,, are 
the same as in [18.2.31]. 

As would be expected the TFN model for the response variable produces more accurate 
forecasts than an ARMA model separately fitted to the same series. More specifically, when the 
'I" model in [18.2.26] along with the inverse transformation in [18.2.31] are employed for 
obtaining lead one MMSE forecasts in the unuansformed domain, the mean square error for all 
months in 1%3 is about 20% less than for the forecasts obtained using the ARMA(1,l) model in 
[ 18.2.341 and [ 18.2.351 for the output series. C-wquently, the input series in the TFN model 
acts as a leading indicator to significantly improve the accuracy of the MMSE forecasts of the 
output series. 



Forecasting 629 

18.3 FORECASTING QUARTER-MONTHLY RIYERFLOWS 

18.3.1 Overview 
A key problem in the operation of a water resources system is the forecasting of natural 

inflows to the various reservoirs in the system. It is increasingly recognized that time series 
analysis is of considerable practical use in dealing with this problem. The current section 
demonstrates the practical importance of this methodology by examining the use of the TFN 
models of Chapter 17 to forecast natural inflows in the Lac St. Jean reservoir. a major com- 
ponent of the multi-reservoir hydroelectric system operated by Alcan Smelters and Chemicals 
Ltd. in the province of Quebec, Canada. 

The electricity generated by this system is used at Alcan’s aluminum smelter in Arvida, 
Quebec. In order to insure a constant and adequate supply of power, it is necessary to schedule 
releases from the reservoir in an optimum fashion. Thus, forecasts of the quarter monthly 
inflows into the reservoir are required so that the desired outflow and hydraulic head are avail- 
able for power generation. 

The forecasting experiments presented in this section were originally presented by Thomp- 
stone et al. (1985). The output for the TFN model used in the study are the quarter-monthly (i.e., 
near-weekly) natural inflows to the Lac St. Jean reservoir. The covariate series for the TFN 
model are rainfall and snowmelt, the latter being a novel derivation from daily rainfall, snowfall 
and temperature series. It is clearly demonstrated in Section 18.3.2 using the residual variance 
and the AIC (see Section 6.3) that modelling is improved as one starts with a deseasonalized 
ARMA model (Chapter 13) of the inflow series and successively adds transfer functions for the 
rainfall and snowmelt series. It is further demonstrated that the TFN model is better than a PAR 
model (Chapter 14) of the inflow series. The split-sample experiments are used in Section 
18.3.4 to compare one-step-ahead forecasts from this TFN model with forecasts from other sto- 
chastic models as well as with forecasts from a so-called conceptual hydrological model 
described in Section 18.3.3 (i.e., a model which attempts to mathematically simulate the physical 
processes involved in the hydrological cycle). It is concluded that the TFN model is the pre- 
ferred model for forecasting the quarter-monthly Lac St Jean inflow series. 

18.33 Constructing the Time Series Models 
The application involves a series of quarter-monthly natural inflows in m3/s to the ~ a c  St. 

Jean reservoir in the Province of Quebec. One of the covariate series selected for possible incor- 
poration in a dynamic model of the inflow was rainfall. The quarter-monthly rainfall series in 
mm/day represents the spatial average of rainfall over the entire 57,000 km2 watershed (Thomp- 
stone, 1983). The second covariate series was a rather novel quarter-monthly snowmelt series in 
mm/day, and it was calculated using logic extracted directly from the conceptual hydrologic 
model which is described in the next subsection. Data were available for the years 1953-82 
mompstone et al., 1980) but only the years 1953-79 were used in fitting the models described 
in this section. The other three years were reserved for the split-sample forecasting experiment 
described in Section 18.3.4. 

Following Section 13.3, the identification, estimation and diagnostic checking stages of 
model construction were used to build a deseasonalized ARMA model for the Lac St Jean 
inflow series. Several models were examined and, based on the AIC, the standard errors (SE’s) 
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of estimation of the model parameters, and the results of diagnostic checking, the following 
ARMA (3,l) model was chosen: 

(1 - 1.430B +0.626B2-0.113B3)~,@)=(1 -O.653B)a1 [18.3.1] 

when 1 = 0.0 indicates the given monthly series is transformed by taking natural logarithms as 
in [3.4.30]. the z, inflow series is deseasonalizcd by subtracting seasonal means and dividing by 
seasonal standard deviations, and a, is the approximately normally distributed white noise inno- 
vation having a mean of zcro and a variance of Ga =0.685. All AR and MA parameters were 
more than two SE's from zero, and thus are statistically significant. Diagnostic checking of the 
residuals confirmed them to be uncorrelated, homosctdastic and approximately normally distri- 
buted (see Chapter 7). The AIC of the model was found to have a value of 13.77 1.24. 

Both the empirical approach and the Box and Jenkins procedure were used to identify TFN 
models (see Section 17.3.1) for forecasting Lac St Jean inflows using fvst the rainfall series, 
then the snowmelt series, and then both series together. The rainfall series was deseasonalized 
by subtracting the seasonal mean from each observation, and then dividing this by the seasonal 
standard deviation. The sample autocorrelation function (ACF) calculated using [2.5.9] showed 
the resulting series to be white noise. The sample CCF (cross correlation function) betwttn the 
deseasonalized rainfall and the deseasonalized, logarithmic inflow series is shown in Figure 
18.3.1. The 95% confidence limits in this figure are calculated under the assumption that the 
sample CCF values are NID(0,n-') where n is the length of the series (see Section 16.2.2). 
Because rivetflows am caused by rainfall, the values of the sample CCF are significantly large 
for zero and negative values in Figure 18.3.1. As a result of the extra large value at lag -1 ,  the 
order of the operator in the numerator of the transfer function in [ 18.2.21 is m = 1. The dying out 
effect for negative lags suggests that r = 1 for the operator in the denominator of the TFN in 
[ 18.2.21, This form of model was fit to the data, and the resulting noise was identified as being 
ARMA(2,l). Consequently, the TFN model which gives the relationship between deseasonal- 
ized rainfall, xI1 .  and deseasonalized logarithmic inflow, y,, was selected to be: 

[ 18.3.21 

where 

(1 - 0,B) 

(1 - +IB - 92B2) 
N, = 

Table 18.3.1 provides the MLE's (maximum likelihood estimates) of the parameters and 
their corresponding SE's. Diagnostic checking showed the rtsiduals to be uncorrelated and 
approximately normally distributed. The AIC and residual standard deviation for the rainfall and 
inflow 'I" model were found to be 13,159.76 and 0.583, respectively. These values compare 
with 13,771.24 and 0.685, respectively, for the deseasonalized inflow ARMA(3.1) model. Thus, 
the inclusion of the rainfall series into the modelling has improved the accuracy of the model for 
the inflow series. 
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MLE’s SE’s 
0.608 0.034 
0.257 0.016 

-0.277 0.018 
1.410 0.173 

-0.472 0.127 
0.762 0.163 

Figure 18.3.1. Sample CCF between deseasonalized, logarithmic inflow 
and deseasonalized rainfall series along with the 95% confidence limits. 

For the case of the snowmelt series, the selected deseasonalization involved only the sub- 
traction of the seasonal mean from each observation. The following AR(2) model was identified 
and fitted to the deseasonalized series: 

[ 18.3.31 

where the estimates of the parameters and their corresponding of SE’s are given in Table 18.3.2. 
Diagnostic checking showed that the residuals were uncomlated and approximately nonnally 

(1 - 81.9 - 8d2h,2 = 012 
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distributed. 

Table 18.3.2. Parameter estimates and SE's for the AR(2) model of snowmelt. 

42.2 

In accordance with the Box and Jenkins identification procedure of Section 17.3.1, the y, 

output series was filtered, using [17.3.5] to obtain the estimated AR operator in [18.3.31, to pro- 
duce the filtered output 

0, = (1 - 0.267B + 0.156B2)y, [ 18.3.41 

1.00r 

I +  

I I I I I 
24 16 8 0 8 16 24 

+ - 
1 .oo 

LAG 

Figure 18.3.2. Sample CCF between the f i l t e d  inflow and prewhitened 
deseasonalized snowmelt. 

The sample CCF between the prewhitened deseasonalized snowmelt series and the transformed 
output series is shown in Figure 18.3.2. This CCF suggested that the form of the transfer func- 
tion be r = 1 and rn = 1 in r18.2.21. Such a model was fitted to the data, and the remaining noise 
was identified as AR(1). The TFN model chosen to relate deseasonalized snowmelt, x,,, and 
deseasonalized logarithmic inflow, y,, was therefore: 
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r18.3.51 

and the estimates of the parameters and their SE's are as given in Table 18.3.3. The residuals 
were shown to be independent and approximately normally distributed. The AIC and residual 
standard deviation for this snowmelt to inflow TFN model were found to be 13,495.36 and 
0.664, respectively. These results suggest that a model of inflows including the relationship with 
snowmelt is better than a model without snowmelt, but that the rainfall series is of more use than 
the snowmelt series in explaining inflow. 

Table 18.3.3. Parameter estimates and SE's for snowmelt to 
the inflow TFN model. 

In order to further improve the modelling of the Lac SL Jean inflows, a TFN model includ- 
ing both the rainfall and snowmelt covariate series was constructed. The form of the transfer 
functions in r18.3.21 and r18.3.51 was conserved (i.e.. r = m = 1). a model was estimated, and an 
ARMA(2.1) model was identified for the resulting noise series. The final model for explaining 
the deseasonalized logarithmic inflow series, y,, as a function of the deseasonalized rainfall, xI1), 
and snowmelt, x12, series was thus: 

where 

[ 18.3.61 

The estimates of the parameters and their SE's art given in Table 18.3.4 for the transfer func- 
tions, and in Table 18.3.5 for the noise term. 
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Series i 61.j 
DeseasonalizedRainfall I 0.625 

(0.033) 
Deseasonalized Snowmelt 2 0.579 

(0.090) 

Chapter 18 

% UlJ 

0.233 -0.269 
(0.016) (0.018) 
0.102 -0.046 

(0.013) (0.017) 

Diagnostic checking of the residuals from the fiaed model in [ 18.3.61 suggested they were 
normally distributed. Figure 18.3.3 shows a plot of the values of the residual autocorrelation 
function (RACF) and their 95% confidence intervals, defined in Section 7.3.2. Because all of 
the values of RACF except one fall within the 95% confidence limits, the residuals are white. 
The large value at lag 26 is probably due to chance and not the lack of a suitable model. Further 
diagnostic checking involved cross cornlation functions. Figure 18.3.4 shows the cross correla- 
tions between the deseasonalized rainfall series and the residuals for the TFN model in [ 18.3.61, 
while Figure 18.3.5 shows the values of the CCF between residuals of the AR(2) deseasonalized 
snowmelt series in [18.3.3] and the residuals of [18.3.6]. Because the values of the CCF in Fig- 
ures 18.3.4 and 18.3.5 fall within the 95% confidence interval. the noise term in the TFN model 
is not correlated with the prewhitened input series. 

The AIC for the TFN model in [ 18.3.61 is 13.074.37, and the residual standard deviation is 
0.562. These two measures c o n f i  that the use of both the rainfall and snowmelt covariate 
series better explains the inflow series than the employment of either of the series individually. 
Table 18.3.6 provides a summary comparison of the AIC values and the residual standard devia- 
tions of the four models of the Lac St Jean unconmlled inflows developed in this section. Note 
that it can be shown theoretically that the MMSE forecasts from the TFN model of [18.3.6] are 
more accurate than those from the deseasonalized ARMA model. This fact is confmed by the 
forecasting experiment described in Section 18.3.4. 

Finally, in Section 14.6 a PAR model was fitted to the Lac St. Jean quarter-monthly 
inflow series. The AIC of this model was calculated as 13,681.61, and this suggested it was 
preferable to the deseasonalized ARMA model, but not as good as any of the TFN models. 
Nevenheless it was retained for use in the forecasting experiment described in Section 18.3.4. 
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Figure 18.3.3. RACF and 95% confidence interval for 
the TFN model in [18.3.6]. 

Table 18.3.5. Parameter estimates and SE’s for the 
noise model in [18.3.6]. 
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Figure 18.3.4. CCF between the descasonalized rainfall and 
residuals of the 7" model in [ 18.3.61 along with the 

95% confidence interval. 
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Figure 18.3.5. CCF between residuals of AR(2) deseasonalized 
snowmelt series and residuals of the TFN model in [ 18.3.61 

along with the 95% confidence interval. 

Table 18.3.6. Comparisons of AIC and values for 
the deseasonalized A 

Input Series 

Deseasonalized Rainfall 

Deseasonalized Snowmelt 

.I MA and TFT 
I 

models. 
I 

18.33 Conceptual Hydrological Model 

A realtime daily hydrological forecasting system has been developed for use in the opera- 
tional management of the hydroelectric system operated by Alcan Smelters and Chemicals Ltd., 
in the Saguenay-Lac St. Jean region of Quebec. The forecasting system (Thompstone et al., 
1981) uses a lumped parametric conceptual hydrological model to simulate the relationship 
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between daily meteorological conditions and natural inflows to various reservoirs. When the 
forecasting system is executed, recent meteorological conditions are represented using m n t  
measurements at metcorological stations, and future metcorological conditions are represented 
using meteorological forecasts provided by the Atmospheric Environment Service of Environ- 
ment Canada. The basic strategy in the selection of a conceptual hydrological model was to 
choose a simple and flexible model in preference to more elaborate models, provided no signifi- 
cant improvement in the accuracy of the forecasts could be obtained by the more complex 
models. 

There exists a multitude of conceptual models which have been used in operational hydro- 
logical fortcasting, each model having its particular strengths and weaknesses (World Meteoro- 
logical Organization, 1975). The conceptual model chosen for the Alcan forecasting system was 
originally dtvcloped by S.I. Solomon and Associates (1974), and subsequently modified by Kite 
(1978), the modified model being called the Water Resources Branch model. It has undergone 
further modifications since inclusion in the Alcan system. A detailed description of the model 
and the reasons it was chosen are contained in Thompstone (1983) and references therein. 

The realtime daily hydrological forecasting system which uses the conceptual hydrological 
model provides hydrological forecasts based on meteorological forecasts and long term daily 
meteorological statistics (Thompstone et al., 1981). This system, referred to as PREVIS, has 
been operational since March, 1979, and it can be executed on a daily basis to provide hydrologi- 
cal forecasts for seven days into the future. The meteorological forecasts have been obtained, 
interpreted and entered into the forecasting system only on weekdays. Consequently, metcoro- 
logical forecasts were not available for use in the proposed forecasting study. 

In order to provide a basis for comparison of forecasts from the conceptual hydrological 
model, it was decided that observed meteorological conditions would be used in place of the 
meteorological forecasts and long term statistics. In other words, the conceptual hydrological 
model was used in the simulation mode rather than the forecasting mode. Thus, results of the 
forecasting study are biased in favour of the forecasts from the PFEVIS system. 

In using the PREVIS system, it has been recognized that the model generally follows the 
trends of inflows, but during certain periods is consistently higher or lower than the observed 
inflows. Consequently, an ad hoc smoothing of the raw hydrological forecasts was inwduced 
into the system. The inflow forecast for the next seven days is adjusted by adding the average 
error of simulated versus observed inflows for the previous seven days. During the spring 
period, since inflows vary relatively rapidly, the smoothing period is d u c e d  to the previous 
three days. In order to approximate this crude smoothing, a second set of so called forecasts 
from the PREVIS system was developed by adjusting the inflow forecast for the next quarter- 
month period by the error for the previous quarter-month period. These forecasts are labelled 
herein as PREVIS/S. 

Note that in order to compare forecasts from the PREVIS and PREVIS/S models in the 
same domain as fortcasts from the other models, these former forecasts are transformed using 
natural logarithms. This is necessary since the Pitman (1939) correlation test (see Section 8.3.2) 
used to compare mean squared errors of forecasts is based on the forecast errors being approxi- 
mately normally distributed. 
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18.3.4 Forecasting Experiments 

In order to compare the forecasting abilities of the deseasonalized ARMA models, TFN 
model, PAR model and conceptual hydrological model, a split-sample approach was adopted 
whereby one-step-ahead quarter-monthly forecasts were generated for h e  years of data, from 
the beginning of 1980 to the end of 1982. Data from these years were not used in either building 
the time series models or in calibrating the conceptual hydrological model. 

Until recently, a great deal of effort had been devoted to the advancement of forecasting 
procedures while relatively little resewh had been devoted to developing methods for evaluat- 
ing the relative accuracy of the forecasts produced by the different procedures (Thompstone et 
al., 1985; Noakes et al., 1985, 1988). Granger and Newbold (1973, 1977) have provided useful 
comments concerning the evaluation of forecasts and the costs of errors. The mean square error 
(MSE) is a cost function which is intuitively simple to understand and has been widely used in 
previous forecasting studies. It is the MSE and its square root, the standard error of forecast, 
which are used herein to compare the competing forecasting models. Various forecasting tests 
are discussed in detail in Section 8.3.2 and utilized in forecasting experiments carried out in 
Chapters 8,15 and 18. 

Noakes et al. (1985. 1988) have underlined the importance of not simply ranking models 
according to the MSE's of competing procedures. In their study, they used the test of Pitman 
(1939) and a likelihood ratio test as well as a nonparametric test to compare the one-step-ahead 
forecasts from different models (see also Sections 8.3.4, 15.3 and 15.4). Since the tests led to 
essentially the same conclusions, and the Pitman test is computationally less demanding, it has 
been adopted for the current research. 

In order to describe the Pitman (1939) test, which is also presented in Section 8.3.2, let el, 
and e2, ( t  = 1.2, . . . , L) denote the one-step-ahead forecast errors for models 1 and 2 respec- 
tively. Then, the null hypothesis from [8.3.2] is 

H,: MSE(el , , )  = MSE(eLr) [18.3.7] 

where MSE(e)  = <e*>, and <.> denotes expectation. The alternative hypothesis, H I ,  is the 
negation of Ho. 

As explained in Section 8.3.2 just after [8.3.2], for Pitman's test, let S, =el, + e2, and 
D, = el, - e2,. Pitman's test is equivalent to testing if the correlation, r ,  between S, and D, is 
significantly different from zero. Therefore, provided L > 25, Ho is significant at the 5% level if 

"he results of the forecasting study arc summarized in Tables 18.3.7 and 18.3.8. Table 
18.3.8 shows the root mean squared emrs (RMSE's) of the forecasts of the logarithmic series 
for the five different models. The model with the smallest RMSE is the TFN model, while the 
second best model is the deseasonalized ARMA model. The worst forecasts are provided by the 
PREVIS model, while the PREVISIS model is second worst. 

Irl > I.%&. 
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Models 
ARMA/DES* 

PAR* 
PREVIS 

PREVISIS 

Chapter 18 

ARMAfDES PAR PREVIS PREVIS/S TFN 
0.0296 (=) 0.2675 (+) 0.1814 (+) 0.0902 (=) 

0.0296 (=) 0.2561 (+) 0.1704 (+) 0.1OOO (=) 

0.2675 (-) 0.2561 (-) 0.0995 (=) 0.3225 (-) 

0.1814 (-) 0.1704 (-) 0.995 (=) 0.2421 (-) 

Table 18.3.7. RMSE's of forecasts for the logarithmic quarter-monthly 
Lac St. Jean uncontrolled inflows from 1980 to 1982. 

0.389 

0.278 
PREVIS/S 

Table 18.3.8. Correlation test statistics and forecast errors 
for the forecasts for the quarter-monthly logged Lac St. Jean 

uncontrolled inflows from 1980 to 1982. 

(1) Table shows Ir I. 
(2) Difference in MSE's of forecasts significant at 5% level if Ir I > 0.163. 

(3) A piirenthetical = indicates the difference is not significant, a + indicates the row 
model is "better" than the column model (significant difference and smaller MSE), 
and a - indicates the row model is "worse" than the column model. 
* indicates the model is better or equal to all other models. (4) 

Table 18.3.8 examines the statistical significance of differences in the mean squared errors 
of forecasts from the various models. Using a 5% significance level, it is concluded that each of 
the time series models is better than or equal to the PREVIS and PREVIS/S models. There is no 
significant difference in forecasts from the ARMADES, PAR, and TFN models. However, 
since the TFN model has the smallest RMSE of forecasts and is favoured with respect to the AIC 
and residual variance, it is recommended that it be adopted for forecasting the Lac St. Jean 
inflow on a quarter-monthly basis. The physical relationship known to exist between rainfall, 
snowmelt and inflow reinforces this recommendation. Furthermore, a comparison of the 
RMSE's of forecasts in the inflow domain for which the flows are not logarithmic confms that 
forecasts from the TFN model art preferable to forecasts from the conceptual model (RMSE of 
512.30 as opposed to 625.85). 
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18.35 Condusions 

The TFN model described in [18.3.6] provides an effective means of forecasting quarter- 
monthly inflows to the Lac St. Jean reservoir bascd on rainfall and snowmelt. The most recent 
statistical techniques and an understanding of the physical processes involved are used to iden- 
tify, estimate and verify a reasonable model. Both the empirical approach and the Box and Jen- 
kins approach are useful in model identification (see Section 17.3.1). The MAICE procedure 
(Section 6.3) indicates the TFN model with both covariate series is better than a deseasonalized 
ARMA model, PAR model or TFN model with only one or another of the covariate series. The 
split-sample forecasting experiments of Section 18.3.4 demonstrate that the full TFN model pro- 
vides better forecasts than a particular conceptual hydrological model. Consequently. the TFN 
model is the preferred model for forecasting the quarter-monthly Lac St. Jean inflow series. It is 
interesting to note that Chow et al. (1983) also found flood forecasts from a TFN model to be as 
reliable as forecasts generated from a complex conceptual model. Hence, they concluded that 
TFN models provide an attractive alternative to conceptual models for use in maltime flood fore- 
casting. 

18.4 COMBINING HYDROLOGICAL FORECASTS 

18.4.1 Overview 

Often a variety of models can be fitted to a given data set. For example, in Section 18.3, 
time series models consisting of TFN, PAR (Chapter 14) and deseasonalized ARMA (Chapter 
13) models, plus two related conceptual models, are fitted to a hydrological time series. Each of 
these calibrated models can then be employed for generating forecasts for the series. Although 
one model may produce more accurate forecasts than others in the long run, it may not do so in 
every instance. Consequently, one may wish to improve the forecasts by combining forecasts 
from two or more models in accordance to their relative performances. 

The objective of this section is to show how better forecasts can be obtained when TFN 
forecasts are combined with other types of forecasts. In particular, a TFN, PAR and two similar 
conceptual models are employed to forecast quarter monthly riverflows, as is done in Section 
18.3. These models all approach the modelling and forecasting problem from three different per- 
spectives and each has its own particular strengths and weaknesses. The forecasts generated by 
the individual models are combined in an effort to exploit the strengths of each model. The 
results of this case study indicate that significantly better forecasts can be obtained when fore- 
casts from different types of models are combined. In particular, the best forecasts are obtained 
when TFN and PAR forecasts are optimally combined. These forecasting experiments are also 
reported by McLeod et al. (1987). 

Formulae for combining forecasts in an optimal manner from competing models are 
presented in Section 15.5.2. Additionally, forecasting experiments are presented in Section 
15.5.3 for combining forecasts for monthly rivefflows using SARIMA (Chapter 12) and PAR 
(Chapter 14) models. Because the SARIMA model is not well designed for modelling monthly 
riveflows for which there is stationarity within each SeaSOn (see the introduction to Part VI and 
Section 12.1), combining forecasts from this model with the better forecasts from the PAR 
model does not produce improved forecasts. 
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18.4.2 Combination Forecasting Experiments 

The data used in this section are identical to those employed in the forecasting experiments 
of Section 18.3. More specifically. the quarter-monthly inflows for the Lac St Jean reservoir are 
utilized. Recall from Section 18.3.1, that accurate quarterly-monthly forecasts for rivefflows are 
required so that A ~ C M  can optimally generate hydroclectrical power for use in its aluminum 
smelters. 

Thirty years of quarter-monthly rivefflows are available from 1953 to 1982, inclusive. As 
is done in Sections 18.3.2 and 18.3.3, models are fitted to the fmt twenty-seven years of the data 
and then used to forecast the one-step-ahead fortcasts for the last three years. Prior to fitting 
models to the riverflows, the data am first transformed using natural logarithms. 

The calibrated models used in the study a~ already described in Sections 18.3.2 and 18.3.3. 
In particular. the finite difference equation for the best TFN model is given in [ 18.3.61 while its 
parameter estimates are listed in Tables 18.3.4 and 18.3.5. The most appropriate PAR model is 
identified using graphs of the sample periodic ACF and PACF (defined in Section 14.3.2). The 
two versions of the conceptual model used in the combination forecasting study are the PREVIS 
and PREVIS/S conceptual models described in Section 18.3.3. 

The RMSE’s of the logarithmic forecast errors are presented in Table 18.3.7. As can be 
seen, the TFN model has the smallest RMSE of all the models considered. As such, this value 
will be used as a basis for comparison of the various techniques employed to combine the indivi- 
dual fortcasts. 

Notice that the deseasonalized ARMA and PAR models have almost the same RMSE’s in 
Table 18.3.7. Because the PAR model is generally better to use than the deseasonalized model 
for modelling seasonal riverflows for which there are sufficient data (see discussion in Part VI), 
the deseasonalized ARMA model is not employed in the combination experiments of this sec- 
tion. 

The equations for combining forecasts an given in Section 15.5.2. In this study, the 
weights for combining the individual fortcasts were calculated using both [ 15.5.21 and [ 15.5.41 
with LI = 4, 8 and 12. Since the model residuals were not employed, the fust v forecasts were 
combined using equal weights. The weights were then recalculated for each subsequent forecast 
using the previous LI forecast errors. 

The forecasts from the four models were combined in a painvise fashion with the exception 
of the two conceptual models (PREVIS and PREVIS/S). The resulting RMSE’s of the combined 
forecasts using [15.5.2] to calculate the combining weights are given in Table 18.4.1. The sub- 
scripts associated with the RMSE’s indicate the number of previous forecast errors that were 
employed to calculate the weights. For example, when the previous four forecast errors were 
used to combined the TFN and PAR forecasts, the resulting RMSE was 0.142. In most cases, 
the grcater the number of previous forecast errors employed to calculate the weights, the smaller 
the resulting combined RMSE. 
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Model Combinations RMSE4 RMSb RMSE,, 
TFN -PAR 0.142 0.120 0.119 
TFN -PREvIS 0.787 0.524 0.418 

PAR -PREVIS 0.243 0.229 0.222 
TFN -PREVIS/S 0.994 0.318 0.271 

PAR -PREVIS/S 0.217 0.186 0.187 - 
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The smallest RMSE was obtained when the TFN and PAR forecasts were combined using 
the previous 12 forecast errors to calculate the weights. The resulting RMSE was less than half 
the value of the smallest RMSE for the individual models suggesting that sigmfkant benefits can 
be obtained by combining the forecasts from these two models. Conversely, the largest RMSE’s 
were found when the TFN forecasts were combined with the PREVIS or PREVIS/S forecasts. 
Only when the previous 12 forecast errors were employed to calculate the weights did the com- 
bined TFN and PREVIS/S forecasts yield a smaller RMSE than the best individual model. Even 
then, the difference was only in the thud decimal place. 

The resulting RMSE’s of the combined forecasts when [15.5.4] was employed to calculate 
the combining weights are given in Table 18.4.2. In this case, only one combination had a larger 
RMSE than the best individual model. Once again, the smallest RMSE was found when the 
TFN and PAR forecasts were combined using the previous 12 forecast errors to calculate the 
combining weights. The largest RMSE’s were found when the TFN forecasts were combined 
with the forecasts from the two conceptual models. These RMSE’s did, however, represent a 
significant improvement when compared to the RMSE’s obtained when [15.5.2] was used to cal- 
culate the combining weights. In the previous case, poor estimates of C in [15.5.3] resulted in 
the calculation of one negative weight and one weight greater than one. As a result, the 
corresponding RMSE’s were more than three times as large as the RMSE of the best individual 
model. It is therefore recommended that, unless reasonably good estimates of C can be obtained, 
the suboptimal estimates of the combining weights calculated using [ 15.5.21 be employed. 

As a test of combining forecasts from more than two models, the forecasts produced by the 
TFN, PAR and PREVIS/S models were combined using equal weights. The resulting RMSE 
was 0.136. Although this does not represent the lowest RMSE, even this naive combination of 
forecasts produced a RMSE which was less than half the RMSE of the best individual model. 
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Table 18.4.2. RMSE's of the combined quarter-monthly forecasts 
with combining weights calculated using [ 15.5.41. 

Model Combinations 

TFN - PARJPACF 
TFN - PREVIS " - PREVIS/S 
PARJPACF - PREVIS 
PAR/PACF - PREVIS/S 

*Larger RMSE than TFN 

RMSE4 RMSE, 

0.275 0.25 1 
0.283* 0.252 

0.214 0.187 

'orecast error in Table 

0.122 
0.247 
0.250 
0.222 

8.3.7. 

18.43 Condusions 

Combining economic forecasts from various models has become fairly common practice. 
However, the case studies presented in Sections 18.4.2 and 15.5.2 as well as by McLeod et al. 
(1987) represent the first reported experiments dealing with the combination of riverflow fore- 
casts. Combining forecasts from conceptual models, a TFN model and a PAR model resulted in 
a significant reduction in the RMSE's of the forecasts. These three models approach the model- 
ling problem from three distinctly different perspectives. The relative strengths of each model 
were enhanced by combining the individual forecasts. Thus, based upon the results of this case 
study, it would appear that significant improvements in forecasting performance can be obtained 
when the forecasts from different types of models are combined. 

18.5 RECORD EXTENSIONS, CONTROL AND SIMULATION 

18.5.1 Overview 

The main objectives of this chapter are to explain how reliable forecasts can be calculated 
using TFN models and to demonstrate how forecasting can be conveniently carried out in  prac- 
tice using the hydrological forecasting experiments of Sections 18.2.3, 18.3 and 18.4. The pur- 
pose of this section is to outline how TFN models can be employed for three other kinds of 
applications: extensions of hydrologic records, control and simulation. 

18.5.2 Record Extensions 

Using natural time series records from the Arctic, Baracos et al. (1981) explain how 
hydrometric records can be extended using TFN models. In particular, weather records have 
been kept in the Arctic for a much longer period of time than have hydrometric or rivefflow 
measurements. Based on a knowledge of the dynamic relationship between riverflow series and 
meteorologic series, it is possible to give an estimate of the values the hydrometric series is 
likely to have taken during the period when weather data are available, but before flow records 
were kept. This may be thought of as an artificial extension of the hydrometric record and can 
be considered to be a type of backforecarring. The m e  values of the unmeasured flows can of 
course never be obtained by this method, but likely values, given the covariate meteorologic 
input series, can be calculated. These estimates are simply the output of the TFN model with the 
noise term set to its conditional expectation of zero. 
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Baracos et al. (1981) develop M A ,  TFN and intervention models (see Chapter 19) for 
modelling 16 average monthly riverflow series as well as precipitation and temperature series 
from the Northwest Territories in the Canadian Arctic. The data sets are available from the 
Water Survey of Canada which is part of Environment Canada in Ottawa. To explain how river- 
flow mods can be extended using meteorological inputs, consider the TFN model developed 
for the flows of the Tree River. Average monthly flows for the Tree River are available for 8 
years from the star( of 1%9 to the end of 1976. However, the two meteorologic input series con- 
sisting of precipitation and temperatures from the Coppermine weather station are 44 years in 
length and span the years from the start of 1933 to the end of 1976. For the years in which the 
riverflows overlap with the meteorologic data, a TFN model can be developed to model how the 
meteorologic inputs dynamically affect the riverflow output series. The TFN model can then be 
employed for extending or back forecasting the riverflow series for the years during which there 
are only meteorological words. 

The calibrated TFN model for the Tree River is written as 

1 - 0.32B + 0.25B8 
yl = 0 . 0 0 1 2 ~ ~ ~  +0.04~12-0.031B~,,+ 01 1 + 0.578 

[18.5.1] 

where 

is the Tree River series which is first msformed by taking natural logarithms and then 
deseasonalized by removing the monthly means for the logarithmic series using [ 13.2.21. 

is the Coppermine rainfall series which is deseasonalized by subtracting the appropriate 
monthly mean from each observation. Snowmelt is included as part of the rainfall series. 
In order to produce a plausible representation of snowmelt input to a riverflow series, the 
monthly snowfalls are summed over each winter, and then the total snowfall for the winter 
is introduced as a pulse input to the rainfall series during the fvst month that the mean tem- 
perature rises above zero Celsius for each year. Snowfalls that occur during months when 
the mean temperature is above zero Celsius are assumed to have melted immediately, and 
are added to the rainfall series rather than to the winter's snow accumulation. 

is the Coppermine temperature series which is deseasonalized by removing monthly means. 
Because the temperature is below zero in the winter and hence does not melt the snow, the 
values from January, February, March, November and December are set to zero. 

is input series containing the deseasonalized temperature only for the month of April. All 
other months are set equal to zero. The reason for including the xf3 series in the third term 
on the right hand side of [18.5.l] is because for the month of April there is a large negative 
cross correlation at lag one between the prewhitened Tree riverflows and the Coppermine 
temperature series. 

is the noise term for the TFN model which is NID(0.o:). 

To employ the calibrated TFN model for extending the riverflows, the conditional expecra- 
tion of the noise is assumed to be zem and hence one uses only the dynamic component on the 
right hand side of [ 18.5.11 to calculate yf as 
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y,  = 0 . 0 0 1 2 ~ ~ ~  + O.OSX,, - O.O31Bx,3 [18.5.2] 

By substituting in known values of x l l ,  x,2 and 4 3  in [18.5.2], one can determine yl's for any 
desired values of t .  Subsequently, to find the values of the flows in the original untransformed 
domain one simply takes the inverse deseasonalization and logarithmic transformation of the 
generated y,'s from [ 18.5.21. 

Using the above procedure, the average monthly flows for the Tree River can be predicted 
for any period during the years for which meteorological rccords exist from 1933 to 1976. By 
utilizing graphical and numerical results, Baracos et al. (1981) demonstrate that the predicted 
flows using [ 18.5.21 produce reasonable results. In particular, during the time period for which 
the flows arc known, from 1%9 to 1976, the predicted flows arc close to the known historical 
flows. 

Following a similar procedure to the one described in this section, Beauchamp et al. (1989) 
extend daily riverflow records of a downstream station based upon a TFN noise model that con- 
nects the downstream flows to a longer upstream time series of daily riverflows. They also 
employ regression analysis for extending the same rivefflows. However, they point out that the 
regression model was found to have a significant amount of correlation in the residuals which 
the 'I" could eliminate, since the noise in a TFN model can be modelled as an ARIMA model. 

Snorrason (1986) employs a TFN model to extend seasonal riverflow rccords for a river in 
Iceland. A longer temperature series constitutes the input to the TFN model which has the river- 
flows as the output. 

18.53 Control 

This chapter deals mainly with employing TFN models for forecasting or predicting the 
future values of the response variable. As pointed out by Young (1984, p. 104), another impor- 
tant application area of TFN models is designing control and management schemes for the sys- 
tem that is currently being studied. In the chemical industry, for example, TFN models are 
employed extensively for scientifically controlling processes for optimally producing a wide 
range of chemical products. The key reason why TFN models are ideally suited for control pur- 
poses is that they mathematically describe how the inputs dynamically affect the response in the 
presence of correlated noise. 

In a control problem, one often wishes to keep a response variable as close as possible to a 
target value in a system subject to the inputs and noise. One could attempt to design control 
schemes which minimix an overall measure of error at the output such as the mean square error. 
As explained by Box and Jenkins (1976, Chapter 12). one can categorize control procedures into 
three main domains - f d o r w a r d  control, feedback control and a mixture of these two. In feed- 
forward control, one or more sources of disturbances (inputs) are measured and these observa- 
tions can be employed for compensating for potential deviations in the output. Because input 
into the system is used to control the output of the system, this is referred to as feedforwad con- 
trol. On the other hand, in some applications the only information available about the existence 
of the input disturbances is the deviation from the target which they cause in the response. If 
only this deviation is utilized for deciding upon how to adjust the system, the action is called 
feedbuck control. A combination of the aforementioned two methods of control is referred to as 
fee4orwardfeedbuck control. 
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For a detailed discussion of discrete control schemes, the reader may wish to refer to Part 
IV of Box and Jenkins (1976). Certainly, the design of control schemes has many potential 
applications in water resowes and environmental engineering. For example, to maximize the 
hydroelectrical output of a system of reservoirs, good control and management plans are 
required. The efficient operation of a sewage treatment facility that handles both industrial and 
residential liquid wastes poses many interesting control problems. 

18.5.4 Simulation 

Besides forecasting, a TFN model can, of course, also be employed for simulation pur- 
poses. To simulate with a TFN model, it is most convenient to use the model as given in 
[18.2.13] or [18.2.20] where appropriate multiplications have been made so that no operators 
appear in the denominator in any term on both sides of the equation. For explanation purposes, 
consider the TFN model having one input series and ARMA noise which is written in [18.2.13] 
for time t as 

$ ( ~ ) ~ ( ~ ) ( y ,  - y) = $ ( m N B ) ( ~ ,  - cc,) + 6 ( w w ) a ,  [ 18.5.31 

The main steps to follow in simulating with a TFN model are: 
1. By employing the ARMA model that is separately fitted to the x, series in [ 18.2.41, use the 

simulation techniques of Section 9.3 or 9.4 to simulate the x,’s. 

To simulate the a,’s needed in the second term on the right hand side of [18.5.3], employ 
an appropriate method from Section 9.2.3 to simulate the 11,’s which are NID(0,a;). 

If starting values are needed for the y,’s in [ 18.5.31, these can be generated using a separate 
ARMA model fitted to the y, series in conjunction with a simulation technique from Sec- 

tion 9.3 or 9.4. 

Use the simulated x, and a, series from steps 1 and 2, respectively, as well as the starting 
values fory, from step 3, in the TFN model in r18.5.31 to simulate they, series. 

2. 

3. 

4. 

18.6 CONCLUSIONS 

The TFN model of Chapter 17 is particularly well designed for use in the natural sciences 
such as hydrology and water quality modelling. This is because the TFN model in [ 18.2.181 and 
[17.5.3] can formally describe, using a finite difference equation, the dynamic relationships 
existing between a single output series and one or more input series. For instance, the TFN 
model in [ 18.3.61 describes how the input or covariate series consisting of rainfall and snowmelt 
cause rivefflows. Furthermore, the correlated noise in the model can be modelled using an 
ARMA(2.1) model. 

Because the structure of the TFN model in an quation such as [ 18.3.61 realistically reflects 
the physical relationships among the variables, one would expect the model to provide good 
forecasts. In addition, since the TFN model incorporates more information into its sfructure by 
means of the input series, one would think that better forecasts should be obtained using this 
model. Indeed this is exactly what happens. The forecasting experiments of Section 18.3 
demonstrate that the TFN noise model forecasts seasonal rivefflows better than its competitors. 
In phcular,  the TFN model of [ 18.3.61 provides more accurate forecasts of the quarter-monthly 
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riverflows into Lac St. Jean than the deseasonalized ARMA, PAR or either of the two conceptual 
models. Momver, as shown by the forecasting results in Section 18.4, even better forecasts can 
be obtained when the TFN forecasts are optimally combined with those provided by the PAR 
model. 

Forecasting experiments with a range of nonseasonal models arc furnished in Section 8.3. 
For a description of forecasting experiments with the seasonal models of Part VII, the reader can 
turn to Sections 15.3 and 15.4. Experiments with combinations of forecasts from seasonal 
models are also given in Section 15.5.3. 

In addition to handling multiple input series, the TFN model of Part VII can be expanded to 
take care of other situations that arise in practice. More specifically, the intervention model of 
Part WII constitutes a general type of TFN model that can be used to model the effects of exter- 
nal interventions upon the mean level of a series, estimate missing observations and also to 
describe the dynamic relationships between multiple input series and a single output. Besides 
Part VIII, further interesting applications of intervention and TFN modelling arc presented in 
Chapter 22. 

PROBLEMS 

18.1 

18.2 

18.3 

Suppose that a TFN model is written as 

00s (1 - Q,B)  
(1 - alB) (4 - P.J + (1 - 91B)  a, 

Y I  - Py = 

For this model, carry out the following tasks: 
(a) Using formulae, clearly explain how to iteratively calculate MMSE forecasts for 

lead times I = 1,2, . . . , . 
(b) Derive the formula for determining the variance of the forecast error for j , ( l ) .  

Carry out the instructions of Problem 18.1 for the following TFN model having three 
input series. 

O l ( B )  cuz@ 1 
(XI1 - PXI) + -(XI2 - P X 2 )  

62(B ) 
61 - CLy)  = - 

6, (B ) 

For the TFN model written below, execute the instructions given in Problem 18.1, 

(00 - O l W 2  (1 - QIB) 
(1 - 6 , B  -v2)"+ (1 - h B ) ( 1  - B ) "  

Y, = 
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18.4 

18.5 

18.6 

18.7 

18.8 

18.9 

18.10 

18.11 

18.12 

Consider the situation where one has monthly observations for both a response vari- 
able, Y,, and an input series, XI. Each series is first bmsformed by taking natural loga- 
rithms and then deseasonalized using r13.2.31. Next, the TFN model fitted to the 
resulting nonseasonal series is 

0, - @,B 1 
" = (1 - 6 , B )  " + (1 - $ ,B)  " 

where y ,  and x, are the descasonalized response and covariate series, respectively. By 
employing suitable equations, explain how to calculate MMSE forecasts for y ,  and x, 
as well as forecasts for the original Y, and XI series. 

In Chapter 14, periodic models are defined for application to a single seasonal time 
series for which there are s seasons per year. Assuming one input series and an 
ARMA noise term, write down the difference equations to define a periodic TFN 
model. Explain the drawbacks of this type of model and how these disadvantages 
could be overcome. 
The field of econometrics deals with the development of statistical and stochastic 
methods for application to economic data. Find an article in the econometrics litera- 
ture where one or more leading indicators are used to forecast some aspect of the econ- 
omy. Outline the procedure that is employed and explain how you think it could be 
improved. 
Within the water resources literature, locate a paper where TFN modelling is used for 
forecasting. Briefly describe how the forecasting study was carried out and point out 
any interesting facts that you discover. 
Often an overly complex model does not forecast as accurately as a much simpler time 
series model such as a TFN model. Explain why you think this could happen. Find a 
paper in a field which is of interest to you where a TFN model provides better fore- 
casts than a more complicated model, such as a conceptual model. Describe the main 
findings of the paper and emphasize the most interesting results. 

Fit a TFN model to a nonseasonal data set where you have a response series and one 
input series. Employ the calibrated model to calculate MMSE forecasts for lead times 
from 1 to 12. Plot the forecasts along with the 95% confidence limits. 
Cany out the instructions of the previous question for two monthly time series. 
Find two seasonal series designated by y, and x, for the response and input series, 
respectively. Omit the last three years of the data set and then fit SARIMA (Chapter 
12), deseasonalizui ARMA (Chapter 13) and PAR (Chapter 14) models to the y ,  
series. Also, fit a TFN model to the y ,  and x, series for which the last three years of 
the data are not used for calibration purposes. Following the approach of Section 18.3, 
determine which of the four models produces the best one step ahead MMSE forecasts 
of the last three years of the series. 
Employ the combination methods of Section 18.4 to determine if the accuracy of the 
forecasts obtained using the four models in Problem 18.11 can be improved by 
optimally combining the forecasts. Clearly explain your findings. 
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18.13 

18.14 

18.15 

18.16 

Select a response series for which you have a longer record for one or more input 
series. Fit a TFN model to the data for the time period during which the response and 
input series overlap. By following the procedure of Section 18.5.2, use the TFN model 
to extend the response series for the time interval for which only the input data are 
known. 
Snorrason (1986) employs a TFN model to extend seasonal riverflow data from a gla- 
ciated basin in Iceland. A longer temperature record is used as the input to the TFN 
model while the output is the riverflows. His record extension technique is a slightly 
different variation of the one presented in Section 18.5.2. Describe the data extension 
approach of Snorrason and compare it to the one presented in Section 18.5.2. 

Using equations and diagrams, explain the feedforward, feedback and mixed control 
schemes put forward by Box and Jenkins (1976, Chapter 12). Describe how each of 
these schemes could be possibly employed for modelling a water resources or envhn- 
mental system. 
Fit a TFN model to a data set for which you have one input series and, of course. a sin- 
gle response series. Follow the procedure of Section 18.5.4 to simulate a sequence of 
values that has the same length as the historical series. Clearly explain all of the steps 
that you follow and compare a graph of the simulated yc sequence to a plot of the his- 
torical response series. 
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A major challenge in environmental impact assessment is to model and statistically 
describe the effects of both man-induced and natural interventions upon the mean level of a 
natural time series. For example, how do changes in land use such as urban growth, deforesta- 
tion, reservoir construction and operation, diversion canals and other planned projects affect both 
water quality and rivefflow patterns? In addition to altering important water quality variables 
like total organic carbon, phosphorous and turbidity, will specific land use changes significantly 
affect the stochastic characteristics of the rivefflows? If a large section of a forest is destroyed 
by fue, will the drainage characteristics and water quality variables of the affected watersheds be 
significantly changed? Will pollution control programs to reduce acid rain greatly decrease the 
alkalinity levels in lakes and streams? To properly model, analyze and statistically describe the 
affects of one or more interventions on a time series, the technique of intervention analysis can 
be utilized. Indeed, as exemplified by the important applications in Chapters 19 and 22, inter- 
vention analysis constitutes one of the most flexible and comprehensive statistical tools available 
for use in environmental impact assessment. 

In an intervention analysis study, an intervention model is developed for describing statisti- 
cally the changes in the mean level of a time series due to either natural or man-made causes. As 
shown in Chapter 19, the intervention model is actually a special type of TFN (transfer 
function-noise) model. However, due to the great import of this model for studying pressing 
problems in environmental impact assessment as well as other areas, Chapters 19 and 22 of this 
book are devoted to describing the intervention model and using environmental applications to 
carefully demonstrate how it can be used in practice. 

In qualitative terms, an intervention model can be written as 

response variable = dynamic component + noise 

where 

dynamic component = interventions + missing data + inputs 

The response variable consists of a single output series such as total organic carbon in a river. 
To model the effects of one or more interventions upon the mean level of the response variable, 
intervention terms can be incorporated into the dynamic component. An intervention com- 
ponent may be needed, for example, to ascertain how newly constructed secondary pollution 
control procedures at upstream sewage treatment plants affect the mean level of the total organic 
carbon. By designing a special kind of intervention term, the dynamic component can also be 
used to estimate missing observations in the output The water quality series used in the appli- 
cations within Chapters 19 and 22 are typical of available water quality time series where often 
there are missing data points. An inherent advantage of this approach to data filling is that the 
correlation structure of the series is automatically taken into account when the estimates for the 
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missing data points a~ calculated. Fmally, when there arc other input series such as rivedows 
and temperam, the dynamic influence of these covariate series upon the response variable can 
be suitably accounted for by including suitable transfer functions in the dynamic component. As 
is the case for the TFN model of Part W, the autocorrelated noise, which cannot be described 
by the dynamic component, can be adequately modelled by an appropriate ARMA or ARIMA 
model. Furthermore. the intervention model can bc used with both seasonal and nonseasonal 
time series. 

In Chapter 19, the intervention model is pedagogically presented by first describing 
simpler situations and then adding more complexity to the model as the chapter progresses. For 
example, in Section 19.2 the intervention model with only multiple interventions in the dynamic 
component is described whereas in Section 19.5 the complete intervention model outlined in the 
previous paragraph is presented. Throughout the chapter, environmental applications are util- 
ized to clearly demonstrate how various kinds of intervention models can be conveniently con- 
structed by practitioners. After detecting the presence of interventions and the times at which 
the interventions occur, if they an not already known, an intervention model can be built by fob 
lowing the usual identification, estimation and model verification stages of model development. 
To design the form of the transfer functions for the intervention terms in the dynamic com- 
ponent, simple identification procedures are introduced. In order to ascertain the parameters 
required in a transfer function for each input series and also the parameters needed in the noise 
term, techniques similar to those presented in Sections 17.3.1 and 17.5.3 can be used. Subse- 
quent to obtaining MLE's (maximum likelihood estimates) for the model parameters, the ade- 
quacy of the fitted model can be verified by using suitable diagnostic tests. Besides using the 
intervention model to determine the effects of the interventions upon the mean level of the out- 
put, the intervention model can be used for other applications such as forecasting and simulation. 

When dealing with environmental data, such as water quality time series, often there are 
many missing data points where there may be long periods of time for which no observations 
were taken. Additionally, there may be one or more external interventions which affect the sto- 
chastic manner in which a series behaves. In other words, environmental data are often quite 
"messy". The major purpose of Chapters 22 to 24 in Part X of the book is to explain clearly how 
intervention analysis, nonparamehic tests and regression analysis, respectively, can be employed 
in environmental impact assessment when dealing with messy data. As demonstrated by water 
quality and quantity applications in Chapter 22, when an evenly spaced time series can be 
estimated efficiently from unevenly spaced observations by using an appropriate data filling 
technique (see Section 22.2), intervention analysis constitutes a powerful parametric procedure 
for rigorously modelling suspected trends. 

In Part X, it is explained how the data analysis methodology of Tukey can be used for 
scientifically studying data sets by adhering to the two main steps of exploratory data analysis 
and confmtory data analysis (see Chapter 22 as well as Sections 1.2.4 and 5.3.2). For discov- 
ering trends in a specified set of observations, a variety of simple. yet useful. exploratory tods 
can be utilized (stt Section 22.3). To formally model trends in a series which arc known in 
advance or else detected using exploratory data analyses, different approaches can be used at the 
confirmatory data analysis stage. In particular. the ways in which trends can be modelled 
using intervention analysis, nonparametric tests and regnssion analysis are described in 
Chaptm 22 to 24. rtspactively. 
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BUILDING INTERVENTION MODELS 

19.1 INTRODUCTION 

As an illustrative example of how a man-induced intcrvention can affect the mean level of 
an environmental time series, consider Figure 19.1.1 which is also displayed in Chapter 1 as Fig- 
ure 1.1.1. This is a graph of 72 average monthly phosphorous data points (in milligrams per lia) 
from January, 1972, until December, 1977, for measurements taken by the Ontario Ministry of 
the Environment downsaam from the Guelph sewage treatment plant located on the Speed 
River in the Grand River basin, Ontario, Canada. In February, 1974, a pollution abatement pro- 
cedure was brought into effect by implementing conventional phosphorous treatment at the 
Guelph station. Notice in Figure 19.1.1 the manner in which the man-made intervention of phos- 
phorous removal has dramatically decreased the mean level of the series after the intervention 
date. Furthermore, as indicated by the fded-in circles in this figure, there are missing data 
points both before and after the intervention date. For displaying a missing observation on the 
graph, the missing value is simply replaced by its monthly average across all of the months. 
However, estimating a missing monthly observation by a specified monthly mean may not be an 
accurate procedure since the autocornlation structure inherent in the time series and the effects 
of the intervention art ignored. Fortunately, the technique of intervention analysis can be used 
not only to estimate the missing observations where the autocornlation structure is automatically 
taken into account but also to statistically model the effects of the tertiary phosphorous treatment 
for reducing the mean level of the series. In Section 19.4.5, intervention analysis is employed 
for realistically modelling the water quality time series of Figure 19.1.1 by constructing an 
appropriate intervention model. The study shows that there is a 75% drop in the mean level of 
the series where the 95% confidence interval is from 71% to 78%. Rigorous statistical state- 
ments like this can be readily obtained by using the general and flexible modelling procedure of 
intervention analysis. 

An intervention model can be conveniently designed for handling more complex situations 
than that displayed in Figure 19.1.1. Firstly, an intervention model can stochastically model the 
effects of any number of interventions upon the mean level of a series. The external interven- 
tions may be man-induced, such as the one in Figure 19.1.1, or caused by a natural event like a 
forest firt (see the application in Section 19.5.4). Secondly. one or more missing observutions 
can be estimated when MLE’s are obtained for the parameters in the intervention model (see 
Sections 19.3 and 19.4). Thirdly, the dynamic influences of one or more couariute series upon a 
single output series can be incorporated into the intervention model (see Sections 19.5 and 22.4). 
Fourthly, an intervention model can be constructed for handling any combination of the forego- 
ing scenarios. Finally, the uutocorrelated noise which is not modelled by the multiple interven- 
tions and inputs, can be effectively described by an ARMA model. 

In a nutshell, intervention analysis is a stochastic modelling technique to analyze rigorously 
the effects of either man-induced or natural interventions upon the mean level of a time series. 
The technique of intervention analysis was first suggested by Box and Tiao in 1975 while in the 
same year, Hip1 et al. (1975) introduced the concept into hydrology by ascertaining the effects 
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Figure 19.1.1. Monthly phosphorous data (mgll) on the Speed 
River near Guelph, Ontario, Canada. 

of the Aswan Dam upon the mean flows of the Nile River (see Section 19.2.4). As will be seen, 
the intervention model used in an intervention analysis study is in fact a special type of TFN 
model and can be used with both seasonal and nonseasonal data. However, due to the p a t  prac- 
tical importance of intervention analysis, the intervention model is considered in depth in this 
chapter as well as Chapter 22. The comprehensive design of the intervention model makes it an 
indispensable tool for use by pmctitioners in any field where intervention effects must be taken 
into account. One major area in which the intervention model has been used in the past and will 
be utilized extensively in the futurc. is environmental impact assessment. As demonstrated by 
the applications in this book and elsewhere, both natural and man-induced interventions have 
bcen modelled for both seasonal and nonseasonal time series in a number of different areas. 
Below is a list of some of the many fields in which intervention analysis could be quite useful, 
where the first six categories could be considered to fall within the realm of environmental 
impact assessment. 
Water Quantity: Intervention analysis can be used in hydrology to determine statistically the 
effects of dam construction on annual (see Section 19.2.4 and also Hipel et al. (1975)) and 
monthly (see the example given in Section 19.2.5 and also Hipel et al. (1975), other applications 
arc presented in Section 22.4) riverflows. To ascertain the stochastic effects of a forest fuc on 
monthly rivefflows, an intervention model is developed in Section 19.5.4 as well as by Hipel et 
al. (1977b, 1978). Baracos et al. (1981) construct an intervention model to determine whether or 
not the installation of a new type of snow gauge in the Northwest Territories in Canada inec- 
d u d  a new kind of systematic error into the snow measurements. To determine the impacts of 
a newly constructd dam on weekly flow rates, Downing et al. (1983) develop an intervention 
model that includes rainfall inputs. Finally, Shaw and Maidment (1987) employ intervention 
analysis to ascertain the effects of various water use restrictions upon water demand in the city of 
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Austin, Texas. 
Water Quality: In Section 19.4.5, an intervention model is constructed for the time series 
charted in Figure 19.1.1. Besides building an intervention for this series, D’Astous and Hipel 
(1979) also construct an intervention model for assessing the ability of tertiary aatment for 
reducing the phosphorous levels in a river at another location. In Chapter 22 and also in McLeod 
et al. (1983). trends an detected and then rigorously modelled using intervention analysis for a 
wide range of seasonal water quality variables. Additionally, Whitfield and Woods (1984) 
present interesting case studies whem intervention analysis is employed for modelling different 
kinds of seasonal water quality timc records. Momver, Hipel and McLeod (1989) explain and 
demonstrate how graphical methods, intervention models, nonparametric trend tests, and ngrcs- 
sion analysis can be efftctively utilized in practice for carrying out intervention and trend assess- 
ment studies of water quality time series. Lastly, Zetterqvist (1991) compares thne approaches 
for trend assessment in water quality time series, including a unique approach to intervention 
modelling. 
Air Pdlution: Box and Tiao (1975) use intervention analysis to determine if pollution control 
procedures reduce the average monthly air pollution caused by cars in downtown Los Angeles. 
Intervention analysis could also be utilized to determine by how much pollution abatement tech- 
niques reduce the level of pollutants released by smokestacks into the atmosphere. As is well 
known, specific kinds of pollutants take part in chemical reactions in the atmosphere which in 
turn cause acid rain. 
Bidogy: As pointed out by Noakes (1986), in order to manage a biological system. such as a 
fishery, in an effective manner, decision makers must be able to quantify the impacts of man- 
induccd or natural interventions upon the dynamics of the system. Accordingly, Noakes (1986) 
employs intervention analysis to model the sharp decline in landing of Dungeness Cmb which 
took place after 1970 along the coast of British Columbia. In another biological systems study, 
Noakes and Campbell (1992), use intervention analysis for examining yearly shell growth mas- 
urements of geoduck clams to indicate changes in the marine environment of Ladysmith Har- 
bour, British Columbia. By applying an appropriate intervention model to an average annual 
index of standardized geoduck growth for the period from 1907 to 1980, they found that there 
was a 27% decrease in growth after the initiation of log booming and storage in Ladysmith Har- 
bour starting about 1960. Moreover, an 8% increase in geoduck mean annual growth was coin- 
cident with an increase in mean yearly temperature starting in 1920. 

Aad Rain: In a trend detection study of acid rain in New York State, Bilonick and Nichols 
(1983) employ intervention analysis to ascertain whether or not the mean level of depositions of 
nitrate in precipitation measurements were significantly affected by changes in the method for 
the analysis for nitrate. The discovery of a n d  changes in acid rain is studied using exploratory 
data analysis in Section 22.3.5 of this book and also by McLeod et al. (1983). 

Energy: When a nuclear power plant comes into effect, scientists, as well as other concerned 
groups. may wish to know how the plant alters its environment. One major electrical utility 
company in the United States took appropriate measurements before and after one of its nuclear 
plants became operational. By using intervention analysis, the company could determine pre- 
cisely how the environment was altered. 
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Business: To determine if governmental controls can reduce the monthly rate of inflation, Box 
and Tiao (1975) employ intervention analysis. Moreover, Wichem and Jones (1977) utilize inter- 
vention analysis to assess the impacts of market disturbances while G. McLeod (1983) uses the 
technique to investigate the effects of an economic recession on quarterly petrochemical con- 
sumption. Finally, to ascertain the impacts of the introduction of directory assistance fees upon 
the number of q u e s t s  for telephone numbers. Vandaele (1983, Ch. 14) employs intervention 

Transportation: To determine the effectiveness of seat belt legislation on WIC deaths in Aus- 
tralia Bhattachaxyya and Layton (1979) develop an inmention model. Harvey (1989, Section 
7.6) presents a state-space formulation of an intervention model and employs intervention 
analysis to investigate the consequences of seat belt legislation in the United Kingdom. Another 
interesting problem would be to examine the influence of raising or reducing fares upon the level 
of utilization of air transportation. 
Other Areas: Because of the numerous kinds of human activity which take place worldwide, it 
would be possible to produce a very long list of areas where intervention analysis could prove to 
be very useful. Within the health sciences alone, there could be many potential applications. 
For example, intervention analysis could be used to ste how effective price controls arc in con- 
trolling cigarette consumption. 

As mentioned previously, the main reason for studying a given problem using intervention 
analysis is to determine the effect of one or more interventions upon the mean level of a series. 
However, it should be emphasized that intervention analysis is a tool designed for rigorously 
determining the effects of an intervention upon a given system afrer the intervention comes into 
play. It is not meant to predict what will happen in the future due to an intervention which has 
not yet occurred. As a matter of fact, to properly calibrate an intervention model, data are 
required both before and after the intervention. 

To further explain the foregoing point, a practical example is informative. Suppose that in 
order to reduce acid rain, scrubbers are going to be installed in the smokestacks of chimneys at 
elecaical utilities which use coal. Physically based models from the fields of chemistry, physics 
and engineering could be used to assist in the design of the scrubbers. Based upon the overall 
model of the design, the manufacturer may claim that his scrubbers are guaranteed to remove 
specified levels of different pollutants after installation. Needless to say, this may not be what 
happens. As is the cast with all models, even the physical models which are used in the design 
of the scrubbers are approximations of how natural processes behave. Furthermore, most 
engineering designs arc usually so complex that it is impossible to accurately model al l  the com- 
ponents of the design and their interconnections. Consequently, a priori predictions of how a 
physical system should operate after it is brought into operation can be misleading. What really 
counts is what actually happens after the intervention of installing the scrubbers takes place. By 
taking appropriate measurements of pollutant levels both before and after the installation of the 
pollution abatement equipment, intervention analysis can be used to determine precisely how 
well the scrubbers work. The best estimate of the actual percentage drop in the mean level of a 
given pollutant and how much uncertainty or variance is contained in this estimate are the types 
of information which arc of ultimate importance to everyone. Indeed, in environmental disputes 
which go to court, intervention analysis could prove to be a valuable tool for interpnring how 
certain pollutants arc actually affected by man-induced activities. As shown by the applications 
in Section 19.5.4 and elsewhere, as information becomes available after the date at which a given 
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inwention took place, the fiatd intervention model can be employed for predicting how the 
intervention will continue in the future to affect the system under consideration. 

Rior to the development of intervention analysis, the Shcdent t distribution was tradition- 
ally used to estimate and test for a change in the average level. However, this procedurt is not 
designed for checking for changes in the mean level of a time series. In a Student t test, it is 
assumed that there is a step change from one m a n  level to another due to an intervention. 
Further, the observations before and after the intervention should vary about the two means, nor- 
mally, independently, and with constant but not necessarily equal variance. These assumptions 
are almost never satisfied in time series analysis, since a time series is usually autocomlated, 
sometimes nonstationary and frequently Seasonal. In addition, the change in the mean level of a 
time series may not take place as a step change. 

Besides making statistical statements about the changes in the mean levels of a time series 
due to one or more interventions, intervention analysis can be utilized for other purposes. 
Firstly. by using only a few model parameters, the intervention model furnishes an efficient sum- 
mary of the entire data set, including the effects of the intervention. Note that when the interven- 
tion analysis is utilized all of the observations are used to calibrate the single intervention model. 
Previously, practitioners would often discard data before or after an intervention since they did 
not have a single model available to fit to the complete time series. Secondly, in the process of 
designing an appropriate intervention model to fit to the data and also by the types of parameters 
included in the final model, the practitioner can gain insights into the physical properties of the 
system being modelled and how it is dynamically affected by the interventions. For a discussion 
on the physical justification of ARMA models, the reader may wish to refer to Section 3.6. 
Finally, because an intervention model is a stochastic model, it can be used for other standard 
purposes like forecasting and simulation. 

In the upcoming sections of this chapter, important special cases of the general intervention 
model are introduced until Section 19.5 where the complete intervention model is presented. An 
intervention model for a single time series acted upon by multiple external interventions is 
described in Section 19.2. The method for estimating missing data points in a single time series 
for which then are no interventions is then considered, followed by the presentation of an inter- 
vention model for handling situations where there are both missing observations and multiple 
interventions. Finally, in Section 19.5 the general intervention model is described for modelling 
a situation where a covariate series is dynamically affected by both multiple interventions and 
multiple input series, and there are missing observations in the output. The reader who wishes to 
start by reading about the most general form of the intervention model, may wish to go directly 
to Section 19.5. For modelling seasonal time series where the correlation sbucturc depends 
upon the Season of the year. a periodic intervention model is presented in Section 19.6. This 
model is related to the periodic model described in Chapter 14 where a separate AR or ARMA 
model is developed for each Season of the year. Before the conclusions, suggestions are given 
about how data should be properly collected in order to optimize the ability of intervention 
analysis to extract information from the collected data. 

Throughout this chapter, all of the models are mathematically described and practical 
environmental applications are used for explaining how intervention models can be easily con- 
structed in practice. In addition to Chapter 19, applications of intervention analysis to both water 
quantity and quality time series are presented in Section 22.4 of Chapter 22. For the intervention 
analysis applications in Chapters 19 and 22, the times of the Occurrence of the interventions an 
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known. For situations where there may be a n d s  caused by unknown interventions. comments 
are made in this chapter about how to detect them while extensive explanations regarding the 
detection of unknown trends iue given in Chapter 23 using nonparametrk trend tests as well as 
in Chapter 24 employing regression analysis in combination with graphical displays. Subse- 
quent to detecting the effects of the interventions. an appropriate intervention model can be 
developed by following the identification, estimation and diagnostic check stages of model con- 
struction. 

19.2 IJWERVENTION MODELS WITH MULTLPLE INTERVENTIONS 

19.2.1 Introduction 

Oftcn a single time series is influenced by one or more external inrervenriom. Consider for 
example, how the construction of the Aswan dam affected the average annual flows of the Nile 
River shown in Figure 19.2.1. In 1902, the first dam on the Nile River at Aswan. Egypt, was 
completed and the reservoir was filled for the first time in 1902-1903. In Figure 19.2.1. average 
annual values are calculated in m3/sx103 for the water year from October 1 to September 30 for 
each year from October 1, 1870. to September 30, 1945. Notice in the figure, that the man- 
induced intervention of building a dam appears to have lowered the mean level from 1902 
onwards. In fact, the mean of the first 32 average annual values from October 1, 1870. to Sep- 
tember 30, 1902, is 3370.12 m3/s, while from October 1, 1902, to September 30, 1945, the last 
43 values have a mean of 2620.41 m3/s . There is an obvious drop of 749.71 m3/s or about 22% 
in the average flow of the Nile River due to the reservoir construction. As shown in Section 
19.2.4 for this application, intervention analysis allows for formulating rigorous statistical state- 
ments regarding the change in mean flow and also developing a stochastic model that can be 
used for forecasting and simulation. 

In the TFN modelling of Part VII, cause and effect relationships can be easily modelled by 
incorporating one or more inpur series into the dynamic component of the overall TFN model. 
For instance, the influence of precipitation upon riverflow could be easily handled by designing 
an appropriate transfer function which would describe how the precipitation input affects the 
output of rivefflow. Higher or lower precipitation would result in appropriate increases or 
decreases in the riverflows. However, for the case of the Nile River in Figure 19.2.1, there is no 
time series available to represent the intervention of dam construction. Consequently, a dummy 
series is constructed to represent quantitatively the Occurrence and nonoccurrence of the inter- 
vention. This dummy series is referred to as an infervenfion series and is explained in detail in 
the next section. Based upon an understanding of how the interventions can affect the output, an 
appropriate m s f e r  function can be designed for describing the effect of the intervention upon 
the output. Special identification tools are described for deciding upon how the intervention 
series should be constructed and the parameters which are required in the transfer function used 
with the intervention series. 

Subsequent to designing the parameters required in the entire intervention model, MLE's 
can be obtained for the model parameters and the model residuals can be subjected to stringent 
diagnostic testing. As shown by the Nile River application in Section 19.2.4, an automatic selec- 
tion criterion such as the AIC in [6.3.1] can be quite useful for model discrimination purposes. 
For the case of the Nile River, the intervention is known in advance. Because the Occurrence of 
interventions may not be known for some applications. the detection of unknown inferventions is 
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Figure 19.2.1. Average annual flows of the Nile River at Aswan. 

discussed in conjunction with model construction in Section 19.2.3 as well as Sections 22.3,23.3 
and 24.2.1. To explain how intervention analysis can be employed with seasonal dora, the appli- 
cation in Section 19.2.5 is presented where an intervention model is constructed for modelling 
the stochastic influence of reservoir operation upon average monthly downseeam riverflows. 

19.2.2 Model Description 

Qualitatively, an intervention model with one or more interventions can be written as 

response variable = dynamic component + noise 

where the dynamic component contains intervention terms for modelling the influences of one or 
more interventions upon the output or response variable. More precisely, an intervention model 
with multiple interventions can be described by 

01, - Py) = f & . S J )  + N, [ 19.2.11 

where t stands for discrete time, y, is the response series which may be transformed using a 
transformation such as the Box-Cox power transformation in [3.4.30], is the mean of the 
en& y, series, N, is the stochastic noise term which is usually autocomlated, andf(k,€,,r) is the 
dynamic component. 7he dynamic component includes a set of parameters, k, which are needed 
in the transfer functions and a set of intervention series, €,, where there is a separate intervention 
series for each intervention. The dynamic and noise components are now discussed separately. 
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Dynamic Component 

Single Intervention: First consider the situation where there is a single intervention that affects 
the output y,. The dynamic component can be written as 

[19.2.2] 

where v(B) is the transfer function and 5, is the fabricated intervention series. The form of the 
transfer function is exactly the same as the one described in [17.2.1] for TFN models. In particu- 
lar, the transferfunction is given as 

(00 - O,B - w2 - . . . - w , , , B ~ ) B ~  - - 
(1 - 61E - v2 - . . * - 6,B') 

where o = {co,+,,~. * - ,a,,,] is the set of parameters in the operator w(B) in the numerator of 
the transfer function, 6 = {61,&, . . . &J is the set of parameters in the denominator of the 
transfer function, b is the &luy rime required for the intervention to affect the output, and 
k = {6,o) is the total set of parameters in the transfer function where 6 and w must be estimated 
from the data. As explained in Section 17.2.2, for stability the roots of the characteristic equa- 
tion s(B)  = 0 must lie outside the unit circle. The sets of model parameters given by 6 and o are 
estimated simultaneously with all the model parameters in the complete intervention model in 
[19.2.1]. In some cases, it may be desirable to calculate the impulse response weighrs, 
vo,vI.vz, . . . , when the transfer function is written as v(B) = vo + v,B + v$* + . . . . Given 6 , 
o and b, the impulse response weights can be easily calculated using [ 17.2.21 in the chapter on 
TFN modelling. 

Based upon an understanding of the problem being modelled, the intervention series, 5, , is 
designed to consist of a sequence of ones and zeroes where the sequence is the same length as 
the y, series. When the intervention is taking place, the series is given a value of one whereas it 
is assigned a value of zero whenever the intervention is not in effect. Consequently, the inter- 
vention series can be thought of as an indicator sequence, since it indicates the presence or 
absence of the intervention. Two important classes of intervention series which occur quite 
often in practice are the step and impulse intervention series. 

If an intervention takes place as a srepfunction at time T, then 5, can be represented by the 
step indicator variable Sjn where 

S p =  1 ,  f 2 T [19.2.3] 

Figure 19.2.2 shows the step dynamic response given by 
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which is transferred to yI for various transfer functions. 

Fiqurc I Bb S t T )  Cropn of Dynornic Response 
to o Step Input 

T+ I 

Figure 19.2.2. Dynamic response to a step input. 

For situations where a step intervention causes an immediate step dynamic response in the 
output, the model in F i g m  19.2.2b may be appropriate. The intervention for the Nile River in 
Figure 19.2.1 is an example of a step intervention of this type because from 1902 onwards the 
Aswan dam was operational whereas before 1902 it did not exist Another example of this kind 
of step intervention is the construction of a sewage treatment plant that operates continuously 
after a certain date. This causes a decrease w, in the BOD (biological oxygen demand) level of 
the receiving body of water. When the step response is not immediate but delayed by time b. 
then a model of the form shown in Figure 1 9 . 2 2  (where b = 1) would be acceptable. 

If a step intervention causes a gradual change that asymptotically approaches a limiting 
step response, then refer to the model in Figure 19.2.M. The gradual filling of a new reservoir 
and then the continuous operation of the dam may cause this type of dynamic response in the 
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regulated riverflow patterns. For th is  case, o, would represent the original change in flow and 
6, ,  the rate of decay of this change. Intervention models could then be fitted to different periods 

of the year to indicate, for instance, the change in the new spring and summer flows. When a 
delay time is also necessary, then the model in Figure 19.2.2 may be the suitable one to use. 

The models in Figures 19.2.M and e (and also Figures 19.2.3d and e) are calledfirst-order 
dynamic responres because the linear difference equations generating these responses arc analo- 
gous to fmt-order linear differential equations. For a better interpretation of transfer functions 
with a term in the denominator, expand the denominator in an infinite series using a Taylor's 
series. For example. the transfer function in Figurc 19.2.2 is 

- C@ (1 - 6lB)-' v(B)  = - - w 
1 - 61B 

= + ( I  +ti+ + 6 3 1 ~ + 6 : ~ ~ +  

= q, (~  + 6 , ~ ~  + 6 : ~ ~  + 6 : ~ ~  + . ) [ 19.2.41 

This expanded polynomial then operates on Sir) and as shown in Figure 19.2.k. for a step input 
SI(T) the dynamic response increases from time T+l onward (remember delay time is b = 1) to a 
limiting value w ( l  - 6 , )  which is called the steady slate p i n .  Also note that the impulse 
response weights, vo,v1,v2,v3, . . . , , can be obtained directly from [ 19.2.41 by comparing coeffi- 
cients of Bk , k 4 1 . 2 ,  . . . , in v(B) = vo + v,B + v$* + v3B3 + . . . , to those in  [ 19.2.41. Con- 
sequently, VO = 0, V1 = %, v2 = v3 = CJI& , and in g e n e d  vk = q,6:-' . Because I&,l < 1 

for a stable system, the impulse response function decreases for increasing lag k to a limiting 
value of zero. After determining the impulse response weights, the aforementioned steady state 
gain is calculated from the definition in [ 17.2.31 to give a value of 

for the transfer function in Figure 19.2.2e. 

pulse indicator variable PIq), where 
If an intervention takes place as a pulse input at time T, then 5, can be portrayed by the 

Plcr )=O,  t + T  

f l r ) = l ,  r = T  [19.2.5] 

Figure 19.2.3 shows the pulse dynamic responses for different transfer functions. It should be 
nottd that since 

(1 - S)SlC') = P l q )  

then it is possible to change all the pulse responses in Figure 19.2.3 to step responses in Figurc 
19.2.2 by multiplying f j T )  by (1 -B)- '  . 
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Croph of  Dynomic Responsi 
l o  o Pulse Input 

Figure 19.2.3. Dynamic response to a pulse input. 

Pulse interventions often occur in water resources and environmental engineering. For 
example, a certain chemical process at a water treatment plant may be introduced on a hid basis 
for one day to see if it significantly affects the quality of the water that is then distributed to the 
consumers. If the effects of this treatment are delayed one day due to distribution and storage 
time, then Figure 19.2.k may be the correct model. Here, O, would represent the water quality 
change being measured. 

The felling of a large number of trees for lumber in a small river basin may act as a pulse 
intervention and affect the riverflow so that the first-order model in Figure 19.2.3d may ade- 
quately describe the resulting change in riverflow. In this model, 00 would indicate the initial 
change in flow, and 6, the rate of decay of the change as new trees m a w  over the years. An 
intervention term similar to this is developed in Section 19.5.4 for describing the impacts of a 
forest fm upon riverflows. 
Multiple Interventions: By introducing an additional subscript, the intervention component in 
[ 19.2.21 can be extended for handling any number of external interventions. If there are I, inter- 
ventions acting upon a single series, y, , the dynamic component of the intervention model is 
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[19.2.6] 

whcrc €,,; is the ith fabricated intervention series consisting of 1's and 0's to indicate the pres- 
ence and absence of the ith intervention, respectively; k = (&w,b) is the set of model parameters 
where the 6 and w parameters are usually estimated from the data and b = (b,.b2,. . . ,b,J is the 
set delay t imes  for the interventions to affect the output. The ith transfer function, which reflects 
the manner in which the ith intervention affects the output, is written in the same manner as in 
[ 17.5.21 for a TFN model as 

(00, - Ol,B - %,B* - . . * - Wm,,Brn,)gb,  

(1 - &,B* - * ' - 6,,B") 
- - 

where rn, and r, are the orders of the operators o,(B) and 6 , ( B )  , respectively; and b, is the delay, 
specified as a positive integer, before the ith intervention affects y,. Notice that the ith transfer 
function in [19.2.6] is identical to the one in [ 19.2.21 except that the subscript i has been added to 
indicate that v,(B) is the transfer function for the ith intervention series, k,,. 

As illustrated by the applications in this chapter and also Section 22.4, usually only a few 
parameters are required in each transfer function and therefore, m, and r, are 0 or 1. After 
estimating the parameters in the w, ( B )  and 6, ( B )  operators along with all the other parameters in 
the complete intervention model, it may be required to calculate the impulw response weights 
v,, , j=O, 12,  . . . , in the operator 

v,(B) = VO, + vl,B + V 2 , B 2  + . . . 

W, (B )B b~ 

6, (B 1 
- - 

This can be easily accomplished by following the procedure outlined in Section 17.2.2. 
Noise Term 

what cannot be modelled by the dynamic component as 
Aftcr modelling the effects of the interventions upon the output, the noise term describes 

Nl =Yl -f(kkJ) 

As is the case for the TFN models of Chapters 17 and 18, usually the noise term can be effec- 
tively explained by the ARMA model in [3.4.4], [16.2.3], [16.2.4] or [17.2.4]. Consequently, a 
model for the noise is 
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or 

[ 19.2.71 

where $ ( E )  and 8 ( E )  are the AR and M A  operators of order p and q ,  respectively, and (I, is the 
white noise which is NID(0,a;). When differencing is requircd to remove nonstationarity, the 
noise term, N,,  can be modelled using the ARIMA model in [4.3.4]. 

Complete Intervention Model 

To simultaneously model both the effects of one or more interventions upon the output and 
the remaining correlated noise contained in the system. the dynamic and noise components can 
be combined to form the intervention model. For the situation where there is a single interven- 
tion, the intervention model is formulated using [ 19.2.21 and [ 19.2.71 as 

YI - v y  = v(% + Nl 

[ 19.2.81 

When there arc I I  external interventions which influence y , ,  the overall intervention model is 
derived using [ 19.2.61 and [ 19.2.71 to be 

I ,  

i=l  
Y ,  - ~ l y  = xvi(B)l;i + Nl 

[ 19.2.91 

Effects of an Intervention Upon the Mean Level 

As indicated earlier, one of the main purposes of intervention analysis is to ascertain the 
change in the mean level of a series due to one or more interventions. Because the impacts of a 
given intervention upon the output y, arc reflected by the magnitude of the parameters in the 
transfer function, it would be expected that the change in the mean level is a function of the 
transfer function parameters. To calculate the change in the mean level, fmt determine the 
expected value of yl before the intervention to obtain EblJk,we and then ascertain the expected 
value of y, after the intervention to get Eb,]4er. The change in the mean level is then simply 
determined using 

c h w  = Eb,l& - Eb,l&forc [ 19.2. lo] 

When the percentage change in the mean level of y, due to the intervention is r e q u i d ,  it  can be 

calculated using 
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[19.2.1 I ]  

If the original series were bansformed using the Box-Cox transformation in [3.4.30], in order to 
obtain the mean level change in terms of the u n t r a n s f o d  series, the inverse Box-Cox transfor- 
mation must be determined before calculating the expected values and substituting them into 
[19.2.10] or [19.2.11]. 

Example with a Step Intervention: Consider the case for [ 19.2.81 where there is a single step 
intervention as in [ 19.2.31 which takes place at time t = T and w, is the parameter in the transfer 
function. Hence, the intervention model is written as 

Y, -Py =&r +NI [ 19.2.121 

where 

0, r < T  
i . = { l ,  t 2 T  

and py stands for the mean level of the entire response series. Because the noise term is assumed 
to be the same before and after the intervention. the exact form of the noise term does not matter 
when calculating the change or percentage change in the mean level. Before the intervention 
5, = 0 and, therefore, 

y, - py = N ,  

Taking expected values 

for t < T 

ELY,lbqw, = E[p,I+ E”f1 

Because the expected value of a constant is itself 

But E[q] = 0 and consequently the above simplifies to 

Eb,lb+ = cl, 

After the intervention. 5, = 1 and hence the intervention model is 

y, - py = o, + N ,  for I 2 T 

Upon taking expected values of the above 

= p y + o ,  

The change in the mean level is calculated using [ 19.2.101 to be 

[ 19.2.1 31 

(19.2.141 
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c h w  = ((CC, + 00) - P,) = w, 

Utilizing [19.2.11], the percentage change is 

0, 
= -100 
PY 

669 

[ 19.2.151 

[ 1 9.2.1 61 

Example with a Logarithmic Data Transformation and a Step Intervention: Suppose that 
the intervention model is the same as in the first example except for the fact that the data were 
first transformed using natural logarithms. Equations [ 19.2.101 and [19.2.11] could be utilized to 
obtain the change and percentage changes in the mean levels for the logarithmic data. However, 
to determine the mean changes in the original untransfomed series represented by Y f ,  take anti- 
logarithms of yI - pY = c~&, + N f  to obtain 

[19.2.17] 

Taking expected values gives 

E [ Y , I ~ ~ ~ , ~  = ~ [ e ~ e " ]  

= eP7E[eN'] [ 19.2.181 

where e" is a constant. After the intervention, 5, possesses a value of unity and, therefore, 

yI = ebe%e" 

By taking expected values, 

E[Y,]~,,,  = ~ [ e b e O " e ~ r l  

= ehe%~[e" ]  [19.2.19] 

since eb and eo0 are constants. An advantage of calculating the percentage change in the mean 
level is the factor E[e"] drops out of the expression and therefore does not have to be estimated. 
Hence, using [ 19.2.111, the percentage change in the mean is 
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= (P - 1)loo 

Chapter 19 

[ 19.2.201 

When a confidence interval is r q u i n d  for the percentage change, this can easily be calcu- 
lated using the above quation. Suppose, for instance, the 95% confidence interval were needed. 
Because the MLE for o, is approximately normally distributed, then & f 1.96SE could be sub 

stituted into the above quation. Hence, the upper limit would be 

1)loo (e&+ 1.w.F - 
and the lower limit would be 

where the best estimate of the percentage change is 

(e@ - I)IOO. 

19.23 Model Construction 

In many situations, the fact that one or more interventions has taken place is known and the 
analyst wishes to design an intervention model to describe changes which may have occurred in 
the output. For example, when a pollution abatement procedure is implemented, an intervention 
model can be constructed for ascertaining how effective the procedure is for reducing the level of 
the pollutant. In Section 19.4.5, an intervention model is developed for statistically determining 
how much the phosphorous levels in the Speed River shown in Figure 19.1.1, have been reduced 
by tertiary sewage treatment For describing the effects of reservoir construction upon the aver- 
age annual flows of the Nile River displayed in Figure 19.2.1, an appropriate intervention model 
is constructed in Section 19.2.4. Other time series which have been influenced by known inter- 
ventions, are modelled using intervention analysis in upcoming sections of this chapter as well 
as in Section 22.4. 

In some instances, unknown inrementiom may cause unexpected trends to occur in the 
data. For example, if measuring equipment becomes faulty due to over usage, the scientist may 
not be initially aware that a systematic measuring ermr has been introduced into his data. An 
owner of a factory may illegally dump liquid wastes into a receiving body of water in order to 
avoid paying for the treatment of his wastes. Environmentalists who monitor the affected smam 
would certainly like to detect and model the affects of the initially unknown industial pollution. 
The graphical techniques of Sections 22.3 and 24.2.2 as well as the nonparametric m n d  tests of 
Chapter 23 can be used for detecting mnds  in water quality and other kinds of time series. which 
may be caused by unknown or suspected interventions. 

Even if at least one intervention is known to have occurred, other unknown interventions 
may create unsuspected trends in the time series which is being studied. Consequently, as shown 
in Figure 19.2.4, pnor to constructing an intervention model by following the usual three stages 
of model construction discussed in previous chapters, it is recommended that simple dewtion 
procedures be implemented for discovering statistical anomalies which may be caused by unk- 
nown interventions. This is especially true when one is dealing with the type of messy e m  won- ' 

mental dotu studied in Part X, where the data collection schemes may not have been carefully 
designed and land use changes, which may have been known when they were initiatui, were not 
properly recorded. When the reasons for the unknown trends have been accounted for, an 



Building Intervention Models 67 I 

Detection 

appropriate intervention model can be developed by following the remaining steps in Figure 
19.2.4. Based upon a knowledge of the interventions which were previously known and also 
those which were discovered at the detection stage, an intervention model can be designed for 
describing what is expected to occur. To quantify what is hypothesized to take place, appropn- 
ate intervention series and accompanying transfer functions must be decided upon. Additionally, 
a tentative noise model must be selected. Following this, the parameters of the noise model and 
transfer functions are estimated using the method of maximum likelihood. Then the model is 
checked for possible inadequacies. Problems with the model residuals, for example, may indi- 
cate mnds causcd by an intervention which was not found at the detection stage. If discrepan- 
cies are observed, then suitable model modifications can be made. The construction of an inter- 
vention model is now discussed, with special emphasis being placed on the detection of a n d s  
and identification of an intervention model to describe the trends. 

Estimation 
L 

I 
Formulate stotisticol 

statements about the 
changes in the mean levels 
forecasting and simulations 

Figure 19.2.4. Constructing an intervention model. 

Detection 

Exploratory Data Analysis: In order to detect mnds in a time series which may be caused by 
unknown interventions, simple statistical procedures can be used. Employing these smightfor- 
ward yet informative statistical methods for the detection of trends, can be considered as part of 
the statistical methodology which Tukey (1977) calls exploratory data analysis. As pointed out 



672 Chapter 19 

in Section 1.2.4, the objective of exploratory data analysis is to uncover important statistical 
characteristics of the data, such as the presence of various kinds of trends, by canying out 
numerical and graphical detective work. Usually, graphs of various statistics constitute the most 
effective and convenient approach for interpreting how a given time series generally behaves and 
the overall manner in which trends may occur due to both unknown and known interventions. 

For the intervention analysis applications considered in th is  chapter, the exact times when 
al l  of the interventions began arc known. However, in Chapter 22, where a wide variety of water 
quality series are examined, in some cases the times when possible interventions started arc not 
known a priori. Consequently, a detailed explanation of useful exploratory data analysis tools 
which can be used for detecting trends caused by unknown interventions, is presented in Section 
22.3 of Chapter 22 rather than in this section. The specific exploratory data analysis tools which 
arc discussed include: 
1. 

2. box-and-whisker graphs (Tukey, 1977); 

3. cross-correlations; 
4. 

5. autocornlation function. 
Practical applications are utilized in Chapter 22 for demonstrating the efficacy of the foregoing 
methods for discovering important statistical properties of different kinds of water quality time 
series. Morcover. the trend analysis studies of water quality time series measured in rivers 
which are presented in Section 24.3, illustrate how the robust locally weighted regression smooth 
of Cleveland (1979) outlined in Section 24.2.2 can be employed for visually detecting trends. 

The authors wish to emphasize that even when it is known in advance that certain interven- 
tions have occurred during known time periods, it is usually advisable to still employ relevant 
detection tools for discovering the effects of unknown interventions and better understanding 
how both known and newly discovered interventions have influenced the behaviour of the series. 
This is especially true when it is suspected that reliable personnel and/or equipment were not 
used for collecting specific data and recording events that could cause trends in the data. What- 
ever the case, after one or more unexpected trends are detected using exploratory data analysis, 
appropriate historical documentation should be searched to see if a physical reason can be found. 
For example, a suspected pollution spill that may have occurred in a river may not be recorded 
by the agency that collected the water quality data but it may be written down by another institu- 
tion which is concerned with enforcing water quality standards. Only if a reasonable physical 
reason can be found for explaining the presence of an unexpected trend should intervention 
analysis be used to rigorously ascertain the effects of the intervention at the confirmatory data 
analysis stage. In some cases, what is thought to be a trend due to some external physical cause 
may in fact only be a stochastic trend which operates according to probabilistic laws, As 
explained in Section 4.6, the stochastic trend may be suitably described by a stochastic model 
which does not have an intervention component. The reader should keep in mind that even when 
simulating an autocorrelated sequence with a stationary model, there can be relatively long 
periods of time during which the level of the series remains either entirely above or below the 
mean level (see Figures 2.3.2 and 2.3.3). Furthermore, even though the probability of 
occurrence is low, some sequences of synthetic data may continually increase or decrease over 

plots of the timc series; 

Tukey smoothing (Tukey, 1977; Velleman and Hoaglin. 1981); 
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certain time periods and, therefore. may appear to bc deterministic trends. Consequently, when a 
thorough investigation of a given series indicates that a certain trend is not caused by an external 
intervention, then it should be properly modelled as a stochastic trend. 
Other Trend Detection Techniques: In addition to the simple exploratory data analysis tools, 
some of which are thoroughly discussed in this book in Chapter 22, other methods are available 
for detecting &ends. As reported by MacNeill (1980), the problem of testing for changes in the 
parameters of a regression model at an unknown times was first investigated by Quandt (1958, 
1960) who developed a likelihood ratio test for no change versus one change. Further research 
by Hinkley (1969) and Fcder (1975) also dealt with the likelihood ratio test approach. Brown et 
al. (1975) suggested tests based upon recursively generated residuals and the associated 
sequence of partial sums of these residuals. Following this, MacNeU (1978qb) investigated the 
properties of sequences of partial sums of raw regression residuals and proposed a Cramer-von 
Mises type of statistic for testing for change of regression at an unknown time. As an alternative 
approach to his earlier work, MacNeill (1980) proposed a new method based on a likelihood 
ratio type of test for discovering changes in regression when the change times are unknown. The 
test statistic of MacNeill(l980) was derived utilizing an approach of Chemoff and Zacks (1964). 
Gardner (1%9) and MacNeill (1974) for detecting parameter changes at unknown times when 
the random variables are ID. To demonstrate the usefulness of his approach, MacNeill (1980) 
applied his test to various climatological data sets. Additionally, MacNeill (1985) expanded his 
research published in 1980 and gave further details about a chnge-detection statistic for discov- 
ering parameter changes in a time series which occur at unknown times. The overall procedure, 
referred to by MacNeill (1985) as the adaptive forecasting and estimation using change- 
detection, was applied to the average annual flows of the Nile River at Aswan (see Section 
19.2.4 for an intervention analysis study of this data). More recently, Jandhyala and MacNeill 
(1989, 1991) as well as Tang and MacNeill (1993) have extended research on the change-point 
statistic. Finally, MacNeill et al. (1991) have applied the change-point statistic and other trend 
detection methods to the average annual flows of the Nile River shown in Figure 19.2.1. 

Bagshaw and Johnson (1977) proposed procedures for sequentially monitoring forecast 
errors in order to detect changes in a time series model. Their methods are founded upon likeli- 
hood ratio statistics consisting of cumulative sums. To test for changes in the parameter values 
of an ARIMA model, Bagshaw and Johnson (1977) extended the work of Page (1954, 1955) 
which dealt only with mean changes in forecast errors. 

Additional procedures for detecting and modelling changes in a process are discussed in 
Section 24.2.1. Moreover, a range of other useful change detection methods can be found in the 
literature. For example, Wichem et al. (1976) devise a two-stage method for finding step 
changes of variance for the case of an AR(1) model. Using a generalized likelihood ratio, 
Fiorina and Maffezzoni (1979) develop a direct approach to jump detection in linear time- 
invariant systems. Brillinger (1989) presents a trend test for finding a monotonic mend in a time 
series. Finally, Kenett and Zacks (1992) propose a new class of tracking algorithms for 
processes which change their stochastic structure at unknown epochs. 

All of the foregoing techniques discussed in the last rime paragraphs for detecting unk- 
nown changes assume that a formal model is first fitted to the data in order to employ a given 
test statistic which may be fairly complicated to use in practice. On the other hand, for the sim- 
ple graphical exploratory tools discussed in Section 22.3, no underlying model is assumed. 
Instead, the given data are visually studied using only simple graphical procedures that can assist 
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the practitioner in detecting the obvious statistical haits such as trends causcd by unknown inter- 
ventions, in addition to other general statistical characteristics. Subsequent to using exploratory 
data analysis tools, some people may wish to use more formal procedures for detecting unknown 
interventions to see if they agree with what is found from more qualitative graphical inspections. 
For instance, the nonparumetric mend tests of Section 23.3 can be employed for detccting trends 
in a data set prior to fitting a more sophisticated parametric model such as the intervention model 
of this chapter. However, in all cases practitioners arc advised to fist use simple detection tools 
before employing more formal procedures. Sometimes obvious anomalies in a time series can 
be missed because the modeller becomes too involved with the technical details of using sophis- 
ticated testing procedures. 

Within this text, exploratory data analysis tools am employed for gathering information 
that is eventually used in the design of an appropriate intervention model. If for some reason an 
unknown intervention is not detected prior to fitting a formal model, anomalies in the residuals 
of the fitted d e l  may reveal the presence of the impacts of the undetected intervention. Based 
upon this and other information, a proper intervention model can be designed to realistically 
account for the impacts due to all the interventions. 
Identification 

After a practitioner is satisfied that he or she has detected all the possible trends in the data 
and found reasonable physical explanations as to what may have caused them, he or she can 
proceed to design an intervention model to formally model the series. As revealed in Figure 
19.2.4, the general model construction stages subsequent to the detection phase, arc similar to 
those advocated for use with other time series models such as the nonseasonal model building 
methods of Part III. In addition to a thorough understanding of the problem plus information 
uncovered at the detection stage, identification procedures can be used to ascertain which param- 
eters to include in the intervention model in [19.2.9]. This involves designing an intervention 
series and corresponding transfer function to account for the stochastic effects of each interven- 
tion upon the output, and also selecting a tentative noise model. Some of the identification 
methods in this section could perhaps be considered as exploratory data analysis techniques. 
However, since they are used mainly for deciding upon which parameters to include in the 
model, they m described in this section. Because the three stages of model construction after 
the detection stage arc used for developing the most appropriate model to formally model the 
data, these three stages arc in fact part of what Tukey (1977) calls confirmatory data analysis. 
The fitted intervention model is used to rigorously c o n h  in a mathematical sense how the 
interventions have statistically affected the mean level of the series. In other words, quantitative 
measures of the statistical effects of the interventions are obtained by fitting an intervention 
model to the data. The exploratory data analysis results really only provide qualitative interpre- 
tations of what may be happening. General and specific discussions of data analysis are 
presented in Section 1.2.4 and Chapter 22, nspcctively. 

In essence, identification permits a qualitative understanding of a given intervention prob- 
lem that allows it to be converted into a form which can be quantified. This is affected by identi- 
fying the appropriate parameters to include in the model in order to check the practitioner’s 
hypothesis about how he thinks the system was affected by one or more interventions. The 
parameters rcquircd in the dynamic and noise components arc decided upon separately. 
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Designing tbe Dynamic Component: For the case of the model in [ 19.2.61 or [19.2.9], the only 
terms in the dynamic component are those which model the impacts of the interventions. The 
two basic steps to identify the intervention or dynamic component are to: 
(1) Ascertain the type of changes in the time series due to the interventions. In other words, use 

appropriate information to make hypotheses about how the series has been influenced by 
the interventions. 

(2) For each intervention, select an appropriate intervention series and associated transfer func- 
tion to permit quantification of how the intervention has affected the series. 
As noted in Section 19.2.2, M intervention series is a fabricated sequence which is 

designed to indicate the occurrence and non-occurrence of the interventions. When the interven- 
tion is taking place, an entry in the intervention series is assigned a value of 1 while it is given a 
magnitude of 0 when the intervention is not occurring. Two important classes of intervention 
series an the step and pulse intervention series given in [19.2.3] and [19.2.5]. as well as Figures 
19.2.2a and 19.2.3a, respectively. The mnsfer function for a given intervention series must be 
selected in such a way that the geometric shape of the dynamic response mimics the geometrical 
pattern of the trend caused by the intervention in the actual series. For the cases of the step and 
pulse interventions, the shapes of various dynamic responses are illustrated in Figures 19.2.2 and 
19.2.3, respectively. When modelling seasonal data, if the intervention affects certain seasons in 
a particular manner, an intervention term, consisting of an intervention series and associated 
transfer function, can be designed for each Season or group of seasons that are changed in the 
same fashion. This point is clarified by the intervention models developed for seasonal data in 
Sections 19.2.5. 19.4.5 and 19.5.4. 

Various techniques are available to use in step 1. For nonseasonal data, a plot of the time 
series should reveal how the series differs before and after each intervention. If the observations 
are seasonal, then in addition to a plot of the series, one or more of the graphical methods shown 
presently may prove useful. These different approaches are described for the general case when 
there arc s seasons per year. For specific types of seasonal data, such as quarterly and monthly 
data, s is simply assigned the correct values, like 4 and 12, respectively. For each method, every 
season over all the years is analyzed to see how each intervention affected that season. Nonsea- 
sonal data can also be analyzed by the following methods. Also note that some of the informa- 
tion described here may alnady be available from graphical studies executed at the detection 
stage. 

(la) Seusonul plots. A graphical display for each individual SeaSon over all the years on record 
should reveal specific Seasons that are affected by the intervention and in what manner they 
have changed. Keeping in mind that the seasonal plots contain the dynamic component 
plus the noise term, transfer functions and intervention series can be designed to obtain 
dynamic responses that model the seasonal interventions. If it is thought that the response 
variable may require a transformation such as natural logarithms, then seasonal plots may 
be made of the transformed data 

( lb)  C u m  chart. The cumulative sum (cusum) technique was proposed by Page (1954) and 
Barnard (1959) and improved upon by Lucas (1985) and others. The cumulative sum is 
calculated and then plotted for each season to see how the seasonal average changes after 
the intervention. Let the data for season i over N years be denoted by yliyz.  yNi.  
Define the kth cusum CS, for season i as: 
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[19.2.21] 

A cusum chart is a plot of the cusum against time. Before the start of the intervention. 
the cusurn should follow a horizontal Line with values fluctuating around that line. How- 
ever, if after the intervention there is a step intervention and the mean increases to a new 
kvel. the cusum will follow a constant upward slope as shown in Figure 19.2.5. If the 
average for a particular Season d m a s t s  a constant amount, then after the intervention the 
cusum will follow a fixed downward slop as iuusmtcd in Figure 19.2.6. The steeper the 
slope the greater is the step inmasc or dccrrase in the average for a particular month. As 
stated by Woodwad and Goldsmith (IW), one of the main advantages of the cusum tech- 
nique is its sensitivity. Relatively small changes in the mean value appear as distinctly dif- 
ferent slopes. 

I 

TIME 

Figure 19.2.5. Cusum chart for a step increase in mem. 

t 

1 c 

TIME 
Figure 19.2.6. Cusum chart for a step decrease in man. 
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When the mean level for a season increases gradually to a new level, this wil l  be 
reflected in the cusum chart by a slowly changing slope after the start of the intervention to 
a steeper constant slope when the mean rcaches its new level. This type of average change 
is illustrated in Figure 19.2.7. 

I 
1 * 

TIME 
Figurc 19.2.7. Cusum chart for a gradual increase in mean to a new level. 

I 

I 
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0 
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RETURN TO 

TIME 
Figure 19.2.8. Cusum chart for a step increase in the mean 

followed by a step decrease to the previous average. 

In general, it is necessary to study a particular cusum chart individually to determine 
how the mean has been affected by the intervention. If for example. there is a step increase 
in the mean level due to an intervention and then later the level returns to its former mean, 
the cusum results for this case are shown in Figure 19.2.8. Notice that a step return to the 
m a n  prior to the intervention is reflected in the cusum chart by the cusum once again fol- 
lowing a horizontal Line. However, the new horizontal line is at a different level than the 
one before the intervention. 
Average plots. Calculate the s seasonal means for all the years up until the intervention. 
From the intervention onwards calculate the seasonal means for each year after the inter- 
vention until the end of the data or start of a new intervention. A useful graph to then plot 
is the s seasonal averages before the intervention. For each year after the intervention, plot 
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the new seasonal averages on the same graph as the averages before the intervention. 
Appropriate interpretations concerning the intervention impacts can be drawn by observing 
how the seasonal averages are affected each year after the intervention. 

(Id) Orher plors. For a particular problem the researcher can of course develop any appropriate 
aids for model identification to use in conjunction with practical engineering judgement. 
However, he should keep in mind that for seasonal data, it is often most informative to plot 
each season separately. As explained and illustrated in Section 22.3.3, for example, one 
can plot box-and-whisker graphs (Tukey. 1977) for each season both before and after an 
intervention. 

Designing lbe Noise Term: One or both of the following approaches may be useful to idenhfy 
the parameters required in the ARMA model for N, in [ 19.2.71 and [ 19.2.91. The first procedure 
uses the data before the intervention while the second method utilizes all of the available infor- 
mation. 

(1) Following the procedures of Chapters 5 to 7, identify an ARMA model for the response 
series, y,, up to the time of the first intervention. Of course, this method can only be used if 
sufficient data are available before the time of the first intervention. Hence, there should be 
at least 40 or 50 observations before the intervention. For the special case where there is a 
single step intervention where the dynamic response is modelled as 005, as in Figure 
19.2.2b. the data after the intervention can be used to identify the form of the ARMA noise 
term. In general, for any interval of the time series for which the effects of one or more 
interventions can be neglected or somehow removed, that portion of the data can be used 
for identifying the form of N,. 

The second technique is the same as the empirical identification procedure in Sections 
17.3.1 and 17.5.3 for deciding upon the form of N, in a TFN model possessing one or more 
covariate series. After identifying the form of all the intervention terms in the dynamic 
component, fit the model in [ 19.2.91 to the series where it is assumed that the noise term is 
white and hence the intervention model has the form 

(2) 

[ 19.2.221 

In practical applications, usually the noise term is correlated. Consequently, after obtaining 
the estimated residual series. q,  for the above model using the method of maximum likeli- 
hood, the type of ARMA model to fit to the noise series can be determined by following the 
three stages of model development described in Chapters 5 to 7. By using the identified 
form of N, for the noise term along with the previously designed dynamic component. the 
intervention model in [ 19.2.91 is now completely designed. 

Estimation 

At the estimation stage, MLE’s and corresponding standard mars can be simultaneously 
obtained for all  the model parameters in [19.2.9]. In addition, the estimated residual series, dl ,  

can also be obtained for use in diagnostic checking. Because an intervention model is simply a 
specific type of TFN model, the estimation procedure for TFN models, which is mentioned in 
Section 17.3.2 and described in detail in Appendix A17.1, can be used. In addition, automatic 
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selection criteria such as the AIC in [6.3.1] and the BIC in [6.3.5] can be employed to assist in 
selecting the most appropriate model. The reader can refer to Figure 6.3.1 for an outline of how 
an automatic selection criterion such as the AIC can be incorporated into the three stages of 
model construction. 

Box and Tiao (1975) show how the transfer function parameter estimates depend on the y, 

series plus the other parameters in the intervention model. These estimates can be shown to be a 
function of the difference between a weighted average of the y,’s before and after the interven- 
tion. 
Diagnastic Checking 

All of the residual diagnostic checks given in Chapter 7 can be used for verifying the suita- 
bility of the fitted intervention model. As noted before, for checking that the residuals arc white 
the mommcnded procedure is to plot the RACF (residual autocomlation function) in [7.3.11 
along with the 95% confidence limits. In addition, the cumulative periodogram in [2.6.2] and 
the modified Pormanteau test in [ 17.3.81 can be used to ascertain whether or not the residuals are 
uncomlated. If the residuals arc correlated, this implies that the model is inadequate and a more 
appropriate model can be found by repeating the earlier stages of model consauction in Figure 
19.2.4. When the residuals art not approximately normally distributed and/or are heteroscedas- 
tic, an appropriate Box-Cox transformation of the y, series using [3.4.30] may rectify the situa- 
tion. 

19.2.4 Effects of the Aswan Dam on the Average Annual Flows of the Nile River 

Case Study Description 
Within this section and the next one, practical applications are used for demonstrating how 

intervention models can be conveniently constructed for modelling both nonseasonal and sea- 
sonal time series, respectively, which have been affected by external interventions. For the case 
of the average annual flows of the Nile River at Aswan, the affect of the completion of the 
Aswan dam in 1902 upon the riverflows arc graphically illustrated in Figure 19.2.1. As pointed 
out in Section 19.2.1, from 1902 onwards, then appears to be a significant drop in the mean 
level of the flows. 

The average flows of the Nile River plotted in Figure 19.2.1, are obtained from a report by 
Hunt et al. (1946, p. 125). Prior to 1903, levels on the Nile River were measured downstream 
from the dam site. However, from 1903-1939, discharges were determined accurately by relat- 
ing sluice measurements of the dam to the downstream gage stages. The rating curve obtained in 
the period 1903-1939 was used to determine the discharges before 1903. From 1903 to 1945 the 
discharges arc the actual sluice measurements. 

The dam intervention that caused a drop in the average flow of the Nile could be an accu- 
mulative effect of the following factors (Hurst et al., 1946; Yevjevich and Jeng, 1%9). 

1. The rtscrvoir size allowed for evaporation losses, greater percolation into the underlying 
soil, plus other natural losses. 
Water was taken from the reservoir to be used for irrigation, domestic water supply, and 
other human-oriented uses. 

2. 
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3. Systematic errors were introduced into the data prior to 1903 by using a rating curve 
developed from 1903 to 1939. During construction of the dam, channels downstream were 
opened through the cataracts with a consequent change in the distribution of velocity across 
the section. This may have caused a change in the gage-discharge relationship. These 
measurement errors an thought not to exceed 5% (Hurst et al., 1946, p. 23). 

Notice in Rgurc 19.2.1 that the annual flows fiom October 1, 1899. to October 1, 1902, 
have values closer to those in the period from 1903 onward when the dam was operating. It 
could be that the starting of construction of the dam and channel improvements should be con- 
s i d e d  as the start of the intervention. However, for this analysis the start of the dam operation 
and reservoir filling in 1903 is considered as the date of intervention. If 1899 were considered as 
the intervention date, parameter values for the intervention would differ only slightly from those 
obtained presently. 

From 1960 to 1%9, the High Aswan dam was constructed with the assistance of the 
Soviets. The High Aswan dam is much larger than the Aswan Dam that was completed under 
the supervision of the British in 1902. Lake Nasser, located behind the High Aswan Dam, com- 
pletely covers the region f o m r l y  occupied by the lake formed by the Aswan dam. The effects 
of the High Aswan dam on the hydrological regime of the Nile River are reported by Shalash 
(1980a). In an accompanying paper. Shalash (1980b) tabulates the influences of the High Aswan 
dam on the hydrochemical regime of the Nile River. However, a stochastic tool such as inter- 
vention analysis is not employed by Shalash (1980a,b) to rigorously analyze any of the reported 
findings for the High Aswan dam. Interested readers may wish to obtain the hydrological and 
hydrochemical data for the Nile River in order to cany out their own intervention analysis stu- 
dies for the High Aswan dam. 

Model Construction 

An intervention model for modelling the effects of the construction of the Aswan Dam 
upon the annual flows of the Nile River, was originally developed by Hipel et al. (1975) while 
other change-point analyses of the Nile flows have been carried out by MacNeill et al. (1991). 
However, it is shown here and also by Hipel (1981), how the MAICE procedurt from Section 
6.3 simplifies the selection of the best model which is more plausible than the model suggested 
by Hipcl et al. (1975). The Nile intervention model can be written using [19.2.8] in the general 
format as 

where T stands for October 1,1902, and the intervention series is represented by 

The dynamic and noise components for the intervention are now designed separately. 
Designing the Dynamic Component: Based upon a physical understanding of the problem, one 
would expect the intervention to take place as a step function where the mean drops or steps 
downwards from 1902 onwards. Figure 19.2.1 c o n f m s  that there is a step decrease in the mean 
level starting at about 1902. This step drop in the mean level is also confirmed by the cusum 
plot shown for the Nile River in Figure 19.2.9, which is calculated using [19.2.21]. Notice that 
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the cusum graph in Figure 19.2.9 is similar to the one in Figure 19.2.6. The downward sloping 
ramp from 1902 onwards is caused by the smaller mean level after the intervention. 

- 
1870 1902 1945 

Time 

Figure 19.2.9. Cusum for the average annual flows of the Nile River. 

By comparing Figures 19.2.1 and 19.2.2b. or, alternatively, relating the properties of Figure 
19.2.9 to those of Figure 19.2.6, it can be seen that the component in [ 19.2.21 for the intervention 
model can be characterized by a step dynamic response of the form 

fOL5.0 = (@Icr)  

One would probably suspect that a transfer function with the parameter o, would be appropriate 
to reflect the step intervention. However, it is possible that there could be some initial transient 
effects which require a m s f e r  function of the form w ( l  - 6 1 B )  where O, and 6, are the 
transfer function parameters. For example, it may take two or three years for the ground water 
levels to reach a steady-state condition after the reservoir is filled. For this situation, the 
dynamic component is given as 

where the step function is the same as defined above. By expanding this equation using the 
binomial theorem as 
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one can appreciate how the transient effects operate. For instance, suppose that t is set equal to 
1905. Then the step dynamic response is calculated as 

= %(l+ 6, + 6: + 6: + 0) 

Because 16, I < 1 in order for the roots of 1 - 6# = 0 to lie outside the unit circle, it can be Seen 

that the transient impacts will disappear after a few years and that the dynamic response will 
reach the stcady state gain from [17.2.3] of qJ( l  - 61). The steady state gain for a step interven- 
tion where there is an increasing mean is depicted in Figurc 19.2.26. 

Identifying the Noise Component: The noise component is designed by employing the second 
approach described in Section 19.2.3. Firstly, it is assumed that the noise is white and hence the 
intervention model has  the form 

y ,  - pLy = v(E)S,') + (I, 
where v(B) can be either O, or W(l - SIB).  Next, the estimates for the innovation sequence, u,, 
are obtained along with the MLE's for the model parameters for models with v(B)  = 00 and 
v(B) = W ( l  - 8,). Finally, as expected. the residual series are not white, and are identified fol- 
lowing the methods in Chapters 5 to 7, to be either ARMA(l.0) or ARMA(0,l). 

MAICE Procedure: Because annual rivefflow data sometimes requires a logarithmic transfor- 
mation, models could be considered where the Box-Cox parameter in [ 3.4.301 is 1 = 0 for a loga- 
rithmic transformation as well as A = 1 for no transformation. Of course, other values of )c could 
also be checked but based on previous modelling experience with riverflow data, only these 
transformations are considered here. By varying the choice of the Box-Cox parameter 1, v(E) 
and N,, different models can be considered for modelling the Nile River data. In Table 19.2.1, a 
range of intervention models are considered for modelling the Nile River time series. For each 
model, a X entry indicates the typc of component contained in the model. Notice that in addition 
to ARMA(l.0) and ARMA(0,l) noise terms, the white noise ARMA(0,O) model is also included 
for comparison purposes. 

From Table 19.2.1, the minimum value of the AIC occurs for model number 1.  The MLE's 
and standard errors (SE's) given in brackets for this model are listed in Table 19.2.2 while the 
difference equation for this intervention model is written as 

y, - 3340.793 = -715.190!,, + (1 + 0.432B)aI [ 19.2.231 

From Figure 19.2.10, a plot of the residual ACF, calculated using r7.3.11, reveals that the 
estimated values fall within the 5 percent significance interval. Hence, the most appropriate 
intervention model, designed according to the MAICE procedure, possesses residuals that are 
white. Furthermore, these residuals are approximately normally distributed and homoscedastic. 

A comparison of the AIC values in Table 19.2.1 demonstrates that the models which 
assume an ARMA(0,O) term for N, (i.e., models 3, 6, 9 and 12) are much less desirable than the 
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Table 19.2.1. Intervention models for the Nile River. 

0 2 c  f I 
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Figure 19.2.10. Residual ACF for the Nile River intervention model. 

other models. Whenever an ARMA(0,l) noise term is used instead of an ARMA(1,O) com- 
ponent, it causes an improvement in the AIC value. The AIC entries in Table 19.2.1 also con- 
f m  that it is not necessary to take natural logarithms of the data. In addition, a comparison of 
the AIC values between models 1 and 4 reveals that the type of transfer function causes a differ- 
ence between the AIC values of less than unity. Although a transfer function of the form o, is 
more pnferrtd, both from a physical understanding of the problem and also the MAICE 
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Table 19.2.2. Parameter estimates for 
the best Nile intervention model. 

Parameter MLE 
(Standard Error) 

-715.190 
(1 30.872) 

-0.432 
(0.1041) 
3340.793 
(66.247) 

1.605xld 

procedure, the fact of the matter is that w ( l  - 6#) in model 4 is not radically different from W, 

in model 1. When the parameter estimates are substituted into the aforesaid two transfer func- 
tions, the steady-state gains for both models are quite close. Finally, when the MAICE pro- 
cedure is not invoked, an inferior model may be chosen. Hipel et al. (1975) suggested that 
model 8 be selected to model the Nile River while the results from Table 19.2.1 can be used in 
[6.3.2] to show that the plausibility of model 8 versus model 1 is 0.543. 

Effects of the Intervention 

The model in [19.2.23] can be used for applications such as forecasting and simulation. 
However, by following the development of [19.2.13] and [19.2.14] in Section 19.2.2, the inter- 
vention model can also be employed to statistically describe the change in the mean level of the 
Nile River due to the Aswan dam. By subtracting the expected value of y, in [ 19.2.231 after the 
intervention from the expected value of y, before 1902, the drop in the mean level is obtained 
from [19.2.15] as -&=715.19rn3/3. The percentage change in the mean level is calculated 
from [19.2.16] to be -21.41% where py = 3340.793 and & = -715.19 from Table 19.2.2 are sub- 
stituted into the equation. The 95% confidence limits can be determined by adding to and sub- 
tracting from &, 1.96 times its SE of 130.872. These limits show that the change in the average 
flows is probably not greater than 971.699 m3/s and not less than 458.681 rn3/s.  By substituting 
each of these values into r19.2.161 in place of O, and using the estimate of py = 3340.793 for py, 
the 95% confidence interval for the percentage decrtasc in the mean flows is from 13.73 to 29.09 
percent while the best estimate of the percentage drop in the average is 21.41 8. 

19.25 Stochastic Influence of Reservoir Operation on the Average Monthly Flows of the 
South Saskatchewan River 

Case Study Description 

The South Saskatchewan (abbreviated as S. Sask.) River originates in the Rocky Mountains 
and flows eastwad on the Canadian prairies across the province of Alberta to Saskatchewan, 
where it joins the North Saskatchewan River northwest of the city of Saskatoon. These two 
rivers form the Saskatchewan River which flows into Lake Winnipeg in Manitoba, which in turn 
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drains via the Nelson River into Hudson Bay. The area of the basin drained by the S .  Sask. 
River at Saskatoon in 139,600 km2. In January 1%9, the Gardiner dam, which impounds W e  
Diefenbaker, came into full operation upstream from Saskamn on the S. Sask. River. 

Before the creation of Lake Diefenbaker, the S. Sask. River at Saskatoon usually had higher 
flows from April to August, with declining flows during the fall and low flows in the winter. 
The worst floods occurred in the summer when rainfall coincided with heavy snow melt flows 
from the mountains. 

In July 1958, the Canadian and Saskatchewan governments agrced to construct the S. Sask. 
River project (Saskatchewan Government, 1974). This undertaking consistd of a large dam, 
spillway and diversion tunnels known as the Gardiner Dam, as well as a much smaller dam and 
diversion conduit known as the Qu'Appelle Valley Dam. Releases through the latter dam to the 
Qu'Appelle River represent less than 1% of the flow of the S. Sask. River. Lake Diefenbaker 
was formed behind these dams. The Coteau Creek generating station was constructed at the Gar- 
diner dam by the Saskatchewan Power Corporation. The East Side pumping station was built at 
the Gardiner dam to withdraw water for irrigation developments near Outlook and for the 
Saskatoon-Southeast water supply system. 

The downstream flows of the S. Sask. River were not affected by the dam construction 
until 1964. Part of the water was stored between 1965 and 1969 as the construction neared com- 
pletion. During the filling period, flows were maintained downstream by releasing water 
through the diversion tunnels. From September 1968, these releases were used for power gen- 
eration at the Coteau Creek generating station. Full reservoir operation commenced in 1%9. 
Corrections have been made to the monthly flows at Saskatoon to allow for the effects of various 
construction phases from 1964 onwards. Because full operation was started in 1969 and the 
exact construction schedule is not readily available, corrected flows are used from January 1964 
to December 1%8 in the intervention analysis. These corrected flows represent the flows that 
would have occurred at Saskatoon if the dam were not being built. The actual flows measured at 
Saskamn arc used from January 1942 to December 1963 and also from 1969 to 1974 inclusive. 

When filled to capacity. Lake Diefenbaker covers an area of 430 km2 and contains 9.40 b n 3  
of water. About 308 b n 2  are permanently flooded with 5.50 km3 of permanent storage. This 
leaves 3.90 bn3 available for flow regulation. The lake is filled each spring and summer when 
flows arc high and water is released during the fall and winter. This type of operation is essen- 
tial for providing reliable flows throughout the year for power generation at the Coteau Creek 
generating station. 

Besides power generation, the reservoir provides other valuable benefits to the community. 
The magnitude of floods have been lessened and conversely, minimum flows downstream are 
guaranteed throughout the year. The inhabitants have taken advantage of the recreational bene- 
fits of such a large body of water. Consumptive uses include irrigation and municipal and indus- 
trial water supply. Although these consumptive benefits are important, they utilize only a small 
hc t ion  of the total flow of the S. Sask. River. 

Fortunately, most of the uses of Lake Diefenbaker are compatible with the release schedule. 
During the summer, the reservoir is filled by large flows from the snow melt in the Rocky 
Mountains. Furthermore, flood extremes are reduced, there is sufficient excess flow for power 
generation, irrigation and maintenance of minimum downstream flows and the water levels in 
the lake are high, allowing for optimum recreational benefits. In the winter, the water level is 
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l o w e d  to m e t  peak power demands and at this time of year recreational requirements are at a 
minimum. By lowering the reservoir in winter, storage space is available for flood flows which 
occur in the following year. Consumptive uses require only a small pomon of the total flow and 
therefore an satisfied throughout the year. 

The total annual volume of water that flows to Saskatoon is decreased because of losses to 
consumptive uses through the East Side pumping station and btxause of releases to the 
Qu'Appclle Valley. However, the largest loss of watcr results ffom natural causes due to the 
creation of the reservoir. Evaporation losses arc high in the summer as a result of the arid cli- 
mate. Seepage losses arc also great but am expccttd to decrease as groundwater in the area 
adjusts to the new conditions. 

There is no doubt that the Lake Diefenbaker project has significantly altered the flow pat- 
terns of the monthly flows of the s. Sask. River at Saskatoon. Downstream users would be 
interested in the change in mean levels at different times of the year. A decrease in maximum 
flows is required for flood control and the maintenance of minimum levels is necessary for 
aquatic life, ferry crossings and adjacent docking facilities, water supply inlets and other 
appropriate m n s .  Therefore, a useful application of intervention analysis is to determine the 
statistical alteration of the average monthly flows due to the operation of the Gardiner dam. 
Besides describing the intervention effects, the intervention model can also be used for applica- 
tions such as simulation and forecasting. The intervention analysis study presented in this sec- 
tion follows the research results of Hipel et al. (1977a). 

Model Development 

The operation of the Gardiner dam and storage capabilities of the Lake Diefenbaker reser- 
voir changed the previous flow patterns of the S .  Sask. River at Saskatoon. As illustrated in Fig- 
ure 19.2.1 1, noticeable changes occur subsequent to January 1969. After the reservoir interven- 
tion, flows were lowered during the spring and summer and increased during the winter time as 
compared to before dam construction. Both a cusum chart and monthly plot for each month of 
the year confirmed these changes (see Section 19.2.3 for a description of how to construct these 
graphs). These graphs suggested that flows were increased in the months of November to 
March, inclusive, decreased during April to September and remained about the same in October. 
It also was evident that the changes occurred as either step increases or decreases. 
Designing the Dynamic Component: For seasonal riverflow data, taking natural logarithms of 
the data is usually a reasonable transformation to invoke for removing heteroscedasticity and 
non-normality of the residuals. Therefore, based upon an engineering knowledge of the situation 
and the information from the identification procedures, a possible model for the dynamic com- 
ponent is 

i= I 

where y, = lnY,, natural logarithms of the S.  Sask. River monthly riverflows at Saskatoon; f is 
the mean of the entire y, series; 
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Figure 19.2.11. Average monthly flows of the S. Sask. River. 

1, t = ith month for all years ajier 1968 
ti = i 0, otherwise 

the intervention time series for the ith month of the year where January is considered the first 
month and December the twelfth month; and, %i is the transfer function parameter for the ith 
month. 
Identifying the Noise Component: The noise term is given by 

In order to identify N,, initially it can be assumed that N, is white noise. After fitting the result- 
ing intervention model to the logarithmic data from January, 1942, to December, 1974. the form 
of the SARMA or SARIMA model (see Chapter 12) required for modelling N, can be identified 
by examining the residuals using the techniques in Chapters 5 to 7. The ACF of the residuals do 
not decrease in value for increasing lags that are integer multiples of 12. This indicates that sea- 
sonal differencing defined in [ 12.3.21 m y  be necessary. 

If seasonal differencing is used, this indicates that the series is nonstationary and does not 
fluctuate about any mean level. However, as discussed in Part VI and elsewhere, it is known that 
for seasonal hydrological time series, for which the effects of any interventions an suitably 
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accounted for, the observations within each season tend to fluctuate about an overall mean level 
and are, therefore, seasonally stationary. Consequently, for the application of intervention 
analysis considered here for average monthly riverflows, differencing is not desirable. In order 
to rectify the situation, a deterministic component is brought into the model. The average 
monthly logarithmic flows for each month of the year before 1964 are calculated. Recall that 
January 1964 was the time that dam construction started and corrected flows are used from 1964 
to 1%8. The monthly logarithmic average for each month is subtracted from the natural loga- 
rithm of that month for each year bom 1942 to 1974. In other words, the logarithmic data art 
deseasonalized using [ 13.2.21. 

Following deseasonalization. the deseasonalized flows are used in the above intervention 
model when it is first assumed that N, is white. An ARMA model to fit to the residuals is then 
identified. The graphs of the residual ACF, PACF, IACF and IPACF and their 95% confidence 
limits are given in Figures 19.2.12 to 19.2.15, respectively (set Section 5.3 for a discussion of 
how to construct these graphs). Notice that the PACF and IACF truncate after lag one, while the 
ACF and IPACF have a large value at the first lag with decreasing magnitudes at larger lags. 
These facts indicate that an ARMA(1,O) or Markov model can model the noise term as 

(1 -91B)N,=a, 

or 

a, N, = - 
1 - h B  

Estimation and Diagnostic Checking: From the identification stage, the model to estimate is: 

[ 19.2.241 

where x, is the deterministic component formed by 33 consecutive sequences of the twelve 
monthly means of the natural logarithms of the monthly flows before 1964. Keep in mind that 
the deterministic component simply means that the logarithmic data are deseasonalized using 
[ 13.2.21. 

Table 19.2.3 lists the MLE's and SE's for the model parameters in [19.2.24]. Diagnostic 
checks reveal that the assumptions that the a,'$ are independent, homoscedastic and normally 
distributed, arc satisfied. 'Iherefore, based on the data used, the intervention model in [ 19.2.241 
adequately models the operation of the Gardiner dam. 

Effects of the Intervention 

Because natural logarithms were taken of the response variable in [19.2.24], in order to 
express the transfer function parameter in terms of the original data, a transformation must be 
calculated. The following calculations are similar to those executed in Section 19.2.2 under the 
heading "Example with a Logarithmic Data Transformation and a Step Intervention". Taking 
natural antilogarithms of [ 19.2.241 gives 
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Figure 19.2.13. PACF and 95% confidence limits 

for the S. Sask. River residuals. 

where c1 = eY is a constant 

Before the dam came into full operation in January 1%9, the intervention time series have 
values of zero. Thus, taking expectations, the above equation gives 
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Figure 19.2.14. IACF and 95% confidence limits 
for the S. Sask. River residuals. 

0 . 2 1  

where 

c 2 = E  [ e x, e N ]  

For each year after 1%8, Cri is unity for the ith month and zero otherwise. The expected value 

of Yl for month i after 1%8 is: 
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Table 19.2.3. MLE’s for the parameters 
in the S. Sask. intervention model. 

Parameter Estimate StandardError 
wol (Jan.) 1.673 0.172 

w, (Feb.1 1 .a2 0.181 

0 3  (Mar.) 1.041 0.185 

%(Apr.) -0.541 0.186 

w, (May) -0.698 0.187 

o, (June) -1.002 0.188 

O, (July) -0.731 0.188 

w, (Aug.) -0.431 0.188 

w, (Sep.) -0.212 0.187 

%lo (OCt.) 0.176 0.186 

%11 (Nov.) 0.744 0.184 

%12@ec.) 1 . 4 4 1  0.179 

0.65 1 0.038 

Utilizing the foregoing, the percentage change in the mean level of the flow for month i due to 
the intervention is: 

[ 19.2.251 

Interpretation of Results 

The operation of the Gardiner dam significantly affected the average monthly flows of the 
S. Sask. River at Saskatoon. An examination of the transfer function parameter estimates in the 
second column of Table 19.2.3 and the comsponding SE’s in the third column indicates which 
changes arc significant. As was suspected, there arc significant increases in the flows from 
November to March. Conversely, as indicated by the negative signs, the average flows decrcase 
from April to September. Because the MLE’s possess a limiting normal distribution, hypothesis 
testing can be done. Notice that the transfer function parameter estimate for September is not 
significantly different from zero for a one sided test at the 10% significance level. The October 
parameter estimate shows a slight increase but this is not significantly different from zero since 
the SE is greater than qlo. 

By substituting the transfer function parameter estimate for each month into [19.2.25]. the 
estimate can be transformed into percentage change in flow. Table 19.2.4 lists the average 
monthly flows before 1964 and the percentage change in mean monthly flow from 1%9 to 1974. 
For any month i ,  confidence limits can be calculated for the percentage alteration in mean level. 
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Table 19.2.4. Average monthly flows for the S. Sask. River before 
reservoir operation and the percentage changes from 1969 to 1974. 

Month Average Flow Before Percentage Change 

Jan. 68.69 432.86 
Feb. 69.7 1 396.31 
MU. 71.91 183.30 

1964 (m’/s) 

Apr. 393.98 -41.80 
May 425.72 -50.25 
June 790.51 -63.29 
JdY 595.56 -51.89 
Aug. 285.98 -35.00 
Sep. 228.24 -19.10 
OCL 169.22 16.17 
Nov. 120.10 110.52 
Dec. 19.42 322.55 

The 95% confidence limits are determined by adding to qi and subtracting from clr, 1.96 times 
its SE and substituting these two values into [19.2.25] in place of %i.  For example. the 95% 
confidence limits for January indicate that very likely the increase in average is not greater than 
646% and not less than 281%. The best estimate of this increase is 433%. This type of statisti- 
cal description of the mean flow changes is only possible by using the intervention analysis tech- 
nique. 

If the new mean level for January is required in m3/s, simply multiply 68.69 times (4.3286 
+ 1) to obtain 366.02. The 95% confidence interval for the January mean flow after the interven- 
tion is (261.43, 512.46). It should be noted that the arithmetic average for six January flows 
after 1%8 is 354. This is very close to the value of 366 obtained by intervention analysis and is 
within the 95% confidence interval of the January average flow after reservoir opention started. 

Intervention analysis is a viable technique to model and statistically describe the effects of 
reservoir operation on the downstream flows from a dam. For the particular problem analyzed in 
this section, the percentage changes of the average monthly flows of the S. Sask. River at Saska- 
toOn due to reservoir operation, are determined. Although the mean flow changes are calculated 
separately for each month, for other applications it is possible to analyze changes for specific 
sets of months. For instance. a certain problem may deem it necessary to calculate the changes 
in flow patterns over a whole season, such as for the summer, or winter months, rather than for 
each individual month. Intervention analysis may also be used to test whether or not a change in 
operating rules of a dam already in operation. significantly alters average flows. Of course, in 
addition to descriptive purposes, any intervention model developed can also be used for forccast- 
ing and simulation. 

Notice in [19.2.25]. that a separate intervention component is developed for each month. 
One may wonder if a separate noise model should also be estimated for each month or season. 
In other words, in a fashion similar to a periodic seasonal model in Chapter 14, a periodic inter- 
vention model could be developed where there is in effect a separate intervention model for each 
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season. This is precisely what is done in Section 19.6 for the S. Sask. River data. As is shown, 
the results obtained are close to those in Tables 19.2.3 and 19.2.4 for the model in [19.2.24]. 

19.3 DATA FILLING USING INTERVENTION ANALYSIS 

19.3.1 Introduction 

An assumption underlying virtually a l l  of the time series models which can be employed in 
practical applications is that the data sets to which they an fitted consist of observations 
separated by equal time intervals. Although it would be desirable to possess stochastic models 
which can readily handle time series consisting of any kind of unevenly spaced observations, 
currently no such practical models exist and, indeed, it may turn out to be mathematically 
intractable to develop these types of stochastic models. In practice, if the measunments an not 
evenly spaced, appropriate techniques must be utilized to produce a series of equally spaced data 
that is estimated from the given information. Of course, as explained in Section 19.7 and also by 
Lettcnmaier et al. (1978), practitioners are advised to design future sampling programs so that 
evenly spaced data are collected at suitable time intervals. In this way, the inherent assets of 
available time series models. such as those discussed throughout this book, can be fully 
exploited. 

Time series with missing observations or, equivalently, time series where the measure- 
ments are taken at unequal time intervals, occur quite often in practice in various fields. For 
instance, as noted by authors such as Hirsch et al. (1982), McLeod et al. (1983) and D’Astous 
and Hipel (1979), as pointed out in Section 1.2.4 and throughout Part X. and as demonstrated by 
the applications in Sections 19.3.6, 19.4.5, 22.4.2, 23.5.2 and 24.3.2, the problem of missing 
values in data sequences happens frequently in environmental engineering. There are many rea- 
sons why environmental data are often not collected at evenly spaced points in time. Sometimes 
bad weather conditions make it difficult to collect the data. As noted by D’Astous and Hipel 
(1979), water quality data cannot be collected sometimes during the winter time when the ice on 
lakes and rivers is too thick. Likewise, Baracos et al. (1981) mention that hydrometeorological 
records from the Arctic regions often contain missing observations due to the breakdown of 
equipment which cannot be repaired when severe climatic conditions make the measuring station 
inaccessible. 

Another -son for not obtaining evenly spaced measurements is that there are conflicting 
demands regarding how the data will be used and hence how it should be collected. Because all 
the fish in a lake will die if the dissolved oxygen level goes to zero only once, a biologist may 
wish to take many dissolved oxygen measurements whenever the critical value of zero is 
approached whereas when it is suspected that there is sufficient dissolved oxygen he may not 
require very many observations. On the other hand, a scientist who wishes to use intervention 
analysis for modelling mnds caused by external interventions requires that an equally spaced 
time series be available. Of course, if a properly designed sampling procedure is implemented 
both demands can be satisfied by taking frequent measurements during the critical periods when 
the dissolved oxygen is low and by taking equally spaced observations at other times. From this 
data base, an equally spaced series can be conveniently and efficiently estimated. 

In addition to conflicting demands, there is another reason why environmental as well as 
other types of data are often not properly collected. In many countries, certain agencies are 
responsible for collecting the data and other institutions are committed to analyzing the time 
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series. Because the collection agencies may not be a w m  of the analytical tools that will eventu- 
ally be employed for detecting valuable information in the data, they often adopt incorrect sam- 
pling procedures. Only when the mathematical characteristics of the analytical tools arc taken 
into account, can an appropriate data collection scheme be devised (Lettcnmaier et al.. 1W8). 
Whatever the reasons, time series often contain unequally spaced data and techniques are 
required for efficiently estimating the missing observations. 

The main purpose of this section is to present an efficient data filling technique which is 
actually a special kind of intervention model. In Section 19.4 it is explained how multiple inter- 
ventions and estimating missing observations can be simultaneously handled using an interven- 
tion model, while in Section 19.5 multiple input series arc also included in order to form the 
most general case of the intervention model. However, within Section 19.3 it is assumed that 
there are no external interventions and an intervention model is designed for estimating missing 
observations where up to about 10% of the data may not be recorded. Rior to defining the spe- 
cial type of intervention model and demonstrating how it is used for data filling, existing tech- 
niques for creating an equally spaced time series are discussed next. 

19.32 Techniques for Data Filling 

Data Filling Methods Presented in this Text 
Within this book, three different procedures are given for estimating missing observations. 

The techniques are specifically designed for data filling in different types of situations which can 
arise in practice and are briefly outlined below. 
1. Back Forecasting: The first approach which is discussed in detail in Section 18.5.2 is 

r e f e d  to as back forecasting and can be used to extend hydrometeorological records. For 
example, as noted by Baracos et al. (198 l), meteorological measurements such as tempera- 
ture and precipitation have been kept in the Canadian Arctic for a much longer time than 
riverflow series. For the data where the riverflow and meteorological series intersect in 
time, a TFN model can be built following the procedures of Chapter 17 to obtain a model 
with the riverflows as the single output and the covariates such as precipitation and tem- 
perature as the inputs. Using this TFN model and the meteorological data which do not 
overlap in time with the riverflows, the earlier unknown measurements for the riverflows 
can be back forecasted. Beauchamp et al. (1989) follow a similar procedure for extending 
daily flows in a river based upon a TFN model that connects these flows to longer upseeam 
words. Finally, Grygier et al. (1989) present another approach for extending correlated 
series. 
Intervention Analysis: The second technique employs a special form of the intervention 
model to efficiently estimate missing data points when not more than about 10% of the data 
arc missing. This proccdurc is described in detail in Section 19.3.3 and also used with the 
other kinds of intervention models discussed in Sections 19.4 and 19.5. Besides the appli- 
cations given in Sections 19.3.5, 19.3.6. 19.4.4 and 19.4.5 of Chapter 19, intervention 
analysis is utilized for estimating missing values in examples presented within Section 
22.4.2 of Chapter 22. In essence, the intervention analysis approach to data tilling is 
equivalent to the method presented by Coons (1957) which was originally given in a paper 
by Bartlett (1937) and also described by Anderson (1946). The data filling method 
described by Coons (1957) can be used when one or more missing observations exist in an 

2. 
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experiment of any statistical design where the errors arc assumed to be normally and 
independently distributed. As noted by Coons (1957). the advantages of this method art its 
generality of application and the ease with which exact tests of significance may be 
obtained. When this general approach is utilized within the framework of the intervention 
model, a flexible data filling technique can be constructed. 
!kasonal Adjustment: When dealing with some types of time series, especially environ- 
mental data, often there arc many missing data points where there may be long periods of 
time for which no observations were taken. In addition, there may be one or more external 
interventions which cause trends in the series. To estimate the many missing observations 
for this messy type of data, a procedure based on seasonal adjustment can be employed. In 
Section 22.2 the seasonal adjustment technique is formulated and used to reconstruct water 
quality time series in the applications in Chapter 22. 

3. 

Additional Data Filling Methods 

A variety of approaches to dam interpolorion is described in the published literature. For 
example, Wilkinson (1958) and Preece (1971) deal with estimating missing values for experi- 
mental data. Specially designed regression models can be designed for estimating missing values 
in a data sequence. For example, the robust locally weighted regression smooth devised by 
Cleveland (1979) and described in Section 24.2.2, could be employed for data filling. Using 
both a regression analysis model and TFN model that connects upstream and downstream daily 
flows in a river, Beauchamp et al. (1989) extend the shorter downstream records. Nonetheless, 
as pointed out at the end of Section 17.2.4 and also by Beauchamp et al. (1989), regression 
models possess a structure which is not as general as the TFN models of Chapter 17 or interven- 
tion models of this chapter, since the noise terms in regression models are assumed to be white 
rather than correlated and the transfer functions are not as well formulated. Consequently, Beau- 
champ et al. (1989) recommend using a TFN model for record extensions. Regression and other 
kinds of formal models can be used in conjunction with graphical displays of the series being 
studied to fill in missing values. However, data filling methods which do not explicitly take the 
autocorrelation structure of a series into account, are not properly designed for use with time 
series data. 

Brubacher and Wilson (1976) have devised a technique that is an application of the least 
squares principle and forecasting approach to estimate the effect of one-day national holidays on 
hourly electricity demand. This is done by interpolating over the holiday period using unaf- 
fected electricity demand observations from both before and after this period. The interpolated 
values art obtained through a method that makes use of forecasting and back-forecasting pro- 
cedures to regenerate the residual series. The interpolates are then determined so as to minimize 
the sum of squares of these regenerated residuals. This estimation technique leads to a set of k 
equations to be solved for k interpolates. The ratio of the actual demand to the estimated or 
interpolated normal demand, recorded for the same holiday period over successive years, may 
then be employed to forecast the effect on future holiday demands. 

The interpolation technique developed by Brubacher and Wilson (1976) seems to be ade- 
quate for the application in question but is fairly complex even if very few missing values must 
be estimated. The nature of the electricity demand data is such that an appropriate ARIMA 
model representing the whole time series can be identified 6om a subset of the data. This is 
because the yearly patterns of the series are insignificant so that modelling the weekly patterns is 
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adequate. For instance, only four or five weeks of data provide sufficient information to identify 
a suitable model. Consequently, the effect of the holiday does not create a problem in finding an 
adequate model. There are enough data before and after the given holiday period to justify the 
use of the selected ARIMA model for forecasting and back forecasting the interpolates. How- 
ever, in practice, the interpolation technique of Brubacher and Wilson (1976) is not so readily 
applicable to most time series. If many observations are missing, it becomes increasingly diffi- 
cult to select a proper model for the time series. The reliability of the forecasted values is also a 
function of the number of gaps in the data. Another factor to consider is the proximity of the 
data gaps to the beginning or end of the time series. For example, if a missing data point were in 
the middle of the series, there may be insufficient data either before or after the gap to formulate 
an adequate forccasting model. The forecasted or back forecasted interpolate is therefore not 
dependable. Furthermore, if the data to be interpolattd are subjected to one or more external 
interventions, then most ARIMA models are not suitable and forecasts should not be based with 
these models. These arguments imply that this method of data filling is not admissible for data 
that has been affected by known external interventions. 

Other research related to the problem of missing observations can also be found in the 
literature. For instance, Marshall (1980) devises a technique for estimating the ACF of a time 
series when there are missing observations which are assumed to occur randomly. Within the 
frequency domain, a number of authors have considered problems which arise in spectral 
analysis when observations are missing at random (Jones, 1962; Parzen, 1963; Scheinok, 1965; 
Bloomfield, 1970; Neave, 1970). The intervention analysis technique to data tilling does not 
assume that the missing &ta points occur randomly. Finally, Chin (1988) presents a spectral 
analysis approach to fill in data at one location based on measured data at an adjacent location. 

A general approach to iterative computation of MLE’s when the observations can be 
viewed as incomplete data is given by Dempster et al. (1977). Because each iteration of the 
algorithm consists of an expectation step followed by a maximization step, the authors call i t  the 
EM ofgorirhm. This procedure is ideal for estimating simultaneously both missing values and 
the parameters of the model being fitted to the data set. As a matter of fact, the EM algorithm 
could be employed in conjunction with the intervention models for data filling defined in Sec- 
tions 19.3.3, 19.4.2 and 19.5.2. At each iteration, the missing values are replaced by their expec- 
tation given the current parameter values (called the E-step) and then the parameters are 
estimated once again (M-step). The iterations are continued until the estimates exhibit no impor- 
tant changes. 

Based upon a state space formulation, Jones (1980) develops a maximum likelihood esti- 
mator for fitting ARMA models to time series having missing observations. Additionally, Ljung 
(1982) develops an expression for the likelihood function of an ARMA model when some obser- 
vations are missing and shows how the missing data points can be estimated from the available 
data. Finally, Little and Rubin (1987) describe a wide range of approaches for dealing with 
missing data. 

19.33 Model Description 

Suppose that there are no external interventions which are affecting a given series which 
has missing observations. When the number of missing data points is not excessive, the intcr- 
vention model can be employed for data filling. Qualitatively, an intervention model for han- 
dling this situation can be written as 
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response variable = dynamic component + noise 

where the dynamic component contains intervention terms which can be used for estimating the 
missing data points. In a more precise fashion, an intervention model for modelling a series with 
multiple missing data points can be described by 

cv, - PJ =fOr.t.O + N, [19.3.1] 

when f repnsents discrete time, y, is the response series which may be transformed using the 
Box-Cox power transformation in [3.4.30]. cl, is the theoretical mean of the y, series. N, is the 
noise term which is usually correlated and can be modelled using an ARMA or ARIMA model, 
and f(k,{.f) is the dynamic component with a set of parameters, k. and a set of intervention 
series, 5. As will be explained. whenever a term in the dynamic component is used to model a 
missing observation, a specific type of transfer function and intervention series is always used. 
However, the design of the noise term, N,, is not fixed and the parameters required in the ARh4A 
representation of N ,  must be decided upon in each application. An ARMA model for the noise 
component is given in [19.2.7]. 

To specify exactly the form of the model in [19.3.1] where there are no external interven- 
tions, fmt  consider the case where there is one missing observation at time f l ,  and the response 
series is not transformed using a Box-Cox transformation defined in [3.4.30]. The intervention 
model for estimating the missing observation is written as 

Y, -C(y=%15r l+N,  [19.3.2] 

where 001 is the only parameter in the Wansfer function, and trl is the pulse intervention series 
which is set to unity at time t = t l  and given a value of zero elsewhere. Although the missing 
observation at time t1 can be assigned any fixed value, it is convenient to assign y , ,  a value of 
zero. After semng y, ,  to zero, at time f = tl, the intervention model from [ 19.3.21 is given as 

-1 =C(y +N, ,  [19.3.3] 

when py can be efficiently estimated by the series mean F. Notice that the right hand side of 
[ 19.3.31 consists of the mean level of the series plus the autocorrelated noise. This in fact is the 
value of the series at f = f , .  Consequently. the MLE for constitutes an efficient estimate for 
the missing value of y,, where the autocorrelation stn~cturc of the series is automatically taken 
into account in [19.3.3]. 

Suppose that the y, series in [ 19.3.31 requires a Box-Cox transformation to eliminate non- 
normality and/or heteroscedasticity in the model residuals contained in the noise component, N,. 
Then a non-negative value other than zero would have to be initially used for the missing y ,  

observation at time f l .  Suppose that this value is represented as Y;, where, for instance, Y;, may 
simply be the mean of the known transformed observations. At time t l .  the estimate for the 
missing observation in the transformed domain would be 
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-1 =Py +N,,-Y; [ 1 9.3.41 

To determine the estimate of the missing observation in the u n t r a n s f o d  domain, one would 
simply take the inverse Box-Cox transformation of 

The model may be expanded to handle a situation where then is more than one missing 
obsmration. If 12 values arc missing and t h m  arc no external interventions, the model is given 

in [ 19.3.41. 

as 

[ 19.34 

whcrc % is the parameter of the jth transfer function and kj is the j t h  intervention series which 
is assigned a value of unity when the jth observation is missing and zero elsewhere. If the miss- 
ing observation at time r j  is initially considered to be zero, then at r = r j ,  equation [19.3.5] 

becomes 

-Oaj =Y+N,, [ 19.3.63 

Therefore, an efficient estimate for yfj is the MLE of *,. If the series were transformed using a 
Box-Cox transformation, then the inverse Box-Cox transformation of the estimate for each miss- 
ing data point must be taken to obtain the estimate for each missing observation in the 
untransformed space. 

The intervention analysis approach to data filling possesses many inherent attributes. 
Firstly, as noted earlier, an efficient estimate is obtained for each missing observation along with 
its standard error of estimation. Because the MLE for each missing data point is known to be 
asymptotically normally distributed, confidence limits can be calculated for each estimated miss- 
ing value. Secondly, a moderate number of missing data points can be simultaneously estimated 
along with the other model parameters. It should be pointed out that the missing data can be 
estimated at any location in the series, including the initial and final points. Thirdly, as 
explained in Sections 19.4 and 19.5. intervention analysis can be used to estimate missing obser- 
vations even when there arc multiple external interventions and multiple input series. Finally, as 
shown in the next section, an intervention model for filling in data can be conveniently con- 
structed by adhering to the identification, estimation and diagnostic check stages of model 
development Authors who have employed the intervention analysis approach to data filling 
within water resources and environmental engineering include D’Astous and Hipel (1979), Let- 
tenmaim (1980) and Hipel and McLeod (1989). 

19.3.4 Model Construction 

When there arc no external interventions and only missing data points, the form of each 
intervention term in the dynamic component is fixed. For instance, the intervention term for the 
j t h  missing observation is 

Vj(BKtj = % j L j  

what  q-,j is the only transfer function parameter and Gj is the jth intervention series which is 
given a value of one where the jth observation is missing and zero elsewhere. Accordingly, it is 
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only necessary to ascertain the parameters required in the ARMA formulation of N,. 

To design the form of N,, one of the following techniques can be used where the third 
method is probably the simplest to use in most situations. 

F i t  replace each missing value by a "rough" estimate of what it may be. Next, using the 
entirc reconstructed series, identify the form of the ARMA model needed to describe it by 
following the usual procedures in Chapters 5 to 7. Rough estimates can bc obtain4 in a 
number of ways where only a simple procedure should be chosen. For instance, each miss- 
ing observation can be replaced by the mean of the known observations. When the data ~ r t  

seasonal, always replace the missing value by its seasonal mean. Another simple technique 
is to plot the entirc series and visually inkpla te  among the plotted observations to obtain 
a rough estimate for each missing observation. 
If t h m  is a sufficiently long section of data for which there arc no missing observations, 
use this interval of data to identify the form of N,. Once again, the standard techniques of 
Chapters 5 to 7 can be used. 

The third technique is the empirical identification technique presented in Sections 19.2.3, 
17.3.1 and 17.5.3. After fixing the form of each intervention term in the dynamic com- 
ponent, fit the model in [19.3.5] to the series where it is assumed that the noise term is 
white, and, therefore the intervention model in [ 19-33] has the form 

11 

j= l  
4 = (Y, -9 - ~ c o o / S I J  

In practice, usually the noise term is correlated. Consequently, after obtaining the 
estimated residual series, d,, for the above model, the kind of ARMA model to fit to the 
noise series can be determined by following the model development stages given in 
Chapters 5 to 7. 

By using the identified form of N, along with the fixed format of the dynamic component, 
an overall design for the model in [ 19.34 is now available. Before estimating the model param- 
e m ,  each missing data point is initially assigned a value of zero or some appropriate position 
value. Of course, if the series is first transformed using a Box-Cox transformation, the missing 
values arc given their zero values after obtaining the transformed sequence for the known obser- 
vations. Otherwise they can be assigned a positive value such as the mean of the known observa- 
tions before taking the Box-Cox transformation. Using the method of maximum likelihood dis- 
cussed in Appendix A17.1, efficient estimates can be simultaneously obtained for all the model 
parameters where the estimate for the jth missing observation is +&. The adequacy of the fit- 
ted model can be checked by utilizing the tests described in Chapter 7, and Sections 17.3.3, 
17.5.3 and 19.2.3. Note that if there are problems with the model residuals, only the form of N, 
must be redesigned since the format of the dynamic component is futed. 

19.35 Experiments to Check the Performance of the Data Filling Method 

From a theoretical viewpoint, the intervention model is known to produce efficient esti- 
mates for the missing observations (Coons, 1957; Bartlen, 1937). To demonstrate how well the 
data filling technique works in practice, it is assessed by estimating observations where the 
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actual historical values arc known. Consider the average annual flows from 1860 to 1957 for the 
St Lawrence River at Ogdensburg, New York. As explained in Sections 3.2.2 and 5.4.2, the 
most appropriate model to fit to this sequence is a consbained AR(3) model where the second 
AR parameter is constrained to zero in the equation 

(1 - 91B - W3XYf - y) =of 

wherc $i is the ith AR parameter (see Section 3.2 for a description of AR models), capital Y is 
used to emphasize that there is no Box-Cox transformation, and CL, is the mean of the Y f  series. 
The equation for this model which contains the values of the estimated parameters is given in 
[3.2.19] and [6.4.2). Because the model residuals arc approximately normally distributed and 
homoscedastic, it is not necessary to transform the data using a Box-Cox transformation (this is 
the case wherc the Box-Cox parameter X is set equal to one in [3.4.30]). 

The St Lawrence River time series consists of 97 observations and therefore the time t can 
be considered to go from t = 1 to t = 97. The proposed data interpolation method is tested by 
deleting observations at the beginning, the end, and in other locations of the time series. Table 
19.3.1 displays the data filling studies for the St. Lawrence River. The time series entries axt 
given in cubic meters per second while X = 0 means that natural logarithms are taken of the on- 
ginal data. To illustrate the mathematical structure of the intervention models in Table 19.3.1, 
the model for test case 4 is written for the times t = 33 and t = 34, respectively, as 

and 

in which 6, is the ith estimated AR parameter, 
residual at time t .  

From Table 19.3.1, the estimated value for the observation is within two SE's of the actual 
data point for case 1 while all other estimates are within one SE of the true values. In fact, the 
estimates arc quite close to the actual values even in the case where the very first data point is 
missing. This indicates that the noise term in the intervention model more than adequately 
accounts for the particular autocorrelation structure of the time series. Although no Box-Cox 
transformation is required in the original model, natural logarithms (i.e., X = 0) of the data are 
taken for test case 5 in Table 19.3.1. Thus, 

is the series mean, and d, is the white noise 

in which y, = h(Y, + 1). The constant must be added since the observation Yf  at time t has been 
set equal to zero. As shown in Table 19.3.1, the estimate -;Ol of has a value of 8.95. The 
estimate for the missing observation in the original series is 
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Table 19.3.1. Estimates for known observations for St. Lawrence River data. 

Test 
case 

Lag of 
Missing 

Observation 
94 
9 

94 
1 

33 
34 
25 

A 

- 
1 
1 

1 
1 

0 

-43 

7,724.27 
7,165.1 1 
7,226.15 
7,708.63 
6,489.97 
6,427.43 

8.95 

Standard 
Error 

343.25 
342.58 
342.58 
408.22 
378.23 
378.23 

0.05 

Actual Value. in 
Cubic Meters per 

Second 
7,194.00 
7,051.00 
7,194.00 
7.7 88 .00 
6,583.00 
6.583.00 
7,660.00 

f;, = e*' - 1 = 7,703.81 

This calculated value is close to the historical magnitude of 7,660.00, which is listed in Table 
19.3.1. 

19.3.6 Estimating Missing Observations in the Average Monthly Lucknow Temperature 
Data and Middle Fork Riverflows 

In Section 17.5.4, TFN noise models are developed where the output is always the average 
monthly flows of the Saugeen River at Walkerton, Ontario, Canada. and the covariate series con- 
sist of precipitation and temperature data sets from two different locations. As shown in Table 
17.5.2, for the Lucknow temperature series there an ten missing observations. These gaps in the 
time series must be filled in before the covariate temperature series can be used in a TFN model. 
To accomplish this, the intervention model in [ 19.3.51 can be utilized. 

Before fitting the model, the temperature series is first deseasonalized by employing the 
technique in [13.2.3] where the series is not initially transformed using a Box-Cox transforma- 
tion. Next, the first identification technique described in Section 19.3.4 is used to determine 
which parameters are needed in the ARMA noise term. Because the series is deseasonalized, 
each missing observation is assigned the monthly deseasonalized mean of zero. Then the form 
of the ARMA model required for modelling the series and hence, N,, is determined by following 
the stages of model construction outlined in Chapters 5 to 7. The noise term is identified to be 
an ARMA(0,4) model with the second and third MA parameters constrained to zero. Conse- 
quently, the particular form of the intervention model in [19.3.5] which can be utilized for 
modelling the deseasonalized Lucknow temperature series is 

[ 19.3.71 

where is the parameter in the jth transfer function, &j is the j th pulse intervention series that 
is assigned a value of unity where the observation is missing and zero elsewhere, and gi is the ith 

MA parameter (see Section 3.3.2 for a defmition of a MA(Q) model). After simultaneously 
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estimating all the model parameters in [19.3.7], the adequacy of the fitted model is confumtd by 
subjecting the residuals to diagnostic checks. 

The estimate for the jth missing data point in the deseasonalized series is given by -c&~. 
To obtain the estimate and standard error for each missing observation in the original series, they 
must undergo a reverse deseasonalization transformation as in [ 13.2.31. In Table 17.5.2, the esti- 
mates of the ten missing data points (and their SE’s in brackets) and the actual monthly means 
arc presented for the original untransformed series in the second and third column, respectively. 
Notice that the difference between each estimate and its monthly mean is always less than its SE. 

Another application using the intervention model of [ 19.3.51 to estimate missing values in a 
monthly riverflow time series is presented in the subsection called the Middle Fork Intervention 
Model within Section 22.4.2 of Chapter 22. To model the seasonality contained in the natural 
logarithms of the average monthly flows of the Middle Fork River, a scasonal differencing 
operator of order one is included in the SARIMA noise term of the intervention model. Consc- 
quently, it is not necessary to deseasonalize the logarithmic Middle Fork Riverflows, as is done 
for the data in this section. 

19.4 INTERVENTION MODELS WlTH MULTIPLE INTERVENTIONS AND MISSING 
OBSERVATIONS 

19.4.1 Introduction 

In Section 19.2, an intervention model is designed for modelling a time series which may 
be influenced by multiple external interventions while in Section 19.3 a specialized kind of inter- 
vention model is described for obtaining efficient estimates of missing values in a data sequence. 
The purpose of this section is to present an intervention model which can simultaneously handle 
both the modelling of the effects of multiple external interventions upon the levels of a series 
and the estimation of missing observations. As noted in the introduction in Section 19.1, a prac- 
tical example of t h i s  problem is given by the graph displayed in Figures 19.1.1 and 1.1.1 of the 
average monthIy phosphorous (in milligrams per litre) for the Speed River, Ontario, C a n a d a  
The external intervention which caused the drop in the level starting in February, 1974, (i-e., the 
26th data point) was the implementation of conventional phosphorous treatment at the upstream 
Guelph sewage matment plant, Besides the drop in the level caused by phosphorous trcatmcnt, 
the blackened circles indicate that there an missing observations both before and after the inter- 
vention. As is shown in Section 19.4.5, an intervention model can be conveniently constructed 
for modelling the effects of the intervention and obtaining efficient estimates of the missing data 
for the phosphorous series in Figure 19.1.1. However, prior to presenting the water quality 
application, the ideas from Sections 19.2 and 19.3 are combined for defining the intervention 
model of this section and explaining the model construction stages. To demonstrate that good 
estimates can be obtained for missing observations when there is also an external intervention, 
experiments are carried out with the average annual flows of the Nile River (see Figure 19.2.1 
and Section 19.2.4) which were significantly lowered by the construction of the Aswan Dam. To 
accomplish this, in Section 19.4.4 known observations are removed from the Nile River series 
both before and after the intervention, and the estimates for these values are compared to the 
known measurements. 



Building Intervention Models 703 

19.43 Model Description 

missing data points can be written as 
In a qualitative fashion, an intervention model which can handle multiple interventions and 

response variable = dynamic component + noise 

w h m  

dynumic component = interventions + missing dau 

Mort accurately, the above intervention model can be given as 

Y, - v y  =f(kvt.t) + N, [ 19.4.11 

w h m  t is discrete time, y, is the response variable which may be transformed using the Box- 
Cox power transformation in [3.4.30], is the mean of the entire y, series, and N ,  is the noise 
term which can be modelled using the ARMA model in [19.2.7]. The dynamic component, 
f (k , l ; , t )  contains the dynamic terms in both [19.2.1] and r19.3.11. Consequently, k represents 
the set of transfer function parameters for modelling both the effects of the interventions and the 
missing data. The set 6, contains the intervention series for modelling the occurrence and nonoc- 
currence of the external interventions plus the group of pulse intervention series which are 
needed in the intervention terms related to estimating the missing data. 

When there are I, external interventions and I ,  missing observations in a given series, 
[19.2.9] and r19.3.51 can be combined to obtain 

[ 19.4.21 

The first summation term on the right hand side accounts for the f I  external interventions 
modelled in Section 19.2.2 where v,(B) has exactly the same format as the transfer function 
defined in j19.2.61. For modelling the ith external intervention, the intervention series, bi, has a 
value of unity at each point in time when the intervention is taking place and values of zero else- 
where. To account for the 1, missing data points, the second summation is designed the same 
way as in [ 19.3.51. As explained in Section 19.3.3, the pulse intervention series, bj, for a miss- 
ing observation, is assigned a value of one at the time of the missing data point and given values 
of zero elsewhere. An efficient estimate of the missing observation is the MLE of * j .  

19.43 Model Construction 

Identification 

When constructing an intervention model for handling multiple external interventions and 
missing observations, the appropriate tools from Sections 19.2.3 and 19.3.4 can be utilized in 
conjunction with the overall procedure depicted in Figurc 19.2.4. Subsequent to employing 
exploratory data analysis tools for discovering any mnds which may be caused by unknown 
interventions (see Section 19.2.3), an intervention model can be designed for modelling the 
series under consideration. Besides a sound physical understanding of the problem plus infor- 
mation found at the detection stage, identification procedures can be used to decide upon which 
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parameters to include in the dynamic and noise components. 
Designing lbe Dynamic Component: For the modcl in [19.4.2], a set of intervention terms arc 
required for modelling the effects of the I ,  external interventions upon the levels of the series 
while another group of intervention terms are needed to estimate the I ,  missing observations. 
Because the format of the intervention terms for estimating the missing data is fixed, the design 
of these terms is considered fmt As noted in Section 19.3.4, the intervention term needed for 
modelling the missing observation at time ti is 

where 0)s is the only required transfer function parameter and b, is the pulse intervention series 
which is assigned a value of one at time rj and m elsewhere. Each of the intervention terms 
for modelling a missing observation is formulated exactly in this fashion. 

From Section 19.2.3, there m two basic steps to identify each intervention term for model- 
ling the effects of an external intervention. 
1. Determine the type of changes in the time series due to each intervention. This means that 

a hypothesis must be made about how the series has been influenced by the intervention. 
For each intervention. select an appropriate intervention series and associated transfer func- 
tion to allow quantification of how the intervention has affected the series. 
Each intervention series is usually quite simple to construct When the external interven- 

tion is raking place, an entry in the intervention series is given a value of 1 while it is assigned a 
magnitude of 0 when the intervention is not occurring. The transfer function for a given inter- 
vention series must be chosen in a manner that allows the geometric shape of the dynamic 
response to mimic the geometrical panern of the trend caused by the intervention in the actual 
series. To view the shapes of various dynamic responses for step and pulse interventions, the 
reader can refer to Figures 19.2.2 and 19.2.3, respectively. When dealing with seasonal data, an 
intervention term consisting of an intervention series and associated transfer function can be 
designed for each season or group of Seasons that are changed in the same fashion. For instance, 
in Section 19.2.5 where the impacts of reservoir operation upon the average monthly flows of the 
S. Sask. River are modelled using intervention analysis, for the single intervention of reservoir 
operation. a separate intervention term is designed for each month. On the other hand, for 
modelling the effects of tertiary treatment upon the average monthly phosphorous levels in the 
Speed River, a single intervention term is used in Section 19.4.5 because all of the months arc 
affecttd in a similar fashion. 

A range of simple graphical techniques are available for use in step 1. When the data arc 
seasonal, besides a plot of the entire series, it is advisable to use one or more of the following 
graphs for each season. Nonseasonal data CM be thought of as seasonal data with only one sea- 
son. 
(la) Seasonal plots. 
( lb) Cusum chart (sce [19.2.21] and also Figures 19.2.5 to 19.2.9). 

(1 c) Average plots. 

2. 
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(Id) Other graphs (Section 22.3). 

The reader can refer to Section 19.2.3 for a detailed description of the f m t  three identification 
procedures and to Section 22.3 for other useful graphs. The applications in Sections 19.2.4, 
19.2.5 and 19.4.5, demonstrate how some of these graphs are used in practice. 
Designing the Noise Component: Any feasible combination of the techniques outlined in Sec- 
tions 19.2.3 and 19.3.4, can be employed for designing the noise term. However, a fairly 
straightforward procedure which should work well for most applications is the empirical idenhp- 
carion approach for which related discussions appear in Sections 17.3.1. 17.5.3. 19.2.3, and 
19.3.4. In particular, after identifying the form of both kinds of intervention terms required in 
the dynamic component, fit the model in [ 19.4.21 to the series where it is assumed that the noise 
term is white. Consequently. the intervention model has the form 

1, 1141 
Y ,  - c ~ p  = L=Vi@)Li + C %Srj + 0, 

i= 1 i%,+l 

For most applications the noise term is usually correlated. Accordingly, after obtaining the 
estimated residual series, 4,. for the above model using the method of maximum likelihood, the 
kind of ARMA model to fit to the noise series can be determined by following the three stages of 
model construction described in Chapters 5 to 7. By using the identified form of N, for the noise 
term along with the previously designed dynamic component, the intervention model in [ 19.4.21 
is completely specified. 

As an example of a specialized identification procedure which relies upon the identification 
tools pnsented in Sections 19.2.3 and 19.3.4. consider the following. Suppose there is a suffi- 
ciently long section of the series for which there are no missing values and the impacts of the 
external interventions are either not present or can be ignored. Simply use this part of the series 
to identify the parameters required in the ARMA model for N,. Of course, when the parameters 
for the completely identified model are estimated, the entire series is used. 

Estimation 

At the estimation stage, MLE’s and comesponding SE’s can be simultaneously obtained for 
all the model parameters in [19.4.2] using the estimator described in Appendix A17.1. Of 
course, automatic selection criteria such as the AIC in [6.3.1] and the BIC in [6.3.5] can be 
employed to assist in selecting the most appropriate model by following the procedure outlined 
in Figurc 6.3.1. 

To ascertain the magnitudes of the effects of the external interventions upon the mean level 
of the series, the approach outlined in Section 19.2.2 can be used. Recall that for a given inter- 
vention, the change caused in the mean level of y, is a function of the parameters in the transfer 
function for that intervention. Furthermore, because the SE’s for the estimates of the parameters 
in the transfer function are obtained at the estimation stage, confidence limits can be calculated 
for the changes in the mean level. Practical applications for employing the formulae which 
describe the changes in the mean level are given in the applications of Sections 19.2.4, 19.2.5, 
19.4.5, 19.5.4 and 22.4.2. 

As demonstrated in [19.3.6], the MLE of the missing observation occurring at time rj  is 
simply +&. Since the SE for GOj is approximately normally distribu!rtd, confidence limits can 
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Test Case 

1 

be constructed for the estimated missing value. Examples of the intervention analysis approach 
for estimating missing data points arc presented in Sections 19.3.5, 19.3.6, 19.4.4. 19.4.5 and 
22.4.2. 

Diagnodic Checking 

In order to ascertain the adequacy of the fitted model, the residual series. d,, obtained at the 
estimation stage, can be subjected to stringent diagnostic checks. Tests for checking for the 
presence of whiteness, normality and hornoscedasticity arc described in Chapter 7 as well as in 
Sections 17.3.3, 17.5.3 and 19.2.3. 

Lag of Missing ';oi Standard True Value, 

per Second 
Observa tion Error in Cubic Meters 

14 3595.30 348.73 3 141.01 
49 2687.41 348.34 2377.89 

19.4.4 Experiment to Assess Data Filling when an Intervention is Present 

The performance of the model in [19.4.2] for accurately estimating missing values in the 
presence of a known intervention is now assessed by estimating observations where the actual 
historical values arc known. The 76 average annual flows for the Nile River at Aswan, Egypt are 
plotted in Figure 19.2.1. As shown graphically in this figure and more precisely by the fitted 
intervention model in [ 19.2.231, the construction of the Aswan dam in 1902 caused a significant 
step decrease in the mean level of the series. If the yearly data are numbered in sequential order, 
the intervention o c c d  at the thirty-third data point or t = 33. 

The test case for testing the data filling method in the presence of an external intervention 
is shown in Table 19.4.1. Observations are removed before and aftcr the intervention at the 14th 
and 49th data points, respectively, and replaced by values of zero at these two locations. Conse- 
quently. the intervention model consists of two pulse interventions for estimating the missing 
data, and, as shown in [19.2.23], one step intervention for modelling the effects of the dam upon 
the mean level plus a correlated noise term. Hence, the intervention model is written as 

YI - P = %,L + 002612 + 003sr3  + (1 - W a f  [ 19.4.31 

= 1 at t = 14 and 6, = 0 elsewhere; Gz = 1 for f 2 33 and tl2 = 0 for t < 33 in order in which 
to model the intervention due to the dam; tf3 = 1 at f = 49 and c3 = 0 elsewhere. 

Table 19.4.1. Estimates for known observations for Nile River data. 

From Table 19.4.1 it can be Sten that the estimates for the missing data arc well within two 
SE's of the historical values. In addition, the estimate -& of is considerably higher than 
G3. This is consistent with the drop in the mean level caused by the dam intervention for 
t s 4 .  
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19.45 Environmental Impact Assessment of Tertiary Treatment on Average Monthly 
Phosphorous Levels in the Speed River 

In environmental impact assessment, engineers wish to determine if a given pollution 
abatement procedure significantly improves the environment. Furthermore, as noted in Section 
19.1, often evenly spaced environmental time series are not available, and consequently missing 
observations must be estimated when the impacts of the intervention are assessed. Fortunately, 
the flexible intervention model in [ 19.4.21 can easily model this type of situation. 

As an interesting example, consider the graph in Figures 19.1.1 and 1.1.1 of the 72 average 
monthly phosphorous measurements taken downstream from the Guelph sewage treatment plant 
on the Speed River, Ontario, Canada As noted in Section 19.1. in February 1974, a phos- 
phorous removal scheme caused a significant drop in the m a n  level for t2 26. In addition, the 
filled-in circles indicate that there arc three missing observations before the intervention and one 
missing measurement afterwards. For displaying a missing value on the graph, the missing 
observation is simply replaced by its monthly average across all of the months. 

Notice in Figure 19.1.1 that the spread of the data is much less after the intervention date. 
To diminish the effects of having a smaller variance after the intervention, a natural logarithmic 
transformation is invoked. 

Because the introduction of phosphorous treatment is expected to have an immediate effect 
on the water quality that persists as long as it is applied, the intervention can be modelled by a 
step dynamic response of the form 004tI4 in which tr4 = 1 for t 2 26 and tI4 = 0 elsewhere. The 
four missing data points can be estimated using pulse dynamic responses as explained in Sec- 
tions 19.3.3 and 19.4.2. The proposed intervention model is then written using [19.4.2] as 

[ 19.4.41 

in which y, is the logarithmic transformation of the series plotted in Figure 19.1.1 and is the 
overall mean level of y,; trl = 1 at f = 6 and tIl = 0 elsewhere; G2 = 1 at t = 19 and G2 = 0 at 
other times; t , 3  = 1 at t = 25 and tr3 = 0 elsewhere; tr4 = 1 for t 2 26 and 5,4 = 0 for t c 26 in 
order to model the phosphorous treatment intervention; and t l 5  = 1 at t = 41 and 5,s = 0 else- 
where; and N, is the correlated noise term. 

The empirical approach is used for identifying the noise term in (19.4.41. More specifi- 
cally, the model in [ 19.4.41 with N, taken to be white noise is fitted to the logarithms of the time 
series in Figure 19.1.1. Subsequently, an ARMA model is identified for modelling the residuals 
of the intervention model. Because the RACF possesses significantly large values at lower lags 
as well as lag 12, this indicates that nonseasonal MA parameters as well as one seasonal MA 
parameter may be necded in the noise term. A variety of ARMA models were considered for 
structuring the noise term and a suitable model was found to be a seasonal ARMA or SARMA 
model defmed in [ 12.2.91 having five nonseasonal MA parameters and one seasonal MA param- 
eters, Hence, the model for the noise term is written as 

[ 19 .44  

By substituting [19.4.5] into [19.4.4] the complete intervention model is revealed. Max- 
imum likelihood estimates are then simultaneously obtained for the complete intervention model 
using the approach outlined in Appendix A17.1. Table 19.4.2 lists the estimates and SE’s (in 
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6, 6 2  6 3  6.4 
-0.2556 -0.1467 0.2870 0.4657 
(0.1113) (0.1014) (0.0971) (0.1027) 

parentheses) for the parameters of the noise term in [19.4.5] and also the step dynamic response 
in r19.4.41. As can be seen, the absolute magnitude of each of the parameter estimates is larger 
than twice its SE except for 6 2  which is still larger than its SE. Moreover, because the seasonal 
MA parameter is significantly different from zero, this confirms the importance of including this 
parameter in the noise term in r19.4.51. 

65  4 &4 

0.3303 -0.3460 -1.3720 
(0.1128) (0.1138) (0.0720) 

By substituting the estimate for o, given in Table 19.4.2 into [19.2.20], one can obtain an 
estimate of -74.&4% for the percentage change in the mean level due to the intervention of intro- 
ducing phosphorous treatment. Furthermore, by carrying out the calculations explained just after 
[19.2.20] in Section 19.2.2, the 95% confidence interval is found to range from -70.80% to 
-77.98%. Consequently, one can argue that there is a significant decrease in the phosphorous 
levels due to the tertiary treatment. The best estimate for this percentage drop is 74.64% while 
the 95% confidence interval for this decrease is from 70.80% to 77.98%. This is precisely the 
type of rigorous statistical statement required by environmental engineers for evaluating pollu- 
tion control procedures. 

It is quite interesting to note that when N, is assumed to be white noise in [ 19.4.41 the esti- 
mates for the 0oi parameters are significantly different than those given in Tables 19.4.2 and 
19.4.3. However, when a reasonable SARMA model that is u feren t  from the one in [ 19.44 is 
selected for the noise term to capture correlation present in the time series, the estimates for the 
00; coefficients are quite close to those listed in the two tables. This points out the practical 
importance of employing models, such as TFN and intervention models, for describing real 
world data. As mentioned in Section 17.2.4, regression analysis models do not possess the capa- 
bility of handling comlated noise and hence could provide misleading results in certain situa- 
tions. 

Diagnostic checks indicate that based upon the available information, the model provides 
an adequate fit to the data. For example, the RACF for the fitted model clearly c o n f m s  the 
whiteness of the residuals. The Portmanteau statistic claculated using r7.3.61 for 24 lags of the 
RACF has a value of 17.92 on 18 degrees of freedom. Since this value is not sigruficant at the 
5% level of signrficance, this test also supports the whiteness assumption of the intervention 
model residuals. 

Table 19.4.3 provides the information required for estimating the four missing values in the 
original phosphorous series which are listed in the bottom line of the table. More specifically, 
the top part of the table furnishes the negative MLE's for Ool, w, 003 and o, in r19.4.41. 

These four transfer function parameters link up with the observations missing at times t = 6, 19, 
25 and 41, respectively. Below the negative of each of the parameter estimates is the mean 
monthly value that was inserted at the exact location in the data set where the observation was 



Building Intervention Models 

4 1  

0.8304 
(0.3917) 

709 

-42 4 3  -&s 
0.8169 0.5429 0.6479 

(0.3715) (0.3689) (0.3601) 

Table 19.4.3. Estimates for the missing phosphorous data. 

I Parameter Estimates I 

E h a t e s  of Missing Values in Logarithmic Domain 
(4. + ~n of input value) 

-1.0508 I -0.6780 1 4.6400 I - 1.3605 

I I I I I 

1 I I I I 

Estimates of Missing Values in Unstransformed Domain 
0.3497 I 0.5076 I 0.5273 I 0.2565 

unknown. As explained in Section 19.3.3, to obtain the estimate of the natural logarithm of the 
ith missing value, one adds -&i to the logarithm of the inserted value. Finally, by taking the 
inverse logarithmic transformation of this estimate, one obtains the estimate for each missing 
value in the untransformed domain as given in the bottom row of Table 19.4.3. 

As demonstrated in this section, the intervention model for the Guelph phosphorous data 
can be employed in an environmental impact assessment study for properly determining the 
effectiveness of the tertiary phosphorous treatment scheme canied out at upstream sewage treat- 
ment plants. Additionally, intervention analysis can be used for estimating missing observa- 
tions. Finally, the intervention model in [ 19.4.41 constitutes a stochastic model that can be util- 
ized for forecasting and simulation. 

19.5 INTERVENTION MODELS WlTH MULTIPLE INTERVENTIONS, MISSING 
OBSERVATIONS AND INPUT SERIES 

19.5.1 Introduction 

The main objectives of this section arc to describe the most general form of rhe intervention 
model and explain how it can be easily applied to practical problems. By combining the dynamic 
components from Sections 19.2, 19.3 and 17.5, a comprehensive intervention model can be 
defined where the dynamic component can simultaneously model the effects of multiple external 
interventions, estimate missing data points and describe the influence of input series upon the 
single output series, respectively. For example, a water quality variable, such as total organic 
carbon, may be the output series which can be realistically modelled using the general interven- 
tion model. Within the intervention model, it may be necessary to model the influence of a pol- 
lution abatement scheme upon the mean level of the total organic carbon series and it may be 
required to efficiently estimate multiple missing observations both before and after the interven- 
tion date. Furthermore, the flows in the river can be used as an input series in the model. Once 
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again, as is the situation for the intervention models in the earlier parts of this chapter as well as 
the TFN models of Chapter 17, the noise term can be effectively modelled using an ARMA 
model. 

After defining the general intervention modcl in the next section, the model construction 
stages are explained in Section 19.5.3. Although some of the material in these two sections is at 
least partially presented in earlier sections, for the convenience of the reader, some of the 
descriptions arc repeated for the case of the general i nwen t ion  model. In this way, practition- 
ers who arc mainly interested in the most general case of the intervention model do not have to 
continuously refer back to previous sections. To clearly demonstrate how an input series can be 
incorporated into an intervention model where the output has been influenced by an external 
intervention, an interesting application is presented in Section 19.5.4. An intervention model is 
constnrcted for assessing the impacts of a forest fire upon the average monthly flows of a river 
where average monthly riverflows from a river in a nearby basin, where there wasn’t a forest 
fi, arc used as one input series. By incorporating the input flow series into the intervention 
model. the effects on the output riverflows which are not due to the forest fire can be accounted 
for. 

In Section 22.4.2 of Chapter 22, two interesting applications of intervention models con- 
taining input series are presented. In the subsection entitled the Cabin Creek Flow Intervention 
Model, an intervention model is developed for ascertaining the effects of cutting down a forest 
upon the average monthly flows of the Cabin Creek. Because the nearby Middle Fork River lies 
outside of the treecutting zone, it is used as an input series to remove climatic effects upon 
riverflows which arc common to both the Cabin Creek and Middle Fork River. The intervention 
model also contains terms for estimating four missing values in the Cabin Creek flows and a 
component for modelling the impacts of the forest firc upon the Cabin Creek flows. The second 
application of Section 22.4.2 is described under the subsection called the General Water Quality 
Intervention Model and is concerned with designing an intervention model for determining the 
effects of cutting down a forest on each of a number of specified water quality variables mas- 
wed in the Cabin Creek. To model the relationship between the flows and the water quality vari- 
able used in the output, the Cabin Creek Flows arc used as a covariate series. In order to isolate 
the effects of the intervention upon the Cabin Creek water quality variable, the same water qual- 
ity series from the nearby Middle Fork River where the trees were not cut down, is used as 
another covariate series. Finally, an intervention component is included in the model for deter- 
mining the effects of clear-cutting upon the average monthly values of the Cabin Creek water 
quality variable. 

19.53 Model Description 

The most general format for the intervention model is written as 

response variable = dynamic component + noise 

where 

dynamic component = interventions + missing data + inputs 

More precisely. the intervention model is given as 
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Yf - Py =f@X*xr) + NI (19.5.11 

where I stands for discrete time, y, is the output or response variable which may be transformed 
using the Box-Cox power transformation in [3.4.30], and ~ l ,  is the theoretical mean of the entire 
y, series which can be efficiently estimated using the sample mean 7. The noise term, N,, 
accounts for the correlation in the data and can be modelled using an ARMA model. The 
dynamic component, f(k,{.x.t). contains the dynamic tern from [19.2.1]. [19.3.1] and also 
[17.5.3]. Accordingly, k represents the set of transfer function parameters for modelling the 
effects of the interventions, estimating the missing data and reflecting the influence of the input 
series upon the single output. The set, 5. contains the intervention series for describing when the 
external interventions do and do not occur plus the group of pulse intervention series where each 
pulse series is assigned a value of one for the point in time for which the corresponding yI obser- 
vation is missing and is given values of zero elsewhere. As in [ 17.5.31 for a TFN model where 
there arc no interventions and missing observations, the set x stands for the set of input series 
where each input series may or may not be transformed using a Box-Cox power transformation. 

To fully appreciate how the general intervention model is created from the special cases 
discussed in previous sections, the presentation of these cases is briefly repeated here in the pro- 
cess of building the general form from the simpler situations. 

As described in Section 19.2.2, when there are I ,  external interventions, the model at time t 
may be written following [ 19.2.91 as 

1, 

;=I 
Y I  - CLy=Cv;(B)kt; +N, [ 19.5.21 

where 6; is the ith intervention series that is assigned a value of zero when the ith intervention is 
not in effect and given a value of unity when the ith intervention is occurring. The ith transfer 
function, v ; ( B ) ,  which is the same as the one defined in [17.5.2] for TFN models, is given as 

where w,(B) is the operator in the numerator of the m s f e r  function and oji, j = 0,1.2, . . . ,mi 

arc the parameters of o ; ( B ) ;  a;@) is the operator having the parameters a,,., i = 1.2, . . . , ri, in 
the denominator of v ; (B)  and for stability the roots of 6 ; ( B )  = 0 lie outside the unit circle; and b, 

is the delay tim for the ith intervention to affect y,. The tern given by v j (B)&; ,  is called the 
d y m i c  response for the ith transfer function and ith intervention series. Plots of various kinds 
of dynamic responses are presented in Figures 19.2.2 and 19.2.3 for step and pulse intervention 
series, respactively. 

As noted in Section 19.3, often there may be missing observations, especially in environ- 
mental timc series. When the number of missing data points is not excessive, the intervention 
model can be employed for estimating the missing observations. Suppose, for example, that 
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there are no external interventions and a time series has one missing point at time 1,. After e t -  
ting the missing value Y , ~  to zero, the intervention model for estimating the missing observation 
may be written following [ 19.3.21 as 

Y , - P y = % 1 6 1 + 4  [ 19.5.31 

where is the intervention series which is set 
to unity at time t1 and given a value of zero elsewhere. At time tl. [ 19.3.21 and [ 19.5.31 reduce 
to 

is the parameter of the transfer function, and 

-%I =Py +% [19.5.4] 

and a maximum likelihood estimate for constitutes an estimate for the missing value Y,~. 

Because -q,l depends on the noise term, N,, the comlation structure of the series is reflected in 
the estimate for the missing point. 

The model may be expanded to handle a situation where there is more than one missing 
observation. If I, values are missing and there are no external interventions the model in 
[ 19.3.51 is given as 

11 

Y, - c ~ y  = CqjSrj +N, 
j =  1 

[ 19.5.51 

where qj is the parameter of the jth transfer function, and k,j is the j th  intervention series 
which is assigned a value of unity where the jth observation is missing and zero elsewhere. 

When there are Il external interventions and 1, missing data points in a given series, equa- 
tions [19.5.2] and [ 19 .53  can be combined to obtain the result given in [ 19.4.21 as 

/I 11+12 

Y, - ~ y  = CvI(B)&i + C %jStj +N1 [ 19.5.6) 
i=l j=l,+l 

The first summation term on the right hand side of [19.5.6] accounts for the II external interven- 
tions, the stcond summation component allows for the I, missing data points, and the noise term, 
N,, reflects the cornlation structure of the data. 

When covariate time series arc available, it is possible to include them in the general inter- 
vention model. For instance, precipitation and temperature, as well as hydrologic series from 
nearby basins may be used as inputs for a riverflow model. For a situation where there are I ,  

covariate series and no external interventions or missing data, the TFN model described in Sec- 
tion 17.5.2 m a y  be written following [ 17.5.31 as 

1, 
Y, - Py = C V r ( W d r , ,  - Cl,d +N, [ 19.5.71 

where xlk is the kth covariate series which may be transformed using an appropriate Box-Cox 
power transformation, and pxk is the theoretical m a n  of the x , ~  series which can be estimated 
using the sample mean i l k .  

k=l 
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By combining [ 19.5.61 and [ 19.5.71 to form the general intervention model, it is possible to 
have the following comprehensive and practical model for analyzing environmental and other 
kinds of time series. 

I1 h + I l  

i= 1 j==,+1 
Y, - ~ l y  = Z v i ( B k i  + %j&j 

[ 19.5.81 

This comprehensive and flexible model accounts for 1, external interventions. 1, missing obser- 
vations in y,, and l3 covariate series as well as dlecting the correlation structure of the series. 
Moreover, the model can handle both nonseasonal and seasonal data. For the case where the 
time series an nonseasonal, N f  can be structured using an ARMA (Chapter 3) or ARIMA 

(Chapter 4) model for stationary or nonstationary correlated noise, respectively. When the out- 
put and covariate time series are seasonal and follow the sinusoidal structure exhibited in Figure 
VI.1, they can be deseasonalized using [13.2.2] or [13.3.3] before employing the general inter- 
vention model in [19.5.8] with an ARMA noise component. Another approach is not to desea- 
sonalize the given time series but rather permit N, to be modelled by a SARMA or SARIMA 
model described in Section 12.2.1 for modelling stationary and nonstationary seasonal data, 
respectively. In some cases, the seasonal covariate series in [ 19.5.81 may remove all or part of 
the seasonality contained in the response series and thereby cause the noise to be nonseasonal or 
else slightly seasonal. Finally. in addition to environmental impact assessment, data filling, and 
causality modelling, the finite difference equation model in [19.5.8] can be utilized for forecast- 
ing and simulation. 

19.53 Model Construction 

When developing a general intervention model to fit to a set of time series, a sound physi- 
cal understanding of the problem in conjunction with the overall procedure outlined in Figure 
19.2.4 can be used. In order to detect trends in a series which may be caused by unknown inter- 
ventions, the exploratory data analysis tools which are briefly referred to in Section 19.2.3 and 
described in detail in Section 22.3 of Chapter 22, can be utilized. Additionally, the non- 
parametric trend tests of Section 23.3 and robust locally weight regression smooth of Section 
24.2.2 can be employed for discovering unknown trends and c o n f i i n g  the presence of 
suspected mnds caused by known external interventions. After finding suitable physical expla- 
nations to account for all of the external interventions, the parameters required in the interven- 
tion model must be decided upon. For all of the special cases of the intervention models 
presented in this chapter, the main differences in consbucting the models occur at the identifica- 
tion stage. Consequently, the discussion in this section concentrates on model identification. 
Following model identification, MLE’s can be obtained for the model parameters and the ade- 
quacy of the fitted model can be checked. 
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Identification 

The instructions for idenbfymg the special cases of the intervention model are given in the 
following sections: 
(1) Section 19.2.3 for the intervention model in [19.2.9] and [19.5.2] which can handle multi- 

ple interventions. 
(2) Section 19.3.4 for the intervention model in [19.3.5] and [19.5.5] which can be used for 

estimating missing observations. 
(3) Section 19.4.3 for the intervention model in [19.4.2] and [19.5.6] that can model the effects 

of multiple external interventions upon the mean level of yI and also be used for estimating 
missing observations. 

(4) Sections 17.5.3 and also 17.3.1 for the TFN model in [ 17.5.31 and [ 19.5.71 which can han- 
dle multiple input series. 
In order to design the general intervention model in [19.5.8], appropriate identification 

tools from all of the foregoing sections must be selected. This means that there are quite a few 
different approaches which could be adopted. The most convenient procedures for identifying 
the general intervention model arc now discussed separately for the dynamic and noise com- 
ponents. 
Designing the Dynamic Component: For the general intervention model in (193.81, three dis- 
tinct kinds of terms arc needed in the dynamic component. A set of intervention terms are 
required to model the effects of the I ,  interventions, a group of intervention terms are needed to 
estimate the 1, missing observations, and a set of dynamic responses are required for describing 
how the I 3  inputs influence the single output. When designing the dynamic component, it is 
most convenient to separately design the three parts of the dynamic component. 

Missing values Because the form of each intervention term needed for modelling a missing 
observation is fixed, the design of the terms for modelling the missing observations is entcr- 
tained fmt. As explained in Section 19.3.4 and as shown in [19.5.3] and [19.5.5], the interven- 
tion term n d e d  for modelling the missing observation at time ti is 

vj (B Kj = O o j b j  

wherc % is the only rcquired transfer function parameter and &j is the pulse intervention series 
which is assigned a value of unity at time rj  and zero elsewhere. Each of the intervention terms 
for modelling a given missing data point is written in exactly the same manner. The MLE of 
-cq,j constitutes an efficient estimate for the missing value at time r j .  

The d e r  should bear in mind that the general intervention model in [19.5.8] can only be 
utilized for estimating the missing observations in the output series y,. If there arc missing 
observations in an input series, x , k ,  the model in [19.5.5] can be employed to estimate the miss- 
ing observations where and plr replace y, and p,,, respectively, in [19.5.5]. Subsequent to 
estimating all of the missing measurements separately for each 1 1 ,  series, the input series can be 

employed in the overall intervention model in [19.5.8]. 
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External interventions. As described in Section 19.2.3, then arc two basic steps for identifying 
each intervention term needed for modelling the impacts of an external intervention upon the 
mean level of y,. 

(1) Determine the type of change in the time series due to each intervention. Hence, a 
hypothesis must be made on how the y, series has been altered by the intervention. 

(2) For each intervention, choose an appropriate intervention series and associated transfer 
function to permit quantification of how the intervention has influenced the y, series. 

Usually, each intervention series can be easily designed. Whenever the external intewen- 
tion is occurring. the entries are assigned values of one while they are given zero values when 
the intervention is not taking place. For a given intervention series, the transfer function must be 
designed in a manner that permits the geometric shape of the dynamic response to mimic the 
geometrical pattern of the a n d  caused by the intervention in the y, series. Graphs of various 
dynamic responses caused by step and pulse interventions are displayed in Figures 19.2.2 and 
19.2.3. respectively. When dealing with seasonal data, an intervention term consisting of an 
intervention series and associated Eansfer function can be identified for each season or groups of 
seasons that arc changed in the same fashion. 

For employment in step 1, a variety of informative, yet simple. graphical techniques arc 
available. When considering seasonal data, in addition to a plot of the y, time series against 
time, one or more of the following graphs can be drawn for each season. Of course, nonseasonal 
data can be thought of as seasonal data with only one season per year. 
(la) Seasonal plots. 
(lb) Cusum chart (see r19.2.211 and also Figures 19.2.5 to 19.2.9). 
(lc) Average plots. 
(Id) Other graphs (Section 22.3). 
The reader can refer to Section 19.2.3 for a detailed description of each of the f i t  three identifi- 
cation graphs and to Section 22.3 for other useful graphs. The applications in Sections 19.2.4, 
19.2.5 and 19.4.5 illustrate how some of these graphs arc used in practice. 

Inputs In [ 17.24, a TFN model is defined where there is only one input series x, which affects 
the output series y,. The transfer function which describes how the x, series affects the output 
can be designed by using one or more of the following identification techniques which arc 
described in detail in Section 17.3.1. 
(1) Empirical identification approach 

(2) Haugh and Box identification method 
(3) Box and Jenkins identification procedure. 
The application presented in Section 17.4.2 shows how each of the above techniques can be used 

As noted in Sections 17.3.1 and 17.5.3. all three identification methods were developed 
under the assumption that there is only one input series present in the model and the input series 
only affects the output. When there is more than one input series, the obvious way to use each 

in practice. 
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identification procedure, especially the second and third ones, is to investigate. pairwise. the 
relationship between each x , ~  series and y, in order to design the form of the transfer function 
v,(B). Nevertheless, in a general intervention model With more than one covariate series, the 
covariate series may affect one another besides influencing the response variable y,. When there 
is not too much interaction among the I3 input series, fairly correct transfer functions may be 
identified using the pairwise identification procedure. Whatever the case, the assumptions that 
the x,k's are independent is not assumed in the general intervention model in [19.5.8] and the 
TFN model in [ 17.5.31. Consequently, if required, a number of tentative dynamic models for the 
input series can be considered when estimating the parameters for the resulting overall general 
intervention models, where, of course, tentative designs for the noise component are assumed. A 
discrimination technique such as the AIC in [6.3.1] can then be utilized to choose the most 
appropriate general intervention model. 

Probably, the simplest approach for designing the I3 transfer functions, especially when 
there are more than two input series. is to employ the empirical approach. If there is difficulty in 
designing one or more of the transfer functions, one or both of the other two identification 
methods can be used in conjunction with the empirical approach. The reader should keep in 
mind that if the Haugh and Box or Box and Jenkins approach is used, the effects of the interven- 
tions upon y, must somehow be removed or accounted for before calculating the required CCF's 
(cross-correlation functions). For instance, suppose there is a sufficiently long portion of data 
for which the impacts of the interventions upon y, can be neglected or else are not present and 
there are no missing values. Then this section of the data can be used to calculate the CCF's 
needed in the two approaches. Another method is to first fit the intervention model in [ 19.5.61 to 
they, series where the I3 input series are not included in the model. Consequently. from [ 19.5.6) 

The estimated noise series, hi,, in [19.5.6] can be thought of as an estimate of the y, series where 
the I ,  missing values have been estimated and the effects of the I2 interventions have been 
removed. Note that N, series can be estimated even prior to designing the ARMA model to 
describe h',. Simply assume that Nl is white in [19.5.6] and a program can be used to estimate 
the residual series which will probably be correlated. This comlated residual series constitutes 
the estimate for N,. Using the i, series, the necessary CCF's needed in the Haugh and Box, and 
the Box and Jenkins methods can be calculated for the entire series following the detailed pro- 
cedures outlined in Section 17.3.1. 

The authors have found in practice that usually the empirical approach works well for 
designing the transfer functions needed for the I ,  input series and, therefore, it is usually not 
necessary to obtain the N, series described in the previous paragraph. As explained in Sections 
17.3.1 and 17.5.3, the empirical approach is straightfonvard to use but it does q u i r e  the 
modeller to exercise good judgement. Based upon an understanding of the physical phenomena 
that generated the y, and xIk time series as well as the mathematical properties of the general 
intervention model, each transfer function, vk(B)  can be identified. For example, suppose that 
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the output is an average monthly series such as total organic carbon and that one of the input 
series is pmipitation. It may be known from the physical characteristics of the watershed that 
rainfall for the cumnt month only affects the total organic carbon for that month. Consequently, 
to model the precipitation series, XI&, it may be appropriate to employ the transfer function 

v,@) = 0, 

A water quality application when a transfer function like this is employed is presented in Sec- 
tion 22.4.2. 

Designing tbe Noise Component: The best procedure for identifying the noise component is to 
employ the empirical approach for which earlier related discussions appear in Sections 17.3.1, 
17.5.3, 19.2.3 and 19.4.3. After identifying the form of the complete dynamic component, fit the 
model in [19.5.8] to the series where it is assumed that the noise term is white. Hence, the gen- 
eral intervention model has the form 

For most applications, the noise term is comlated. Therefore, after obtaining the estimated resi- 
dual series, d,. for the above model using the method of maximum likelihood, the type of ARMA 
model to fit to the noise series can be determined by following the three stages of model con- 
struction described in Chapters 5 to 7. The identified noise term along with the previously 
designed dynamic component, provides the complete design for the intervention model in 
[ 19.5.81. 

Estimation 

The MLE’s and SE’s for all of the parameters in the general intervention model are simul- 
taneously obtained at the estimation stage using the estimator described in Appendix A17.1. 
When there an a range of tentative models to choose from, automatic selection criteria such as 
the AIC in [6.3.1] and the BIC in [6.3.5] can be employed for discrimination purposes by follow- 
ing the general procedure of Figure 6.3.1. 

For calculating the affects of the external interventions upon the mean level of they, series, 
the approach described in Section 19.2.2 can be utilized. For a given intervention, the change 
caused in the mean level of y, is a function of the parameters in the transfer function used with 
the corresponding intervention series. By considering the standard emrs of estimation for the 
transfer function parameters. confidence limits can be obtained for the changes in the mean level. 

As explained in [19.3.6], the MLE of the missing observation at time t j ,  is given by Gj. 
By considering the SE for -&,, confidence limits can be obtained for the estimate of the missing 
value. 

Diagnostic Checks 

At the estimation stage, the residual series, tf,, is estimated. To test the adequacy of the fit- 
ted model, these residuals can be subjected to diagnostic checks. All the diagnostic checks for 
the residual series presented in Chapter 7 and elsewhere can be used for checking the whiteness, 
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normal, and homoscedastic assumptions of the residuals. To v d y  that the residuals are white, 
the recommended procedure is to plot the RACF in (7.3.11 along with appropriately chosen con- 
fidence limits. Additionally, the cumulative periodogram in [2.6.2] and the modified Portman- 
teau test in [17.3.7] can be used to determine whether or not the residuals are uncornlated. 
When the residuals arc cornlated, the model is inadequate and appropriate changes must be 
made to the model by repeating the stages of model development in Figure 19.2.4. As is the case 
with most of the models discussed in this book, if the residuals do not follow a normal distribu- 
tion and/or arc heterosccdastic, an appropriate Box-Cox transformation of the y, series and 
perhaps also some of the xk series may rectify the situation. 

In Sections 17.3.3 and 17.5.3, additional tests arc given for TFN models where there arc 
single or multiple input series, respectively. As noted in Section 17.3.3. if the residual ACF 
indicates that the residuals arc correlated, the model inadequacy could be due to the noise tern, 
the transfer functions in the dynamic component, or both. The form of the significant autocorn- 
lations present in the estimated residual ACF may indicate what type of model modifications 
should be made. Additionally, assuming that the transfer functions and intervention series for 
modelling the interventions are correctly designed. investigation of the form of the CCF between 
each prewhitened xIL series and d, may also assist in detecting where the sources of the problems 
arc located and how they should be rectified. 

Fortunately, in practice the authors have never found it necessary to locate errors in a gen- 
eral intervention model by investigating the relationship between a prewhitened x , ~  series and s,. 
Usually, any problems with the design of the model can be detected and eliminated by simply 
examining the RACF and repeating the appropriate stages of model construction. 

19.5.4 Effects of a Forest Fire upon the Spring Flows of the Pipers Hde  River 

Case Study 

An intervention model is developed for modelling the effects of a natural intervention upon 
the mean level of an average monthly hydrological time series. In particular, an intervention 
model is determined to describe the consequences of a forest fue on the spring flows of the 
Pipers Hole River in Newfoundland, Canada. As is shown, the model is capable of explaining 
how the spring flows gradually recover their previous stochastic characteristics before the forest 
fm as the new forest slowly grows over the years. The intervention model also contains an input 
series, which is an average monthly riverflow series at a nearby river basin where there was no 
forest fm. Even though there was a large forest fire, the series does not contain any missing 
values. Consequently, the only part of the dynamic component in the general intervention model 
in [19.5.8] which is not included in the intervention model for the Pipers Hole River, is a set of 
terms for estimating missing observations. Earlier presentations of this application arc given by 
Hipel et al. (1977b) and Hipel et al. (1978). For a water quality application of intervention 
analysis where there are two input series, a single intervention. plus missing dam, the reader can 
refer to Section 22.4.2. 

The Pipers Hole River is located in the southeastern part of the province of Newfoundland 
in Canada and covers an area of 829 &m2. The drainage area consists of 88 km2 of lakes, 176 km2 
of bog, 461 km2 of barrens and 104 bn2 of forest The basin is uninhabited and there is no 
access road to the interior. 
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The P i p  Hole River drains the basin into the head of Placentia Bay, which forms part of 
the Atlantic Ocean along the coast of Newfoundland. A gauging station located near the mouth 
of the river has been in continuous operation since 1953 and records the natural runoff from 777 
ia2 of the drainage area. 

During the period from August to October of 1961, a major !kc destroyed an expanse that 
included 85% of the Pipers Hole drainage Win. In addition to some fir and various deciduous 
species. the major tree type in the basii prior to the firc was spruce. The fire devastated most of 
the forest and all other forms of vegetation that were within its path. The shallow soil mantle in 
the lower reaches of the basin was incinerated and consequently surface boulder was exposed 
over most of the area. 

A unique application of intervention analysis is to develop a stochastic model for the 
monthly flows of the Pipers Hole River that incorporates the effect of the forest fire intervention 
on the riverflows. A forest tire can have transitional impacts on riverflows that must be included 
in an intervention model. Because the surroundings are denuded of all vegetation, this causes 
initial sudden changes in the flow regime of a river. However, over the years as the vegetation 
recovers, the riverflows gradually revert to their previous state. 

The Bay du Nord River is located 69 km west of the Pipers Hole River and was untouched 
by the 1%1 fire. Flow records have been tabulated continuously since 1952 and at the location 
of the measuring gauge, the Bay du Nord River drains an area of 1176 bn2. Because of their 
geographic proximity, these two basins have identical climates and the Bay du Nord basin 
possesses a vegetation cover that is similar to that of the Pipers Hole River vicinity prior to the 
fa. Therefore, the Bay du Nord flows are suitable for comparison to those of the Pipers Hole 
River. By including the Bay du Nord flows in the intervention model for the Pipers Hole River, 
flow changes that are not due to the forest fue but are a result of climatic conditions arc automat- 
ically accounted for. In this way, the intervention component of the model only describes 
changes resulting from the fire. 

Model Development 
Identification: Qualitatively, an intervention model for the Pipers Hole River can be written as 

Pipers Hole flows = dynamic component + noise 

where 

dynamic component =Jre intervention + Bay du Nord flows 

To identify the dynamic and noise components, the empirical approach of Section 19.5.3 is 
employed. 

Large riverflows in Newfoundland occur in the spring due to snow melt. Consequently, 
when considering average monthly flows, a forest fire may cause significant alterations in flow 
patterns during the spring months. An inspection of separate monthly plots from January 1953 
to December 1973 reveals that the flows for March and April may be changed by the fire. The 
flows in these months appear to increase immediately after the fire. followed by a steady 
decrease to f o m r  levels over the years. Because this type of variation does not occur in the Bay 
du Nord monthly rivefflows, this suggests that the changes in the Pipers Hole River flows, 
excluding intrinsic random variation, arc due solely to the forest fire. 
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Considering the aforesaid facts, a tentative design for the intervention component is 

intervention component = Ool tl (1 - 6, ,P'2)  
[19.5.9] 

where 

1, t =March 1962. April 1%2 

is the intervention time series. 
The ql parameter represents the initial change in the March and April flows due to the 

fm. The denominator of the bander function models the gradual return of the spring flows to 
previous levels due to vegetation regeneration. This effect is more easily visualized by expand- 
ing the dynamic response for the intervention as 

[19.5.10] 

Because 16111 c 1, the infinite series expansion in [19.5.10] is convergent and events further into 
the past have a decreasing influence on the present. The 5, series is zero before the intervention 
so that [19.5.10] is only non-zero for the months of March and April after 1961. As the years 
progress subsequent to the fie,  the value of the dynamic response in [19.5.10] for these two 
months decreases asymptotically to zero. 

For seasonal riverflow data, it has been found in practice that taking natural logarithms of 
the data is a reasonable transformation to remove heteroscedasticity and non-normality of the 
residuals. A possible intervention model for the forest fire problem is 

[19.5.11] 

where y ,  is the series of natural logarithms of the average monthly Pipers Hole Riverflows, 4 is 
the mean of the entire y, series. x, is the sequence of natural logarithms of the Bay du Nod 
Riverflows, and p, is the mean of the x, series. Because of similar climatic conditions, the % 
parameter reflects the fact that for each month the flow in the Bay du Nord River behaves similar 
to that in the pipers Hole River. In other words, the dynamic response in [19.5.11], due to the 
Bay du Nord flows, models the portions of the pipers Hole River data that are common to both 
rivers. 

The empirical approach to identify the form of the noise term is to initially assume that N, 
is white so that [ 19.5111 becomes 

Subsequent to obtaining the estimated residual series. d,, for the above model by simultaneously 
estimating al l  the model parameters using the method of maximum likelihood, the type of 
ARIMA model to fit to d, can be identifed. Because the ACF of d, has values which arc 



Building Intervention Models 721 

significantly different from zero at lags 1 and 12, this suggests that cf, and hence N, can bc 
modelled by a seasonal ARIMA (0,0,1)(0,0,1)1~ process from t12.2.91 as 

N, = (1 - e,B)(i - e1Bl2b, [19.5.12] 

Notice that neither seasonal or nonseasonal differencing arc required. This is because the covari- 
ate series, x,. in [19.5.11] causes the nonstationary part of the seasonality to be removed from the 
response, y,. Consequently, for this application, the inclusion of a covariate series in the inter- 
vention model eliminates the n e d  for differencing or deasonalizing the y, series, thereby 
decreasing the number of parameters nquirrd in the overall intervention model. 
Estimation: By incorporating the design of N, given by [19.5.12] into [19.5.11], the intervention 
model for the Pipers Hole River is completely specified as 

In Table 19.5.1, the MLE’s and SE’s for the parameters in the above model are listed. 

Table 19.5.1. Forest fire intervention model parameter estimates. 
Parameter Estimate 

0.392 

0.946 

1.20 1 

-0.228 

-0.143 

Standard Error 

0.200 

0.091 

0.047 

0.059 

0.068 

[19.5.13] 

Model Adequacy: A range of diagnostic checks are executed to insure that the 9 ’ s  are indepen- 
dent, homoscedastic and normally distributed. In all cases, the tests reveal that the general inter- 
vention model in [19.5.13] adequately models the data. For example, the portmanteau statistic 
QL in [7.3.6] has a value of 25.62 for 35 degrees of freedom. This indicates that based on the 
available data, the d,’s are independent because this value is not significant even at the 50% level 
of significance. From Section 7.5.2, the statistic used to test for changes in the variance of the 
residuals, depending on the c m n t  level of the series, has a value of 7.729, while the statistic for 
variance changes, depending on time. has a value of 0.159. The former is not significant at the 
0.5% significance level, while the latter is not significant at the 50% level. The residuals possess 
no significant skewness because g in [7.4.1] has a value of -0.0520 with a SE emor of 0.1936. 
Effects of the Forest Fire 

The general procedure outlined in Section 19.2.2 can be used to ascertain how the forest 
fin has affected the mean level of the spring flows of the Pipers Hole River. This is effected by 
taking antilogarithms and expected values of [ 19.5.131 before and after the intervention. 
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Because natural logarithms were taken of the riverflows in [19.5.13]. to express the inter- 
vention effects in terms of the Pipers Hole Rivcrflows, a transformation must be calculated. 
Taking the natural antilogarithms of [19.5.13] gives 

[ 19.5.141 

where 

ctl = e?e--, a constant 

Before the intervention, & has a value of zero and therefore taking expectations of [19.5.8] 
produces 

E[Yll,f,,, = C'lC'2 [ 19.5.1 51 

where 

d2 = E[ewte"] 

After the fire. 5, has a value of unity for March and April of 1962 and is zero at all other times. 
The expected value of Yl in [19.5.14] for each year after the fire in 1961 is 

(19.5.161 

where 

date stands for any year after 196 1. 

Using [19.5.15] and [19.5.16], the percentage increase in the spring runoff in March and April 
for any year after the fire is 

[19.5.17] 

where the MLE's of 0ol and 

By utilizing [19.5.17] the percentage increase in the spring runoff can be calculated for 
each year after the fire. Table 19.5.2 shows that as the vegetation continues to mature after the 
fa the percentage increase in flow will subside over the years and by the year 2000 it should be 
only about 4.5% greater than it was before the fm. This argument is of course valid only if the 
Pipers Hole River basin is not subject to any other major natural or man-induced interventions in 
the interim. 

arc listed in Table 19.5.1. 
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Table 19.5.2. Percentage increase in spring runoff after the fire. 
Date 
1962 

3 
4 
5 
6 
7 
8 
9 

1970 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1980 
1990 
2000 

- 

- 

% Inmase in Spring Runoff 
47.95 
44.83 
41.93 
39.25 
36.76 
34.44 
32.29 
30.29 
28.42 
26.68 
25.06 
23.55 
22.13 
20.81 
19.57 
18.41 
17.32 
16.31 
15.35 
8.50 
4.50 
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19.6 PERIODIC INTERVENTION MODELS 

19.6.1 Introduction 

As emphasized by authors such as Moss and Bryson (1974), seasonal hydrological and 
other types of time series exhibit an autocorrelation structure which depends on not only the time 
lag between observations but also the season of the year. Furthermon, within a given season, 
usually second order stationarity is preserved by natural time series. For example, at a location 
in the northern hemisphere the monthly temperature for January across the years may fluctuate 
with constant variance around an overall mean of -5 'C. In addition, the manner in which the 
January temperature is correlated with December and November as well as the previous January 
may tend to remain the same over the years. To model this type of series. which possesses sea- 
sonal sinusoidal characteristics similar to the seasonal hydrological time series shown in Figure 
VI.1, one can employ the periodic models described in Chapter 14. In particular, the PAR 
(penodic autorcgnssive) model is defied in [14.2.1]. by fitting a separate AR model to each 
season of the year. As shown in r14.2.151, a PARMA (periodic ARMA) model can also be used 
to model seasonal time series by having a separate ARMA model for each season of the year. 

A nahlral extension of the periodic models of Chapter 14, is to define periodic intervention 
models and TFN models. In particular. to obtain a periodic intervention model for the most gen- 
eral situation shown in [19.5.8], a suitable subscript can be added to each parameter and series to 
indicate that a separate intervention model is fined to each season of the year. When there are no 
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interventions or missing data, the periodic intervention model would become the periodic TFN 
model which in turn is the periodic version of the TFN model in [17.5.3]. 

To fit a periodic intervention model to a given set of data, the modelling stages of Figure 
19.2.4 can be followed. In general, most of the consauction tools of Chapter 19 can be used 
with periodic intervention models, where appropriate modifications are made whenever neces- 
sary .  Subsequent to identifying which parameters to include in the intervention model for each 
season of the year, the method of maximum likelihood can be utilized to obtain efficient esti- 
mates of the model parameters. The estimated model residuals can then be subjected to the diag- 
nostic tests described in Section 14.3.4 for the residuals of the PAR models. 

A drawback of the periodic intervention model is that it requires many more parameters 
than its nonperiodic counterpart To reduce the number of parameters, only those terms of the 
model which are required to be periodic can be defined in a periodic manner. In fact, this 
approach is already used in a previous application in Section 19.2.5 of this chapter. In that sec- 
tion, an intervention model is developed for modelling the effects of reservoir operation upon the 
mean level of the average monthly flows of the S. Sask. (South Saskatchewan) River. Notice in 
[19.2.24] that there is a separate intervention term for each month or season of the year and 
hence the dynamic component is designed to be periodic. However, in [19.2.24] the noise term 
is not periodic since there is only one noise term for use across all the months. To have a com- 
pletely periodic model for the S. Sask. flows there would have to be a separate intervention and 
noise component for each season of the year. A periodic intervention model for the S. Sask. 
River is developed in the next subsection. 

19.63 Periodic Intervention Model for the Average Monthly Flows of the South 
Saskatchewan River 

Recall from Section 19.2.5 and also from Figure 19.2.11, that the Gardiner dam on the S. 
Sask. River came into operation in January, 1969. To define a periodic intervention model for 
modelling the average monthly flows of the S. Sask. River, consider the situation given by Hipel 
and McLeod (1981) where the noise term is AR(2) for each season or month of the year. Then 
for the mth month the periodic intervention model is given by 

[ 19.6.11 

where y,, stands for the response series consisting of the S. Sask. flows in the rth year and mth 
month where for this application the response series is fmt transformed by taking natural loga- 
rims, p, is the mean of y,, for the mth month, and urm is the innovation sequence for the rth 
year and mth month. For convenience, the ith previous value to yr, can be denoted by yrm4 

for i = 1.2, * * * , so that, for example, ~9.12. ~ ~ 0 . 0  and all refer to the same observation for 
monthly data where the number of seasons is 12. The intervention parameter O, is used to 
reflect the impact of reservoir operation upon the mth Season for which the intervention series 
&,,, is assigned a value of zero before 1%9 and a value of one from 1%9 onwards. The periodic 
noise term in [19.6.1] is a special case of the PAR model in [14.2.1] where the AR operator for 
the mth season is of order two and has the parameters +l,m and +2m. 
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Month 
January 
February 
March 
April 
May 
June 

Let the mcan for the mth S e w n  for the PAR model in [14.2.1] be denoted as p',,,. Then, 
by allowing p',,, to be represented by 

p'm = prn + am5, [ 19.6.21 

the same estimation procedures used with the PAR models can be employed for estimating the 
parameters of the model in [ 19.6.11 for each season of the year. Following the approach used to 
derive 119.2.251. the intervention parameter for each month or SeaSon can be converted to the 
percentage change in the mean level for that month by using 

% change = (e- - 1)lOO [19.6.3] 

After estimating all the model parameters in [19.6.1] for each month of year, the estimated 
values for each m,,,,, m = 1.2, * - ,12, arc substituted into (19.6.31 to obtain the percentage 
change in the mean level for each month. Table 19.6.1 lists the estimated percentage change in 
the mean level for each month during the period from 1%9 to 1974. Notice that these results arc 
similar to those given in Table 19.2.4 where the quasi-periodic intervention model in [19.2.24] is 
used to model the S. Sask. River flows. Consequently, for this application the model in 
[19.2.24] probably possesses enough complexity to adequately model the data. However, in 
other situations it may be necessary to use a completely periodic intervention model as is done in 

Percentage Change Month Percentage Change 
450.09 July -53.23 
405.84 August -28.26 
180.34 September -10.90 
-40.34 October 35.22 
-52.26 November 123.45 
-63.91 December 339.85 - 

[ 19.6.11. 

19.63 Otber Types of Periodic Intervention Models 

When deemed necessary, appropriate adjustments can be made to the periodic model to 
make it either simpler or more complex. Because a simpler form of the periodic model is dis- 
cussed with the S. Sask. application in Section 19.2.5. consider the case where the complexity of 
the periodic intervention model must be increased For instance, suppose it is suspected that the 
noise term may be affected by an intervention. Then for each season of the year there would be a 
separate noise term for both before and after a given intervention. In fact, to allow all of the 
parameters in a periodic model to change as time progresses, the model could be defined within 
the Kalman filtering approach to modelling. Whatever the case, a given model should only pos- 
sess a level of complexity which is just high enough to allow the fitted model to adequately 
model the data under consideration. In this way, there will be just enough parameters to provide 
a good statistical fit to the data where the overall format of the model provides a suitable range 
of intervention models to be entertained. 



726 Chapter 19 

19.7 DATA COLLECTION 

In Section 1.2.3, it is pointed out that a scientific investigation involves the following two 
main tasks (Box, 1974): 

1. the design problem for which the appropriate data to obtain at each stage of an investiga- 
tion must be decided upon. 

2. the anatysis problem where models arc employed for determining what the data entitles the 
investigator to believe at each stage of the investigation. 

In the previous sections of this chapter, the analysis problem is mainly entertained by fimng 
intervention models to time series in order to ascertain whether or not interventions caused signi- 
ficant changes in the mean levels of the series. Consequently, within this section some com- 
ments are made about the design or data collection problems. 

When dealing with time series studies, often the data were collected over a long period of 
time and the professionals analyzing the collected data did not take part in designing the data 
collection procedure in the fmt place. For example, for the data considered in the applications 
in this book. the authors had to rely upon data which were already collected by various agencies. 
Nevertheless, practitioners are advised wherever possible to actively take part in the design of 
the scheme for collecting the data which they will analyze. 

Even though the authors were not involved in the design of the data collection schemes for 
the data used in this book. they still have control over which of the collected data to use. For 
instance, for the applications of Sections 19.5.4.22.4.2, 17.4.2, 17.4.3 and 17.5.4, various covari- 
ate series can be incorporated into the intervention or TFN models. By appropriately selecting 
which covariate series to include in the models, the authors take full advantage of the data bases 
which arc available. In all of the aforesaid applications, the consideration of suitable input series 
makes the ensuing analyses much more accurate. 

For specialized types of intervention models, Lettenmaier et al. (1978) clearly show how 
the design of the data collection scheme is dirtctly related to the form of the intervention model 
which will eventually be used to analyze the collected time series. In other words, the design 
and analysis problems are interrelated with one another. By having a knowledge of what type of 
analytical tools will eventually be used to extract and interpret information from the data, an 
optimal data collection scheme can be designed. Consequently, whenever possible, scientists 
should be involved with both the design and analysis activities for a given investigation. 

Based upon a knowledge of the variance-covariance mhir for a given intervention model 
(see Appendix A6.2 for a discussion of the information and variance-covariance matrices), Let- 
tenmaier et al. (1978) derive a power function for that model. The power is considered to be the 
probability of detecting the existence of an intervention response function when one is actually 
present The power function can easily be shown to be a function of a number of factors which 
include the number of variables in the intervention model, the sample size and the number of 
observations before and after the intervention. By investigating the properties of power func- 
tions for a number of specific intervention models, Lenenmaier et al. (1978) come up with a 
number of suggestions for data collection which include: 
1. As is also pointed out by Leaenmaier (1978), data should be collected using a uniform 

sampling frequency. This is because the intervention model, as well as the other time 
series models in this book, are defined under the assumption that the data are evenly spaced 
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2. 

3. 

4. 

5. 

6. 

over tim. 
If demands from multiple users require nonuniform sampling frrquencies, then the data 
collection scheme should be designed to allow efficient estimates to be obtained for a time 
series where the data points arc equally spaced over time (also see the discussion in Section 
19.3.2 for filling in missing data). 
As would be expected, uniformly spaced data arc requind both before and after the date of 
intervention in order to calibrate the intervention modeL 
Intuitively, one may think that equal amounts of data should be collected both before and 
after the intervention. However, for three of the four specific intervention models con- 
sidered by btmmaier  et al. (1978), it is advantageous to have a longer record after the 
intervention takes place. This could be due to the fact that an intervention term only 
appears in the intervention model after the intervention is in effect (recall that the intervcn- 
tion series is assigned values of zero before the intervention date). 
The threshold (minimum) level of change that can be detected is quite high unless sample 
sizes of at least 50 and preferably 100 an available. 
The threshold level is dependent upon the complexity of the intervention model and, as 
would be anticipated, more complex models require larger sample sizes. 

19.8 CONCLUSIONS 

As demonstrated by the wide range of applications in this chapter and also Section 22.4.2, 
intervention analysis constitutes a flexible and comprehensive approach for realistically model- 
ling many types of situations which can arise in practice. The efficacy of the intervention model 
for realistically modelling many kinds of practical problems can be directly attributed to its 
clever mathematical design. Qualitatively, an intervention model can be written as 

response variable = dynamic Component + noise 

For all of the special cases of the intervention model which are discussed in the book, it is 
assumed that there is a single output or response variable and that the noise term can be 
described by an ARMA or ARIMA model. However, the different types of dynamic components 
which can be incorporated into the overall intervention model arc as follows: 
1. To model the effects of one or more man-induced and/or natural interventions upon the 

man level of the output, in Section 19.2 the dynamic component is simply given as 

dynamic component = interventions 

2. If there are missing data in a series, the procedure of Section 19.3 can be used where 

dynamic component = missing data 

3. When in addition to missing data the output series is acted upon by one or more external 
interventions, in Section 19.4 the dynamic component is defined as 

dynamic component = interventions + missing data 

4. When the single output series is affected by one or more input or covariate series and t h m  
arc no interventions or missing data, the intervention model is the same as the TFN model 
of Chapter 17. In fact, as noted in Section 19.1, the intervention model can be considered 
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BS a spccial kind of TFN model for which appropriate designs are incorporated into the 
dynamic component to model the effects of the interventions and estimate the missing data. 
When there are only multiple input series, the dynamic component from Section 17.5 is 
given as 

dynamic component = inputs 

5. In Section 19.5, the dynamic component is defined to handle all of the foregoing situations 
such that 

dynamic component = interventions + missing &to + inputs 

The realistic mathematical design of the intervention model constitutes a "necessary condi- 
tion" for the model to be useful for properly studying actual time series. To achieve the "neces- 
sary and sufficient conditions" for successful modelling, flexible model construction tools are 
n d t d  in order to decide upon which parameters are required in the intervention model for 
modelling a given data set. Combined with a thorough physical understanding of the problem 
being investigated, these model construction tools can be used within the overall framework of 
model construction stages portrayed in Figure 19.2.4. As described in Sections 19.2.3 and 22.3. 
exploratory doto analysis tools can be employed for detecting the effects of any unknown inter- 
ventions. Subsequent to this, identification techniques can be used for deciding upon which 
parameters to include in the dynamic and noise components. A wide variety of identification 
methods are describtd in Sections 19.2.3, 19.3.4, 19.4.3 and 19.5.3 for the different kinds of 
intervention models while techniques are presented in Sections 17.3 and 17.5.3 for TFN models 
for which there arc one or more input series. After one or more intervention models are tenta- 
tively designed, MLE's can be obtained for the model parameters using the estimator described 
in Appendix A17.1. Automatic selection criteria such as the AIC and BIC can be employed for 
model discrimination purposes where the model which is ultimately selected should satisfy 
stringent dugnostic checks. 

As emphasized throughout this book, all of the model construction tools should be used in 
an interactive manner by the practitioner. For instance, when deciding upon which parameters 
to include in an intervention model for describing a specified time series, the modeller person- 
ally examines the plotted output from a number of identification techniques. Because the output 
from the identification methods are usually simple to interpret, an appropriate model can usually 
be easily designed. Nevertheless, the practitioner must exercise a lot of common sense when sys- 
tematically designing an intervention model with the assistance of scientific tools. The water 
quantity applications of Sections 19.2.4, 19.2.5, 19.3.6, 19.5.4 and 22.4.2. the temperature data 
application of Section 19.3.6 and also the water quality studies of Sections 19.4.5 and 22.4.2, 
clearly demonstrate how intervention models can be conveniently constructed by a modeller who 
practices both the ort und science of model building. Finally, for a state-space rcpresentation of 
the intervention model. the reader can refer to Noakes (1984. Ch. 8) and Harvey (1989. Section 
7.6). 

Because the general intervention model is defined for the case where there is one output 
series, the general model in [19.5.8] is in fact a univoriute model. This assumption is most 
appropriate for modelling natural time series where usually feedback is not present. For exam- 
ple, precipitation causes riverflows and not vice versa. Nonetheless, in some situations feedback 
may occur and it may therefore be necessary to use a multivuriute intervention model. As 
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explained by Abraham (1980) and also in Chapters 20 and 21 in this book. the multivariate 
model is a simple extension of the univariate case. Abraham (1980) employs a bivariate 
economic example to show how a multivariate intcrvention model can be consbuctcd. The 
authors of this book would like to stress once again that practitioners should only revert to using 
a more complex model, such as the multivariate intervention model, when it is deemed abso- 
lutely necessary. A multivariate model is not required for any of the applications in this chapter 
as well as the applications in Chapters 22.17 and 18. 

Besides handling nonseasonal data, the intervention model can also be used with seasonal 
data For the applications of Sections 19.2.5 and 19.3.6. the data arc deseasonalized before inter- 
vention models are constructed In the application in Section 19.5.4 as well as the last two appli- 
cations in Section 22.4.2, covariate series in the intervention models eliminate the need for 
deseasonalizing the monthly series while in Section 19.4.5 deseasonalization is not required with 
the average monthly water quality series. When the correlation structure is dependent upon the 
season or group of seasons within a year, then it may be appropriate to employ the periodic 
intervention model of Section 19.6. Recall that for the periodic intervention model, a separate 
intervention model is fitted to each season or group of consecutive seasons for which the comla- 
tion structure is the same. Because each season possesses one output, across all the seasons the 
periodic intervention model can in fact be considered as a special kind of multivariate model. As 
noted in Section 19.6. further research is still rtquired for developing more comprehensive 
model construction tools for the periodic intervention model. Perhaps a Kalman filtering 
approach for the periodic intervention model as well as the model in [19.5.8] may be useful. 
However, the periodic version of the intervention model requires many more parameters than the 
model in (193.81 and hence the practitioner should only use this model when it is deemed neces- 
sary  and there are sufficient data. Simplified versions of the periodic intervention model are dis- 
cussed in Sections 19.6.1 and 14.6.3, while a water quantity application is presented in Section 
19.6.2. 

An alternative, but related approach to studying intervention analysis, is presented by Box 
and Tiao (1976). Subsequent to the date of Occurrence of a known intervention, a model, such as 
an ARIMA model, can be calibrated to the time series being considered. This calibrated model, 
which is appropriate for modelling the data before the intervention, can then be used to generate 
forecasts starting with the time when the intervention comes into effect By comparing the fore- 
casts with what actually occurs on and after the date of the intervention, the nature of the possi- 
ble changes caused by the intervention on the time series can be studied. Box and Tiao (1976) 
devise a x2 test for ascertaining whether or not the intervention created a significant change in 
the mean level of the series. However, this approach differs from the intervention model in this 
chapter because only the series before the intervention is used to calibrate the model whereas the 
data h m  both before and after the intervention are utilized for estimating the parameters in the 
intervention model of [19.5.8]. In addition, Box and Tiao (1976) mention various drawbacks to 
their forecasting approach to intervention analysis and because of these negative aspects, the 
procedure is not considered in detail in this chapter. The authors also point out that their pro- 
cedure is related to, but different from, the problem of sequential surveillance of routine fore- 
casting schemes wherc one-step ahead forecast errors are available sequentially and a continuous 
monitoring is carried out to detect possible changes in the model. Other trend detection tech- 
niques which can be employed for discovering unknown interventions are discussed in Section 
19.2.3. 
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Based upon a knowledge of the general type of time series model which will be eventually 
fitted to a given sct of data, an appropriate data collection scheme can be devised. As explained 
in Section 19.7 for the case of an intervention modcl. by designing a suitable data collection sys- 
tem, full advantage can be taken of the inherent mathematical attributes of the model which will 
be used to analyze the data. This in turn wi l l  allow the maximum amount of information to be 
extracted from the data when the timt series is analyzed using intervention analysis. Unfor- 
tunately, in practice, time series measurements arc often not collected in an optimal manner. 
Sometimes, data arc gathered at uneven time intervals where them may be relatively long 
pcriods of time for which no data arc collected at all. This is especially true for environmental 
time series where, in addition to large gaps in the data, there may be multiple external interven- 
tions affecting the time series. In Part X, it is explained how messy environmenrul dutu can be 
analyzed using statistical techniques which include intervention analysis. parametric a n d  tests 
and regression analysis. Before this, however, multivariate ARh4A models arc presented next in 
Chapters 20 and 21 of Part IX. 

PROBLEMS 

19.1 In Section 19.1 documented applications of intervention analysis to a variety of dif- 
ferent fields arc referred to. 
(a) Select one of the referenced case studies which is not described later in 

Chapter 19. Outline how the intervention analysis study was carried out and 
how intervention analysis assisted in obtaining an enhanced understanding of 
the problem so that informed decisions could eventually be made for alleviat- 
ing the impacts of the intervention. 

(b) In a field that is of direct interest to you, locate an article that describes an 
application of intervention analysis. Explain, in general, how the technique 
was applied and describe the main findings. 

In Section 19.1, it is pointed out that it is usually not appropriate to apply the student 
t test to most intervention problems. After defining the student r test. explain in 
some detail the main situations in which the student t test can and cannot be applied. 
Base your arguments upon the theoretical properties of the test. Can intervention 
analysis be applied to the situations to which you stated the student t test could not? 
For each of the following two dynamic responses, calculate the impulse response 
weights and steady state gain: 

19.2 

19.3 

1 - 6 , B  -&B2 

where S,cr) is the step indicator variable defined in [ 19.2.31, 
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1 - 61B 

where PI7’ is the pulse indicator variable defined in [ 19.2.51. 

Suppose that an intervention model is written as 

y, - PY = ‘+ (1 - 4 1 B ) u 1  

where 5, is the step response given in [ 19.2.31 such that 

00 (1 - e1B) 

0, r < T  I 1, t 2 T  

and y, is not transformed using a Box-Cox transformation. Derive the expression 
for obtaining both the change and percentage change in the mean level of the 
response series caused by the intervention. 
For the intervention model written in the previous question, supposc that the origi- 
nal series, Y,, is first transformed using natural logarithms to obtain y,. Derive the 
expression for calculating the percentage change in the mean level for the original 
series. 
Describe the change-detection statistic of MacNeill (1985) for discovering the 
parameter changes in a time series which occur at unknown times. By refemng to 
other references given in Section 19.2.3 in the subsection on other trend detection 
techniques, explain how MacNeill’s work has been expanded since 1985. Outline 
how MacNeill’s changedetection statistic could be employed in a comprehensive 
intervention analysis study of a given set of environmental time series. 
Explain how the technique of Bagshaw and Johnson (1977) works for detecting 
changes in a time series model. 
Outline how the method of Fiorina and Maffezzoni (1979) is designed for detecting 
jumps in linear time-invariant systems and how you think it could be employed in 
discrete time. 
In Section 19.2.3, a range of informative graphical procedures are suggested for 
detecting unknown interventions and investigating the stochastic impacts of either 
known or newly discovered interventions upon a given time series. Use appropriate 
exploratory data analysis techniques for studying the effects of a suspected interven- 
tion upon a nonseasonal time series which is of direct interest to you. Comment 
upon your findings. 
Using the ym;y  time series from the previous problem or else another annual data 
set which has been subjected to an external intervention, follow the three stages of 
model construction described in Section 19.2.3 to fit an intervention model to the 
time series. 

19.4 

19.5 

19.6 

19.7 

19.8 

19.9 

19.10 
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19.11 

19.12 

19.13 

19.14 

19.15 

19.16 

19.17 

19.18 

19.19 

19.20 

19.2 1 

19.22 

Execute problem 19.9 using a seasonal data set. 
Carry out problem 19.11 for the case of a seasonal time series. 
Using a representative 'I" model, explain how the back fortcasting method 
r e f e d  to in Sections 18.5.2 and 19.3.2, can be employed for data filling. Apply 
this procedure to an actual set of time series selected by you. Discuss the benefits 
and disadvantages of this type of record extension. 
Briefly describe the approach of Coons (1957) for filling in missing data and point 
out the main advantages and drawbacks of the method. Compare Coons' technique 
for estimating missing observations to the intervention analysis method of Section 
19.3. 

Explain the main ideas underlying seasonal adjustment procedures to data filling, 
such as the one presented in Section 22.2. Ln what kinds of situations would you use 
this procedure and what are the major assets and drawbacks of the method? 
Using mathematical equations when necessary, outline the approach of Brubacher 
and Wilson (1976) for estimating missing observations. By comparing the tech- 
nique to other data filling methods, explain the advantages and drawbacks of their 

By employing mathematical equations, briefly describe the EM algorithm of Demp- 
stcr et al. (1977) for obtaining MLE's of the parameters of a model being fitted to an 
incomplete data set. Discuss the strengths and weaknesses of their procedure. Point 
out any commonalities between their approach and the one developed by Jones 
(1 980) for the case of ARMA models. 
Select a nonseasonal time series which is of direct interest to you and has not been 
impacted by external interventions. Remove six observations at different locations 
in the series and then employ the intervention analysis approach to data filling of 
Section 19.3 to estimate the missing observations. By utilizing equations, graphs 
and the SE's of the estimates for the missing values, comment upon the accuracy 
and quality of your results. 
Follow the instructions of problem 19.18 for the case of a seasonal time series. 
Choose a nonseasonal time series which has been impacted by one external inter- 
vention. Develop the most appropriate intervention model to fit to this data set by 
following the three stages of model construction explained in Section 19.2.3. Next, 
remove any two observations before the intervention data and one after the intcrven- 
tion. Employ the intervention model of Section 19.4 to simultaneously model the 
impact of the intervention and estimate the missing data points. Interpret and dis- 
cuss your main results. Docs the intervention model, for example, provide rcason- 
able estimates for the missing observations? 
Repeat the instructions of problem 19.20 for the case of a seasonal time series. 
Select a set of nonseasonal time series for which you have at least one response 
series that has been affected by an external intervention and at least one covariatc 
series that has not been acted upon by an intervention. The output or response 
series, for example, may be average annual riverflows whereas the input or covariate 

procedure. 
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19.23 

19.24 

19.25 

19.26 

19.27 

19.2s 

series may be average yearly precipitation. Follow the three stages of model con- 
struction to develop an intervention model to describe the data set Next remove 
any four data points from the response series. Then fit the general intervention 
model from [19.5.8] to the resulting set of time series so that missing observations 
can be simultaneously estimated along with the effects of the intervention and 
covariate series upon the response. Clearly explain how you modelled the data, 
point out any insights that attracted your attention, and calculate the change in the 
mean level of the response series due to the intervention. 
Repcat the instructions of problem 19.22 for the case of a set of seasonal series. 
Design an intervention model that allows for the noise term to change before and 
after an intervention. 
Write down the finite difference equations for the periodic version of the general 
intervention model in [19.5.8]. Discuss the advantages and drawbacks of the 
periodic intervention model. 
Formulate the equations for a multivariate intervention model. Discuss the types of 
siaations where this multivariate model could be applied and explain its weaknesses 
and strengths. 
By refemng to Lettenrnaier et al. (1978) describe the simulation experiments that 
these authors carried out to arrive at their suggestions for data collection. 
By employing equations when necessary, summarize Box and Tiao’s forecasting 
approach to intervention analysis. 
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MULTIPLE INPUT-MULTIPLE OUTPUT MODELS 

As explained in Pam W and Vm, in many natural systems, a single output or response 
variable is caused by one or more input or covariate variables. For example, r i v c r f l ~ w ~  art 

caused by physical variables which include precipitation and temperature. To model a system 
for which one or more variables cause another but not vice versa, the TFN model of Part Vn can 
be employed. When one or more external interventions have modified the behaviour of the out- 
put series, the intervention model of Chapter 19 and Section 22.4 can be used. The intervention 
model is, in fact, a special type of TFN model. 

When there is feedback in a system for which one variable causes another and vice versa, 
one must use a multivariate model to describe this situation. According to the definition used in 
the statistical literature, a multivariate time series model that is designed for handling feedback 
contains both multiple input and multiple output series. Although feedback is not as common as 
one way causality in hydrological systems, feedback can sometimes occur. A large lake, for 
instance, may affect local climatic conditions and thereby create precipitation which in turn 
increases the water level of the lake. In socio-economic systems, the phenomenon of fcedback is 
very common. For example, unemployment may cause inflation which in turn increases unem- 
ployment. A detailed discussion of how to statistically detect various kinds of causality, includ- 
ing feedback, using the residual CCF (cross-correlation function) is presented in Section 16.2.2. 

To formally model a system that contains feedback, a multivariate model must be used. In 
particular, Part IX of the book focuses upon the general multivariate ARMA model and sim- 
plifications thereof. Qualitatively, a general multivariate ARMA model can be written as 

Multiple Outputs = Multiple Inputs + Multiple Noise 

When interventions affect one or more of the series, the multivariate model can be easily 
extended to handle that situation. Furthermore, because the multivariate model describes how 
series influence one another over time, it is a dynamic model. 

In Chapter 20, the general multivariate ARMA model is defined and other kinds of mul- 
tivariate models that have been used in hydrology and environmental engineering are described 
and compared. Because the general multivariate ARMA model contains a large number of 
parameters, it is too cumbersome and overly complex for modelling most water resources sys- 
tems problems. Nevertheless, the TFN and contemporaneous ARMA (CARMA) models con- 
stitute two important subsets of the general multivariate ARMA model that art well designed 
for effectively modelling water resources systems. As demonstrated by extensive applications 
for the TFN models in Chapters 17 and 18, and for the intervention models in Chapter 19 and 
Section 22.4, these models have widespread applicability in the environmental sciences. 

The CARMA model is designed for modelling situations where two or more series affect 
one another at the same time or simultaneously. Because of this, the model is called the contem- 
poraneous ARMA or simply CARMA model. Although CARMA models are not used as often 
as TFN models in water resources, they are still indispensible for modelling many types of prob 
Iems. For example, two rivefflow series measured at sites in two different rivers neither of 
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which is upstream from the other may be related contemporaneously because the two measuring 
sites fall within the same general climatic region. Rather than separately model each of the two 
time series using an ARMA model, a CARMA model can more efficiently model both series 
together within a single mathematical framework. In Chapter 21, the CARMA model is defined 
and flexible model building procedures are presented. Both water quantity and quality appli- 
cations c o n f m  the great utility of CARMA models in water resources and environmental 
engineering. 

Figure IX.1 depicts the hierarchical relationships among the dynamic models described in 
the book. Additionally, the figure contains the locations in the book where the definitions, 
model construction tools and applications for these dynamic models can be found. 

(Chapter 19 and 

Figure IX. 1. Hiearchy of dynamic models. 
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CHAPTER 20 

GENERAL MULTIVARIATE AUTOREGRESSIVE 

MOVING AVERAGE MODELS 

20.1 INTRODUCTION 

used com- 
monly by both practitioners and researchers. For example. many people consider the word mul- 
tivariate to indicate that multiple variables in a system have been measured and, consequently, a 
multivariate model is n d e d  to model the system. Under this defintion, the 'I" models of Part 
W would be classified as multivariate models because the model statistically describes how one 
or more input variables affect the behaviour of a single output variable. Likewise, any deter- 
ministic model or mixed deterministic-stochastic model that formally describes the relationships 
among at least two physical variables can be thought of as being a multivariate model. 

Because this book deals mainly with stochastic or time series models, the statistical defini- 
tion of multivariate models is utilized. In particular. as noted in the preface to Part IX, a general 
multivariate ARMA model is a model that statistically describes how multiple outputs arc influ- 
enced by multiple inputs and multiple noise terms. According to this statistical definition, the 
'I" models of Part W and the related intervention models of Chapter 19 and Section 22.4 arc 
not multivariate models. As a matter of fact, since these models possess a single output variable 
they arc statistically classified as being univariate models. 

The many time series applications presented throughout this book firmly establish the fact 
that the scientific community clearly recognizes the importance of time series modelling in water 
resources and environmental engineering. Indeed, as the demand for water continues to increase 
and more and more of the natural environment is altered due to industrialization and other land 
use changes, greater emphasis will be placed upon using more flexible systems sciences metho- 
dologies to assist decision makers in water resources (see Sections 1.2 to 1.5). To better under- 
stand how man's activities affect the environment, extensive measurements will have to be taken 
of a wide range of water quality variables, riverflows and lake levels, meteorological 
phenomena, as well as many other kinds of variables. The resulting vast amounts of data will 
have to be stored, processed and t r ans fed  using extensive computer networks. This in turn 
means that the need for having comprehensive multivariate models for describing multiple timc 
Series will continue to expand. In fact, the foregoing scenario is what Prof. V. Yevjevich consid- 
ers to be the major challenge for hydrological research (personal communication from Prof. V. 
Yevjevich during the Fourth International Hydrology Symposium on Multivariate Analysis of 
Hydrologic Processes held at Colorado State University, Fort Collins, Colorado, July 15 to 17, 
1985). Due to the current and expanding importance of multivariate analysis in hydrology, the 
organizers of the Fourth International Hydrology Symposium selected the theme of their confer- 
ence to be Uultivarkte Analysis of Hydrologic Processes. Within this text, Chapters 20 and 21 
put multivariate modelling into proper perspective and present attractive kinds of stochastic mul- 
tivariate models for use in practical applications. 

The term multivariate possesses a number of related interpretations that 
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Stochastic or time series models art not the only type of multivariate models that can be 
used in water resources for modelling more than one physical variable at the same time. A con- 
ceptuul model constitutes a determinktic model that is specifically designed to mathematically 
simulate the physical processes involved in the hydrological cycle. When studying a given prob- 
lem, a scientist should employ a type of multivariate model which he or she feels is most useful 
and realistic. In some cases, a scientist may utilize a physically based (i.e., conceptual) model 
which he thinks can explain certain deterministic aspects of a naturai system. Aftcr removing 
the portion of the data which can bc explained using a physical model, the scientist can then 
model what is left over using a stochastic model. The overall model is referred to as a mixed 
deterministic-stochastic model. Applications of stochastic, deterministic and mixed 
deterministic-stochastic models to hydrological systems arc given in the Proceedings of the 
Fourth International Hydrology Symposium (Shen et al., 1986). Within the R o c d n g s ,  a key- 
note paper on stochastic research in multivariate analysis is presented by Hipel (1986). In a spe- 
cially edited Monograph on Time Series Analysis in Water Resources (Hipel. 1985b), Salas et d. 
(1985) review and compare alternative approaches for modelling multiple water resources time 
series. 

Conceptual models can possess a number of common problems. In particular. they are 
often very complex and have a large number of parameters related to physical phenomena, all of 
which must be calibrated (Tong et al., 1985). Furthermore. due to the great complexity of 
natural systems, the conceptual models are, like other models, only rough approximations to 
reality. As demonstrated by a case study in Section 18.3 and also by Thompstone et al. (1985a), 
a simple stochastic TFN model forecasts more accurately than a cumbersome conceptual model 
which is very expensive to maintain and calibrate. 

Even though most time series models were not originally designed to reflect the behaviour 
of physical phenomena, a physical basis to these models can often be justified. For instance, as 
explained by Salas and Smith (1981) and also in Section 3.6, a particular conceptual model of a 
watershed leads to ARMA streamflows and ARMA groundwater storage. Further discussions 
regarding physically based models are give by Klemes (1978). Yevjevich and Harmancioglu 
(1985) stress the importance of linking stochastic models with physically consistent properties of 
any particular water resources time series. 

Many time series analysis approaches to multivariate modelling fall within the general 
framework of multivariate ARMA models. Consequently, in the next section the general ARMA 
multivariate is defined, while in Section 20.3 model construction is discussed and modelling lim- 
itations am clearly pointed out. Subsequent to this, an historical overview of the development of 
multivariate ARMA time series modelling in water resources is presented. Part of this historical 
evolution leads to the conclusion that the contemporaneous ARMA (CARMA) and TFN models 
constitute the two subclasses of the general family of multivariate ARMA models that are suit- 
able for use in practical applications. Accordingly, as shown in Figure IX.1, 'I", intervention, 
and CARMA models are studied in depth in this book in Chapters 17 and 18, Chapter 19 and 
Section 22.4, and Chapter 21, respectively. Following the historical summary, of the develop- 
ment of multivariate ARMA models, other families of multivariate models are discussed in Sec- 
tion 20.5. In Section 20.5.2, the ongoing debate regarding the relative usefulness and philosoph- 
ical foundations of disaggregation and aggregation models is described. Additional classes of 
models referred to in Section 20.5 include nonGaussian, nonlinear, fractional differencing, fre- 
quency domain, pattern recognition, and nonparametric models, in Sections 20.5.3 to 20.5.8, 
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respectively. In the conclusions, a wide variety of challenging problems are suggested for future 
research projects in multivariate time series modelling in water resources and environmental 
engineering. 

20.2 DEFINITIONS OF MULTIVARIATE ARMA MODELS 

20.2.1 Introduction 

After defrning the general family of multivariate ARMA models, the TFN and CARMA 
classes of models are defined as subsets of this general family. As described in Section 20.3.2, 
some rather cumbersome model construction techniques are available for use with general mul- 
tivariate ARMA models. However, limitations on using general multivariate ARMA models in 
water resources applications arc clearly pointed out in Section 20.3.1. To overcome these draw- 
backs, subfamilies of multivariate ARMA models are suggested for use in hydrology. In panic- 
ular, the CARMA model described in detail in Chapter 21 is recommended for modelling multi- 
ple time series when the series are contemporaneously correlated with one another at a given 
time but not at lags other than zero. To model a single response series which is driven by one or 
more covariate series plus a noise component, the TFN family of models of Part Vn can be used. 
As explained in Section 20.4. it is interesting to note how the development of multivariate 
modelling in water resources converged over a period of two decades to the conclusion that 
CARMA and TFN models are the most appropriate kinds of multivariate ARMA models to use 
in practical hydrological applications. 

20.23 Definitions 

General Multivariate ARMA model 

Let a set of k time series be represented at time t by the vector 

z, = ( 4 ] 2 ! # 2 ~  * . . pZ(k)T 

where the vector of the theoretical means for z, is given by p = (ccI,p2, . . . , pk)T and the super- 
script T stands for the transpose of a vector. If the AR (autoregressive) order is p and the MA 
(moving average) order is q ,  the general k-dimensional multivariate ARMA(p,q) model can be 
conveniently written as 

(Z, - p) - @I(Zl-l - P) - @2(Z,-2 - P) - - * - @p(zI-p - PI 

= a, - O1aL,-l - 02a,-2 - * * - Oqa,-q [20.2.1] 

where 

is the ith AR parameter matrix of order kxk  for i = 1,2, . . . ,p ;  
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. . .  o;= . , 

. . . .  
eLZ - . -  eW 

is the ith MA parameter matrix of order kxk for i = 13, . . . ,q :  a, = ( U , ~ , U , ~ ,  . . . , u I L f ,  is the 
k-dimensional vector of innovations for Z, at time t .  Because the vectors have the form (Z, - p) 
in [20.2.1], the multivariate ARMA model is often referred to as a vector ARMA model. When 
man-induced or natural interventions affect one or more of the multiple series in [20.2.1], the 
model can be easily extended to handle multiple interventions (Abraham, 1980). 

A more compact format for writing the model in [20.2.1] is given by 

W W Z ,  - cl) = W ) a ,  [ 20.2.21 

where B is the backward shift operator defined by B'Z, =Z,-,,, 
@ ( B )  = I -O1B - a2B2 - . . . - apBP is the AR operator of order p where I is the identity 
matrix of order k x k ,  and @ ( B )  = I - @ , B  - 0 2 B 2  - . . . - @,B4 is the M A  operator of order q .  

There are a number of assumptions underlying the linear multivariate ARMA@q) model 
given in [20.2.1] or [20.2.2]. To start with, it is assumed that the innovations given by a, are 

identically independently distributed (TID) vector random variables with a mean of zero and vari- 
ance covariance mamx A. In order to obtain MLE's (maximum likelihood estimates) of the 
parameters and also design sensitive diagnostic checks, for practical applications it is necessary 
to invoke the normality assumption so that the innovations are normally independently distri- 
buted (NID) and hence a, = NID(0b). Finally, to permit the model in [20.2.1] or [20.2.2] to be 
stationary and invertible, the zeroes of the determinant equations I@(B)I = O  and I@(B)l =O, 
respectively, must lie outside the unit complex circle. 
Example: Consider a multivariate ARMA( 1 , I )  model possessing two variables contained in the 
vector 

z, = (zllZ13T 

having theoretical means given by p = (CL1,p2)T. Because there are two variables, the multivari- 
ate model used to describe mathematically the relationship between the two variables is called a 
bivariate model. Following [20.2.1], the bivariate ARMA(l.1) model is written as 

(Z, - p) - @,(Z,-1- CI) =a, -@,a,-, 

where 

is the AR parameter matrix; 
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is the MA parameter matrix; a, = (ullru,2) is vector of innovations containing ID random vari- 
ables. Substituting the AR and MA matrices into the bivariate ARMA model produces 

After matrix multiplication, the two component equations of the bivariate model are 

z, 1 -P 1 4 1 1 1 ( 4 -  1.1 -P I )+I 2 1 ( 4  -1 2*2)=al1 -e 1 1 1% 1.1 -e 1 2 la, - 1.2 

~ , 2 - c L 2 4 2 1 1 ~ ~ , - 1 . l * 1 ~ ~ 1 ~ ~ l - 1 2 * i ) = 0 1 2 - e 2 1 1 ~ ~ - 1 . 1 - e 2 2 1 ~ ~ - 1 . 2  

TFN Model 

Because of the great importance of TFN models in water resources, these models are stu- 
died in depth in Chapters 17 and 18 while the closely related intervention models arc entertained 
in Chapter 19 and Section 22.4. As noted earlier, the TFN model is a subset of the multivariate 
ARMA model in [20.2.1]. In particular, when the AR and MA parameter matrices in [20.2.1] 
are either all upper or else lower triangular, the model is called a TFN model. For the case where 
the matrices are lower triangular, the TFN model is defined following [20.2.1] as 

(Z, - CL) - q(z1-1 - PI - @2(ZI-Z - CL) - . . . - @p(zI-p - CL) 

= a, - - 02ar-2 - . . . - Oqa,- [20.2.3] 

where the ith AR parameter mamx is 

and the ith MA parameter matrix is written as 

Salas et al. (1985) refer to the TFN model in [20.2.3] as a triangular relationship because Zll 

only depends on its own past, Z,2 depends on its own past plus the present and past of ZI1. Z13 is 
dependent on its own past and on the present and past of ZII and Z,2, and so on. In the final com- 
ponent equation in [20.2.3], 2,k depends on its own past and on the present and past of 
ZI1+Zl2,. . . ,Zlk-l. This means that the single output z(k depends upon the input variables 
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ZII&, . . , ,Z,L-l .  Recall from Section 17.5.2 that this definition constitutes, in fact, a TFN 
model. By appropriate algebraic manipulations, one can easily demonstrate that the TFN model 
in (20.2.31 is equivalent to the more convenient form for writing the TFN model given in 
[ 17.5.31. Comprehensive model building procedures for constructing TFN models and numerous 
water resources applications are presented in Chapters 17 and 18. Because a single output vari- 
able is dependent upon multiple input variables, a TFN model can be statistically classified as a 
univariate model. 

Camacho et al. (1986) provide a simple example to demonstrate when a TFN model would 
clearly be selected over a general multivariate ARMA model. More specifically, when dealing 
with unregulated multisite hydrological systems, it can be argued that the general multivariate 
ARMA model would never be requind to model the data and that a TFN model with only upper 
or lower triangular parameters will always be appropriate. To illustrate this fact, consider for 
simplicity the he - s t a t ion  riverflow system shown in Figure 20.2.1. It is clear from the nature 
of the system that only flows located upstream of any given station will influence the flows at 
that station. Therefore, if the vector of flows at time f is Z, = (Z,lZ,&3)T. the parameter 
matrices of the model in (20.2.11 or [20.2.2] will contain only (possible) nonzero elements at 
entries (l,l),  (2,2), (3,1), (3,2) and (3.3). No other entry in the mamx should be allowed to be 
different from zero. For example, if the (1,3) element of a matrix were permitted to be nonzero, 
it would imply that flows at Station 1, Z,, would be written as a linear combination of past 
values of ZIl ,  past values of ZI3 and some error terms. This, of course, would not have any phy- 
sical meaning. It is easy to see that the resulting mamces of the model are lower triangular. The 
same argument can be extended to more complex systems. 

The simple example presented above shows that when the physical restrictions of the sys- 
tem are taken into consideration in the formulation of the model, it is possible to substantially 
reduce the number of parameters. The benefits of such a reduction can be appreciated by look- 
ing at the precision of the parameters estimates. Suppose, for example, that the bivariate series 
Z, = (Z,1,Z,3 is modelled as a general multivariate ARMA(1,O) when in fact a CARMA (1.0) 
would suffice. It is shown by Camacho et al. (1985a) and also in Section 21.5 that the variances 
of the estimated parameters obtained using the CARMA model arc always smaller than the ones 
obtained using the full multivariate model and that such reductions may be well over 50%. 

CARMA Model 

A CARMA model is obtained from [20.2.1] or i20.2.21 when all of the parameter mamces 
are diagonal. Consequently, for the AR and MA matrices given by (bi and Oi. respectively, the 
elements +jjmi = 0 and 8,,, = 0 for j f rn and i = 1.2, . . . ,k. In Chapter 21, the CARMA @.q) 
model is written out in full in (21.2.11 as well as [21.2.4]. Because this parsimonious model 
implies a contemporaneous relationship among the concurrent multivariate observations or, 
equivalently, the multivariate innovations which occur at the same time t, it is refemd to as a 
contemporaneous ARMA model. Furthermore, since a CARMA model contains multiple output 
series, it constitutes a multivariate model. Chapter 21 of this book is entirely devoted to this use- 
ful and interesting class of models. A comprehensive set of model construction techniques given 
in Section 21.3 allows CARMA models to be conveniently applied to practical problems and the 
water resources applications in Section 21.5 demonstrate the utility of these models. 
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Figure 20.2.1. A three-station rivemow system where Zi 
represents measurements at station i. 

20.3 CONSTRUCTING GENERAL MULTIVARIATE ARMA MODELS 

20.3.1 Limitations 
As noted by authors such as Salas et al. (1985), Camacho et al. (1985a, 1986, 1987a.b.c) 

and Hipel (1986). there are two major drawbacks for using the general multivariate ARMA in 
[20.2.1] and [20.2.2] for applications in water resources. First of all, because the number of 
parameters increases exponentially with the dimensionality of the model, the multivariate 
ARMA model is very complicated and possesses too many parameters. Secondly, a comprehen- 
sive set of operational and simple model building techniques are not available for constructing 
multivariate ARMA models by following the identification, estimation and diagnostic check 
stages of model construction. As a result, one cannot assume the most general form of the mul- 
tivariate ARMA model to begin with and employ construction techniques to identify an 
appropriate model to parsimoniously describe the data set under consideration. 

To overcome the foregoing problems, CARMA and TFN models can be employed. Both 
of these subfamilies of models contain far fewer parameters than the cumbersome general mul- 
tivariate ARMA model. Additionally, a wide range of flexible model building techniques arc 
now readily available for use with each of these two classes of models. As described in detail in 
Chapters 17 and 19, comprehensive model building techniques are available for conveniently 
constructing TFN models and the closely related intervention models, respectively. In Chapter 
21, flexible model construction methods are presented for building CARMA models. 
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As argued in this book as well as by authors such as Salas et al. (1980), Salas et al. (1985). 
Camacho et al. (1985, 1986, 1987ab.c) and Hipel (1986), the physical properties of hydrologi- 
cal systems oftcn dictate that TFN and CARMA models are the proper types of multivariate 
models to use in practice. Nonetheless, in some water resources applications which may, for 
example, q u i r e  the use of socio-economic data, it may be necessary to employ a multivariate 
ARMA model that does not fall within the TFN or CARMA categories. Consequently, the pur- 
pose of this section and Appendix A20.1 is to outline some of the model construction methods 
that can be used for building general multivariate ARMA models. However, the reader should 
bear in mind that due to the complexity of the vector ARMA model, the model building methods 
are unwieldy and are not as flexible or comprehensive as those currently available for building 
TFN or CARMA models. 

20.33 Model Construction 

Introduction 

As is the case for all of the families of models entertained in this book, constructing mul- 
tivariate ARMA models is effected by adhering to the three iterative stages consisting of identifi- 
cation, estimation and diagnostic checking. Because the concept of causality described in Sec- 
tion 16.2 is closely linked to the identification of not only TFN models (Section 17.3.1) and 
CARMA models (Section 21.3), but also general multivariate ARMA models, this idea is briefly 
discussed next. Following the summary given by Camacho et al. (1986), a review of recent 
model building procedures is then given. When modelling a set of seasonal time series using a 
multivariate ARMA model, one of the approaches outlined in Section 20.3.3 may be used. 

Causality 
As explained in Section 16.2.1, Granger (1969) defined causality between two time series 

in terms of predictability. In particular, a variable X causes another variable, Y, with respect to a 
given universe or information set that included X and Y, if the present Y can be better predicted 
by using past values of X than by not doing so. all other relevant information (including the past 
of Y) being used in either case. Causality from Y to X can be defined in the same way. Feed- 
back occurs when X causes Y and Y also causes X .  

To determine the type of causality relationship that exists between X and Y, the properties 
of the residual CCF arc examined. Following the more detailed explanation given in Section 
16.2.2, let the sequences of the observations for two variables be represented by the time series 
X ,  and Y , ,  respectively. These series can be prewhitened by fitting ARMA models to the series 
and obtaining the white noise residuals u, and v, in [16.2.3] and (16.2.41 for X ,  and Y,, respec- 
tively. When required for rectifying problems with non-normality and/or heteroscedasticity in 
the ARMA model residuals. X,  or Y, can be t ransfrod using the Box-Cox transformation in 
[3.4.M] prior to prewhitening. Subsequent to prewhitening, the residual CCF, written as p,,(k) 
at lag k between u, and v, can be considered by using r16.2.51. In addition to reflecting the type 
of linear dependence between u and v and consequently between X and Y, p,,(k) gives the kind 
of causality relationship between these variables for linear systems. As explained by Pierce and 
Haugh (1977) and summarized in Table 16.2.1, there arc many possible types of causal interac- 
tions between X and Y which can be characterized by the properties of p,,(k). If X and Y are 
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independent, p,(k) = 0 for aU k and, hence, it would not be appropriate to develop any kind of 
multivariate ARMA model to link these two variables. When there is unidirectional causality 
such that X causes Y and Y does not cause X ,  it can be proven that p,,(k) f 0 for some k > 0, 
and p,,(k) = 0 for either all k < 0 or else all k S 0. For this situation, the most appropriate kind 
of multivariate ARMA model to link the input or covariate series XI  with the output or response 
Y, is a TFN model defined in [ 17.24 .  If X and Y are only related instantaneously, p,,(O) f 0 
and p,,(k) = 0 for all k f 0. When this is the case, a CARMA model in [21.2.1] or [21.2.4] can 
be used to mathematically describe the contemporaneous linear dependence between XI and Y,. 
Finally, if there is feedback and hence X causes Y and vice vcrsa, p,,(k) f 0 for some k > 0 and 
for some k < 0. Feedback between two or more variables can be modelled using the multivariate 
ARMA model in [20.2.1] or [20.2.21. 

In practical applications, one examines the sample residual CCF in [ 16.2.61 for X I  and Y, to 
identify the type of linear dependence between X and Y. Besides detecting causality between 
two series, the sample residual CCF can be used for identifying time series models to mahemati- 
cally describe the dynamic linkage between X I  and Y,. In addition to output from other identifi- 
cation techniques, this information can then be used for identifying the appropriate kind of mul- 
tivariate model to fit to the series. The manner in which the sample residual CCF can be used to 
design TFN and CARMA models is explained in Sections 17.3.1 and 21.3, respectively. In the 
next three subsections, model construction methods are presented for building general multivari- 
ate ARMA models. 

Identification 

As shown by applications in Chapter 5 ,  selecting the order of a simple univariate ARMA 
model can sometimes be challenging. For the multivariate ARMA case, model identification is 
far more difficult (Tiao and Tsay, 1983a; Tjostheim and Paulsen, 1982; Jenkins and Alavi, 1981; 
Tiao and Box, 1981). Different identification procedures have been advocated in the literature. 
For example, T h o  and Box (1981) and Jenkins and Alavi (1981) have extended the use of the 
sample CCF and the PACF to identify the order of the AR and MA operators of a multivariate 
process. Tiao and Tsay (1983a.b) have proposed the use of the extended sample cross correla- 
tion function (ESCCF) to identify the order of general multivariate ARMA(p.9) models. 
Newbold and Hotopp (1984) have expanded a two-step p r d u r e  given by Hannan and Rissanen 
(1982) to the multivariate case in order to identify and model. These procedures are based on the 
calculation of simple sample statistics and stepwise regressions. Another technique based on the 
estimation of heavily parameterized ARMA models and the use of a consistent information cri- 
terion (Quinn. 1980; Hannan and Quinn, 1979) has also been proposed. The difficulty of apply- 
ing such procedures clearly lies in the high computational costs. 

In Appendix A20.1. the following three identification methods are described: 
1. sample CCF mamx, 
2. sample PACF matrix, 
3. ESCCFmatrix. 
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Because the theoretical CCF matrix cuts off for pure multivariate MA processcs, the sample 
CCF matrix can be used to identify when a multivariate MA model is required (Tiao and Box, 
1981; Jenkins and Alavi, 1981). This is similar to the manner in which the sample ACF in 
[2.5.9] is employed for detecting when a purc MA univariate model is n d e d  (see Section 
5.3.4). The theoretical PACF matrix truncates for a pure multivariate AR process and therefore 
the sample PACF matrix can be used for finding out when a multivariate AR model is required 
to model a given data set (Tiao and Box, 1981; Jenkins and Alavi, 1981). This is similar to the 
way in which the sample PACF in Section 3.2.2 can be used for designing a pure univariate AR 
model (see Section 5.3.5). When both MA and AR parameters are n d e d  in a multivariate 
ARMA model, the ESCCF matrix can be utilized for ascertaining the orders of the MA and AR 
parameter matrices (Tiao and Tsay, 1983a,b; Tsay and Tiao, 1984). 

Estimation 

The likelihood function of the general multivariate ARh4A@,q) model has been given by 
Nicholls and Hall (1979). Hillmer and Tiao (1979). and Wilson (1973). Conditional and exact 
likelihood estimators have been proposed, by these authors. It has been shown by Hillmer and 
Tiao (1979) that if the determinant of the moving average operator has  one or more zcroes close 
to the unit circle, the exact likelihood should be employed. Algorithms to evaluate the likeli- 
hood function have been proposed by Hall and Nicholls (1980) and by Ansley and Kohn (1983). 
who discussed the use of the Kalman filter to incorporate the case of missing or aggregated data. 
Shea (1989) provided a computer program for calculating the exact likelihood of a multivariate 
ARMA@,q) model. For estimating the parameters of TFN and CARMA models, algorithms 
which arc more computationally efficient can be employed. When obtaining MLE's for the 
parameters of TFN and intervention models, the estimator given in appendix A17.1 can be util- 
i d .  For CARMA models, Camacho (1984) and Camacho et al. (1985a. 1987a,b) have 
developed a computationally efficient algorithm to estimate the parameters of the model. They 
have also extended the algorithm to include the case of CARMA models with unequal sample 
sizes. Their algorithm is described in Section 21.3.3. 

Diagnostic Checking 

As pointed out in Section 20.2.2 with equations [20.2.1] and [20.2.2], the innovations of the 
general multivariate ARMA model are assumed to be NID. Diagnostic checks should be exe- 
cuted to insure that the key residual assumptions are satisfied. In particular, to determine if the 
residuals are white one can employ the sample CCF and sample PACF described in Appendix 
A20.1. Alternatively, one can use the modified Pomanteau test of Li and McLtod (1981) for 
whiteness checks. To verify that the normality assumption is satisfied, one can utilize the mul- 
tivariate normality tests proposed by Royston (1983). Finally, one could develop multivariate 
extensions of the constant variance tests of Section 7.5 to make sure that the residuals are not 
heteroscedastic. 

If the residuals are not white, the multivariate model must be appropriately redesigned. 
When the residuals are not approximately normally distributed and/or homoscedastic, one may 
wish to transform one or more of the variables using an appropriate transformation such as the 
Box-Cox transformation in [3.4.30]. Following this, the parameters of the multivariate model 
can be estimated for the transformed series. 
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20.33 Seasonality 

The general multivariate ARMA model given in [20.2.1] and [20.2.2] is defined for han- 
dling nonseasonal time series. Likewise, the model construction techniques of Section 20.3.2 arc 
explained for the nonseasonal case. When a set of seasonal time series are to be modelled using 
a multivariate model, one of the two useful approaches described below can be used. 

Deseasonalized Multivariate Model 
A commonly used procedure for modelling seasonal data is to first deseasonalize each time 

series using the deseusonulizarion methods defined in [13.2.2] or r13.2.31. As explained in Sec- 
tion 13.3.3. to decrease the number of parameters required for deseasonalization a Fourier series 
approach can be utilized. Subsequent to deseasonalization, the most appropriate type of nonsca- 
sonal multivariate model in [u).2.1] can be fit to the set of deseasonalized series by following 
the model construction procedures presented in Section 20.3.2 as well as Appendix A20.1. 

Periodic Multivariate Model 
An assumption underlying the deseasonalized model is that the correlation structure among 

Seasons is the same throughout the year. To allow for a seasonally varying correlation structure, 
periodic models can be employed. As described in depth in Chapter 14, two popular periodic 
models are the PAR (periodic autoregressive) and PARMA (periodic ARMA) models. When fit- 
ting a PAR model to a single seasonal series, a separate AR model is designed for each Season of 
the year. In a similar manner, a PARMA model consists of having a separate ARMA model for 
each season of the year. Within hydrology, PAR modelling dates back to the research of Tho- 
mas and Fiering (1962) who proposed a specialized type of PAR model whereby the order of the 
AR operator for each season is fixed at unity. More recently, authors such as Salas et al. (1980) 
and Thompstone et al. (1985a,b) have suggested that the order of the AR operator for each sea- 
son be properly identified. Model construction techniques that can be employed with PAR 
models are presented in Sections 14.3 and 14.5.3 while PARMA modelling methods are dis- 
cussed in Section 14.7. Because there is a separate model for each season of the year, periodic 
models can be considered to be special types of multivariate models (Salas et al., 1985; Vecchia 
et al., 1983; Vecchia, 1985a,b). 

PAR and PARMA models can be considered as the periodic extensions of nonseasonal AR 
and ARMA models, respectively, for modelling seasonal data. Similar to the PAR and PARMA 
models described in Chapter 14, a periodic multivariate model would essentially consist of hav- 
ing a separate multivariate model for each season of the year. Salas and Pegram (1978) define 
the periodic version of multivariate ARMA@,O) models while, Salas et al. (1980) present the 
periodic extension of the general multivariate ARMA@,q) models given in [20.2.1] and [20.2.2]. 
Bartolini and Salas (1986). Haltiner and Salas (1988), B m l i n i  et al. (1988) and Ula (1990) 
investigate the statistical properties of multivariate PARMA( 1,l) processes. Additionally. Salas 
and Abdelmohsen (1993) devise an initialization procedure for generating univariate and mul- 
tivariate PAR(l), PAR(2) and PARMA(I.1) processes. Their approach is, in fact, the PARMA 
version of the WASIM2 simulation algorithm presented in Section 9.4 for simulating with 
ARMA models. In Section 19.6.3 and also in the paper by Hipel and McLeod (1981), specific 
kinds of periodic TFN and intervention models are proposed. 
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Because a periodic multivariate A M  model possesses many more parameters than the 
complex nonperiodic version, one must devise ways to decrease the number of model parame- 
ters. Following the approach of Thompstone et al. (1985a) described in Section 14.5, one 
method to reduce the size of a periodic model is to divide the year into groups of seasons where 
consecutive seasons having similar correlation structures arc put into the same group. ’The 
periodic multivariate ARMA model used to fit to the grouped data would only have parameters 
that preserve the correlation relationships among the groups of data rather than the original sea- 
sons. Secondly, as proposed by Salas et al. (1980) for PAR and PARMA models, a Fourier 
series approach could be utilized to reduce the number of parameters required in a periodic mul- 
tivariate model. A final approach to economize on the number of parameters is to adopt the pro- 
cedure suggested for periodic intervention models in Section 19.6.3. Depending upon the statist- 
ical characteristics of the multiple time series being modelled, only specified components of the 
multivariate ARMA model would be permitted to have a periodic structure. In fact, this is what 
is done for the intervention models developed in Sections 19.2.5 and 22.4.2 for modelling sea- 
sonal riverflows, as well as in Section 22.4.2 for describing water quality times series that have 
been impacted by external interventions. 

20.4 HISTORICAL DEVELOPMENT 

Recently, Salas et al. (1985) presented a comprehensive review of various approaches to 
multivariate modelling in hydrology. A significant portion of their paper deals with research 
closely related to multivariate ARMA modelling of hydrological time series. Camacho et al. 
(1986) also put research on multivariate ARMA modelling from the hydrological and statistical 
literature into proper perspective. The section follows closely the historical survey given by 
Hipel (1986). which was presented at the Fourth International Hydrology Symposium held at 
Colorado State University from July 15 to 17, 1985 (Shen et al., 1986). 

Research in multivariate modelling in water resources goes back to the early 1960’s when 
researchers such as Maas et al. (1962) introduced systems sciences techniques into the field of 
water resources. Much of this research dealt with proposing fairly simple multivariate models, 
most of which are either subsets of or else closely related to the multivariate ARMA model in 
[20.2.1] and [20.2.2]. In the earlier research, often the exact form of the model used for fitting to 
a data set was specified prior to model construction. For instance, some researchers suggested 
using a multivariate AR(1) model while others proposed employing a multivariate ARMA(1.1) 
model. This type of procedure may result in using a model that does not fit the data well. 
Because of this, Finzi et al. (1975) found that synthetic data generated by prespecified models 
were inadequate in several applications. Another disadvantage of this approach is that it may 
cause inefficient estimation of the model parameters (Camacho et al., 1985). 

In a pioneering paper, Fiering (1964) proposed a two station multivariate model to link two 
series, X ,  and Y,, The model of Fiering was later modified by Kahan (1974) and Lawrance 
(1 976). 

Matalas (1967) suggested a multisite AR(1) model for use in hydrology. His model 
preserves both the lag zero and lag one cross covariance matrices. He also pointed out that the 
model could be simplified by having a diagonal AR matrix and he described a parameter estima- 
tion procedure based on the method of moments. Kuczera (1987) explained how to obtain 
MLE’s for the parameters of a multivariate AR( 1) model using the EM algorithm of Dempster et 
al. (1977) when there are missing observations. To take into account seasonality in a time series, 
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Young and Pisano (1968) suggested first deseasonalizing the multivariate series before fitting 
the Matalas model. Furthermore, they designed improved estimation procedures and suggested 
transformations for removing skewness in the data. 

For modelling monthly multivariate data, Bemier (1971) considered a monthly multivariate 
AR(1) model. His model is actually a combination of the Fiering and Matalas model. 

For a multivariate AR@) model, Pegram and James (1972) proposed a moment estimation 
procedure to estimate the parameters and when using the model for strcamflow generation they 
gave reasons for diagonalizing the AR matrices. A general multivariate AR@) model with sea- 
sonally varying parameters was designed by Salas and Pegram (1978) who suggested both the 
methods of moments and maximum likelihood to estimate the parameters. When their model 
has diagonal AR matrices, it forms a periodic contemporaneous AR@) model. 

As explained in Section 10.4, the FGN (fractional Gaussian noise) model defined in 
[ 10.4.21 was developed to model long term persistence and thereby provide an explanation for 
the Hurst phenomenon described in Section 10.3.1. To model the multivariate version of long 
term persistence, Matalas and Wallis (1971) considered the multivariate fractional Gaussian 
noise (FGN) model for which each of the series is modelled by a univariate FGN model with 
contemporaneously correlated innovations. O’Connell (1974) proposed a vector ARMA( 1.1) 
model to describe long term persistence. Canfield and Tseng (1979) studied the same model 
with diagonal AR and MA matrices while Lettenmaier (1980) suggested improved estimation 
procedures for the vector ARMA(l.1) model. 

Franchini et al. (1986) developed a type of multivariate AR model which has the ability to 
preserve long term persistence and to reproduce the statistical properties of the seasonal flows at 
more than one station situated in a given river basin. They pointed out that their model is capa- 
ble of maintaining the time-space correlations at the seasonal level as well as the properties of 
the flow volumes at the annual level. 

In 1974, Mejia et al. considered the situation where the generation of synthetic hydrological 
sequences are obtained from a mixture of dismbutions. To reproduce the historical moments in 
the simulated data, they proposed a transformation of the moments of the historical data to be 
used in the estimation of the parameters of the model. This procedure appears to have little sta- 
tistical justification according to Stedinger (1981) who shows that direct estimation of the 
moments of the transformated historical data can result in significantly better estimates of the 
true cross correlations. 

Kottcgoda and Yevjevich (1977) compared the preservation of the correlation in the gen- 
erated samples of four kinds of existing two station models. Because the models produced 
essentially equivalent results, they concluded that one has “to apply the simplest model with the 
best physical justification”. 

Stedinger (1981) compared different approaches for estimation of the correlations in mul- 
tivariate strcamflow models. He concluded that “there appears to be little statistical justification 
to the idea that one should select a streamflow model’s parameters so as to reproduce exactly the 
observed correlations of the flows themselves ... and perhaps the most important lesson to be 
learned ... is that estimates of many sueamflow model parameters are inaccurate”. Therefore, it 
“is very reasonable to use statistically efficient parameter estimation which may not exactly 
reproduce the observed means, variances and correlations of the historical flows” (Stedinger and 
Taylor (1 982a). 
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By generalizing the methodology of Vicens et al. (1975). Valdes et al. (1977) developed a 
Bayesian procedure to generate synthetic streamflows for multivariate AR models. An advan- 
tage of this procedure is that it takes into account parameter uncertainty. However, Davis (1977) 
and McLeod and Hipel (1978~) mention drawbacks to the simulation approach of Vicens et al. 
(1975) for handling parameter uncertainty. As explained in Section 9.7, the method of McLeod 
and Hipel (1978) for simulating, using univariate ARMA models, correctly rakes into account 
parameter uncertainty and could easily be extended to the multivariate case. As pointed out 
Stedinger and Taylor (1982b). to include uncertainty in the parameters of the model is very 
important for obtaining realistic and honest estimates of system reliability. 

In 1978, Molter proposed that the general class of multivariate ARMA models be used in 
hydrology. Salas et al. (1980) suggested the CARMA models with constant or periodic parame- 
ters constitute parsimonious models that reflect the physical reality of hydrological systems. 
They also proposed procedures for use in model construction. Further advances in identification, 
estimation and diagnostic checking of CARMA models were given by Camacho et al. (1985, 
1986, 1987a,b,c). Other research related to contemporaneous modelling is given by authors 
including Hannan (1970), Wilson (1973), Granger and Newbold (1977), Wallis (1977). Chan and 
Wallis (1978), Hillmer and Tiao (1979). Nicholls and Hall (1979). Risager (1980, 1981), Tiao 
and Box (1 98 l), and Jenkins and Alavi (198 1). 

Along with model construction procedures, Cooper and Wood (1982a,b) propose the multi- 
ple input-output model. This class of models is actually equivalent to the multivariate ARMA 
family in [20.2.1] and [20.2.2]. The mathematical and statistical properties of the multivariate 
models considered by Cooper and Wood (1982a,b) were studied by Hannan and Kavalieres 
(1984). 

As was the case for the CARMA class of models, the space-time ARMA or STARMA fam- 
ily of models was designed to overcome the problem of too many parameters in multivariate 
ARMA models (Deutsch and Ramos, 1984, 1986; Pfeifer and Deutsch, 1980; Deutsch and 
Pfeifer, 1981). However, Camacho et al. (1986) argued that the parameter restrictions incor- 
porated into the STARMA model may bc too severe and thereby limit the applicability of the 
model. Nonetheless. Adamowski et al. (1986) found the STARMA model useful for modelling 
eleven raingage sites located in a watershed in Southern Ontario, Canada. 

Kelman et al. (1 986) devised a multivariate version of a model proposed by Kelman (1 980) 
for separately modelling the rising and falling limbs of daily hydrographs. The multivariate 
extension of the model follows the approach suggested by Matalas (1967). 

Srikanthan (1986) proposed a multivariate model for simulating daily climatic data. Daily 
rainfall was simulated using a multistate first order Markov model and the remaining climatic 
variables were simulated using a multistate type model (Matalas, 1967; Richardson, 1981). 
Nasseri (1986) utilized a multivariate AR model of order one to generate hourly rainfall for a 
network of raingages. 

Venugopal et al. (1986) used a multisite model for simulating flows of the Narmada River 
system in India In particular, the HEC-4 (Feldman, 1981) and disaggregation models were 
employed for the synthetic generation of riverflows. 

As pointed out in Section 20.2.2 the TFN and intervention group of models is actually a 
subset of the general multivariate ARMA family of models in [20.2.1] and [20.2.2] when the AR 
and MA parameter matrices arc either all upper or lower triangular. The use of TFN modelling 
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in water resources dates back to the time of Fiering (1964) who proposed a bivariate TFN model 
which was later modified by Lawrance (1976). In fact, because of the great importance of TFN 
modelling and intervention analysis in water resources and environmental engineering, Parts W 
and WI of this book deal exclusively with TFN and intervention modelling, respectively. 

References regarding the theory and practice of TFN modelling are listed at the ends of 
Chapters 16 to 18 while references for intervention modelling are given in the final parts of 
Chapter 19 and 22. At the Fourth International Hydrology Sympoisum on Multivariate Analysis 
of Hydrologic Processes held at Colorado State University from July 15 to 17, 1985. a number of 
research papers wen  concerned with TFN modelling (Shen et al., 1986). In particular. Nicklin 
(1986) employed a TFN model to mathematically formulate the dependence between nonstation- 
ary irrigation diversion and return flows. In order to identify an appropriate TFN model. he sug- 
gested novel identification procedures designed to use with his particular type of problem. Del- 
leur (1986) developed a model consisting of a mixed model for forecasting real-time flash 
floods. The model consisted of a nonlinear conceptual submodel for transforming the observed 
rainfalls into effective precipitation followed by a TFN model relating the effective rainfall to 
the observed flood. 

20.5 OTHER FAMILIES OF MULTIVARIATE MODELS 

20.5.1 Introduction 

The previous section on the historical development of statistical multivariate models in 
hydrology dealt mainly with models closely related to the general multivariate ARMA family of 
models in [20.2.1] and [20.2.2]. Other classes of statistical models have also been used in 
hydrology. For example, Fiering (1964) introduced multivariate analysis for generating mul- 
tisite sh’eamtlows using principal component analysis. Numerous authors, have developed and 
employed regression analysis models for use in applications such as environmental impact 
assessment, data filling, and synthetic streamflow generation. In fact, within Chapter 24 of this 
book, ways in which regression analysis can be employed for both exploratory and confirmatory 
data analysis purposes are explained and illustrated. In Section 24.3, a trend analysis methodol- 
ogy, which uses techniques such as regression analysis and nonparametric tests (Chapter 23). is 
presented for detecting and modelling trends in water quality time series measured in rivers. 

In a perceptive paper, Yevjevich and Harmancioglu (1985) discuss the past and future of 
time series analysis in water resources. Some of the challenging research projects that these 
authors feel should be actively pursued include the proper trtatment of nonGaussian, nonlinear 
and multivariate time series. Besides defining new univariate and multivariate models for han- 
dling the foregoing and other problems, any new models must be made fully operational by 
developing appropriate model construction techniques. In a sequence of nineteen invited papers 
written by statisticians, hydrologists and other scientists, these as well as many other challenges 
are met head on by many original research contributions (Hipel, 1985b). As pointed out in Sec- 
tion 1.1, because of the p a t  importance of time series analysis as well as other statistical texh- 
niques in the environmental sciences, the new field of environmefrics has evolved into a promis- 
ing new discipline. Moreover, many journals and books in which environmeaics research is 
published are mentioned in Section 1.6.3. In this section, various types of recently designed 
multivariate models, many of which are currently under development, are now discussed. 
Because of the controversy surrounding the disaggregation model, this family of models is 
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entertained first 

20.53 Disaggregation Models 

A special class of multivariate models is the &aggregation family of models. This class 
allows one to break down a series for which there arc longer time units separating values into a 
sequence of values separated by shorter time units. For instance, an annual series can be disag- 
gregatd into a monthly series. The major reason why Valencia and Schaake (1973) proposed 
the disaggregation model was to insure that relevant statistics at both the annual and seasonal 
levels art consistent with one another. Annual flows, for example, could be generated by a short 
or long memory model and these annual flows could then be disaggregated to the seasonal level. 
As noted by Salas et al. (1985), disaggregation can k used for not only disaggregating variables 
in time, but for disaggregating in space as well. For example, precipitation over an area may be 
disaggregated into precipitation over sub-artas (Salas et al., 1980). Frevert and Lane (1986) 
presented a technique for accomplishing two level spatial disaggregation in a single run of their 
computer programs for disaggregation. 

As discovered in a discussion with V. Klemes on May 30, 1985. in Tucson, Arizona, the 
basic idea of disaggregation is relatively old. In earlier research, the idea of disaggregation was 
utilized for addressing problems related to storage (Savarcnskiy, 1940; Gould, 1961; Svanidze, 
1962, 1980; Klemes, 1963, 1981). Woolhiser and Osborn (1986) devised a special kind of 
model for disaggregating storms into seasonal and regional components. Valencia and Schaake 
(1973) proposed a disaggrtgation model for obtaining seasonal flows from riverflows simulated 
at the annual level. As explained by Salas et al. (1985), since 1973 there have been numerous 
papers suggesting improvements to the original disaggregation model of Valencia and Schaake 
(1973) as well as related models developed thereafter. For example, Mejia and Rouselle (1976) 
put forward enhancements for the original disaggregation model of Valencia and Schaake 
(1973). Lee (1986) developed a multisite, multiseason synthetic flow generation model within a 
disaggregation framework. Other contributions to research in disaggregation are provided by 
authors including Tao and Dellcur (1976), Stedinger and Vogel (1984), and Grygier and Sted- 
inger (1988). 

In a conversation held with V. Yevjevich on May 30, 1985, in Tucson, Arizona, he stated 
that two questions should be satisfactorily answered in order to adequately justify the use of 
disaggregation models in hydrology. The first question is whether there is information in annual 
measurements which is not contained in the seasonal observations. If there is not more informa- 
tion contained in the annual series, a better procedure may be to aggregate rather than disaggre- 
gate. When aggregating. a seasonal time series is modelled directly using a process such as a 
PARMA model and then it is aggregated to produce a compatible model for the aggregated 
series, usually at the annual level. Vecchia et al. (1983) presented a convincing argument which 
favours the concept of uggregation over disaggregation. They proved that if the original sea- 
sonal data follow a PARMA model in [14.2.15] or r14.2.161 with one moving average and one 
autoregressive parameter (i.e., PARMA(1,l)) then the aggregated annual data must be an ARMA 
model in [3.4.3] or [3.4.4] with one AR parameter (i.e., ARMA(1.0)) or else an ARMA model 
with one AR and one moving average parameter (i.e.. ARMA(1,l)). Furthermore,  the^ is signi- 
ficant gain in parameter estimation efficiency at the aggregated level when the seasonal data and 
their model are used rather than the aggregated (it., annual) data and their model. Rao et al. 
(1985) derived similar results for the situation where the seasonal data follow a PAR model in 
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[ 14.2.11 or [ 14.2.31. In addition, they showed theoretically that the aggregated data can be more 
accurately predicted by using a valid model of the aggregated data. Moreover, in a related topic, 
aggregation of forecasts are discus& in Section 15.6 of this book. Further research regarding 
aggregation is presented by authors such as Kawas et al. (1977). Obeysekera and Salas (1982, 
1986) and Bartolini et al. (1988). Finally, Eagleson (1978) employs the principle of aggregation 
when he derives the distribution of annual precipitation from observed storm sequences. 

A second issue raised by V. Yevjevich was whether the large number of parameters in a 
disaggregation model can be significantly reduced. In addition to other approaches, Stedinger et 
al. (1985) proposed a more parsimonious disaggregation model which is designed in a fashion 
which is analogous to the CARMA model described in detail in C h a p n  21. Koutsoyiannis 
(1992) developed a multivariate dynamic disaggregation model, having a reduced parameter set, 
as a stepwise approach to disaggregation problems. 

In certain situations, a practitioner or researcher may feel that it is appropriate to employ 
disaggregation models. A well-tested set of computer programs for implementing disaggrega- 
tion models are available for use on both main frame and personal computers (Lane and Frevert, 
1990). 

20.53 Gaussian and NonCaussian Variables 

As noted by Lewis (1985), simple linear models, such as the family of ARMA models, are 
not necessarily defmed as having Gaussian variates but art simplest to use as such because linear 
operations on Gaussian variates preserves Gaussianity or normality. Furthermore, model con- 
struction procedures, based on the assumption of Gaussianity, are well developed. As a result, 
theoretical research regarding the development of stochastic models which can explicitly handle 
variables which are nonGaussian and therefore do not follow a normal distribution, has only 
been initiated recently. Among others, Tong et al. (1985) point out the fact that hydrological 
data are often not normally distributed and procedures are required to effectively handle this 
problem. 

When the data are nonGaussian, one approach for obtaining data which are approximately 
normally distributed is to transform the original data using a transformation such as a Box-Cox 
transformation (Box and Cox, 1964) in [3.4.30]. This will produce a transformed series which is 
approximately Gaussian. A model based upon the Gaussian assumption can then be fitted to the 
transformed series. An alternative approach is not to assume Gaussianity in the fust place but to 
select a distribution that the original data actually follow. Li and McLeod (1988) present results 
on estimation and diagnostic checking for ARMA models having nonGaussian innovations. 
Lewis (1985) describes a range of new models developed for use with continuous variate 
nonGaussian tim series. The nonGaussian distributions he considers arc the Exponential, 
Gamma, Weibull, Laplace, Beta and Mixed Exponential distributions. McKenzie (1985) 
presents a variety of models similar to Markov chains for describing discrete variate time series 
that follow various distributions The distributions which he entertains are the Poisson, 
Geometric. Negative Binomial and Binomial distributions. Finally, Brillinger (1985) develops 
procedures for fitting finite parameter models to nonGaussian series via bispectral fitting. The 
foregoing and other univariate developments in noncoussian modelling, can be defined for 
modelling multiple time series. For example, Lewis (1985) mentions that his nonGaussian 
models can be extended to the multivariate case and that a periodic version of these models can 
be devised for modelling seasonal data. 
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20.5.4 Linear and Nonlinear Models 
When a model is linear, it is a linear function of the variables in the model. In a nonlinear 

model, there is at least one term where the variables and/or innovations appear as products or arc 
raised to powers. Lewis (1985) gives a brief discussion regarding alternative definitions for 
linearity and nonlinearity. Generally speaking, as the time interval between observations 
becomes smaller, the nonlinearities present in the data become more pronounced. For instance, 
average daily riverflow data may have to be modelled using a model containing nonlinear terms 
because of the nonlinear relationship between runoff and precipitation over a small time scale. 
On the other hand, a linear model m a y  be sufficient to model mean annual riverflows for which 
the nonlinearities have bcen “averaged out”. 

A variety of interesting nonlinear stochastic models are now available (Tong, 1990). For 
example, Tong et al. (1985), Ozaki (1985), as well as Brillinger (1985) and Gallant (1987) 
describe threshold, discrete time storage, and nonlinear regression models, respectively, which 
are capable of modelling various kinds of nonlinearities which may be present in naturaJ time 
series. Li (1992) derives the asymptotic standard errors of residual autocomlations in nonlinear 
time series models for use in diagnostic checking while, in 1993, Li presents a statistical test for 
discriminating among different nonlinear time series models. As noted by Tong et al. (1985). 
the threshold model (Tong, 1983) can be easily defined for the multivariate case. Further, Bril- 
linger (1985) defines a spatial-temporal process for multivariate modelling. 

20.55 Multivariale Fractional Autoregressive-Moving Average (FARMA) Models 
Short and long memory models are defined in Section 2.5.3 using 12.5.71. A special class 

of long memory models is the FARMA family of models defined in [ 11.2.41. Because the 
FARMA model is a generalized type of ARIMA (autoregressive integrated moving average) 
model given in (4.3.41 for which the differencing operator can assume real values, the FARMA 
model can be easily written for the multivariate case. However, a p a t  deal of research is 
required to develop model construction techniques for use with multivariate FARMA models. 

20.5.6 Time and Frequency Domains 
Time series models such as the nonGaussian models of Lewis (1985) or the general mul- 

tivariate ARMA model in [20.2.1] or [20.2.2] arc defined in terms of discrete time variables. In 
order to fit a time series model to a data set, various techniques arc available for use at the three 
stages of model construction. If a given method or statistic, such as the sample ACF which can 
be used for model identification, is expressed directly in terms of the time variable, it is said to 
be expressed in the time domain. Alternatively, one can work in thefrequency domain by enter- 
taining Fourier transforms. As explained in Sections 2.6 and 3.5, the Fourier transform of the 
autocovariance function produces the spectrum which expresses the distribution of the variance 
of the series with frequency (Jenkins and Watts, 1968). Although it is more common in water 
resources to execute univariate and multivariate time series modelling in the time domain rather 
than the frequency domain, sometimes it is advantageous to work in the latter domain. For 
instance, Brillinger (1985) presents interesting results regarding Fourier inference. Canfield and 
Bowles (1986) devise a method for conveniently generating multivariate series from the spec- 
trum. Ghani and Metcalfe (1986) employ a spectral approach for predicting the probability of 
the peak flow exceeding a given level during a specified time period. A host of other applica- 
tions of spectral methods to environmental problems can be found in joumals and books r e f e d  
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to in 1.6.3, although only some of the published spectral research deals with multivariate prob- 
lems. 

20.5.7 Pattern Recognition 
In order to model multivariate hydrological time series, MacInnes and UMY (1986) extend 

to the multivariate level the univariate approach of Panu and UMY (1980) and Unny et al. (1981) 
for modelling time series from a panern recognition viewpoint They apply their pattern recog- 
nition model to familiar multistation smamflow problems and discuss both the advantages and 
disadvantages of using pattern nxognition-based models. 

20.5.8 Nonparametric Tests 
In order to lessen the number of underlying assumptions required for testing a hypothesis 

such as the presence of a specific kind of trend in a data set, researchers developed non- 
parametric procedures for use in hypothesis testing. Due to the great importance of non- 
parametric testing in environmental impact assessment, Chapter 23 of this book is entirely 
devoted to this type. Some of the nonparametric tests, such as the partial rank correlation tests of 
Section 23.3.6, can either be used or else extended for use with multi-site and/or multiple vari- 
able data sets. As a result, nonparametric tests are very useful in multivariate analysis, espe- 
cially when the data are very messy. Part X of this book explains how intervention analysis, non- 
parametric tests and regression analysis can be used for modelling messy environmentul data. 

20.6 CONCLUSIONS 
The general multivariate ARMA model is defined in [20.2.1] and [20.2.2] while model 

construction procedures are presented in Section 20.3.2 and Appendix A20.1. Within this gen- 
eral family of time series models, the CARMA and TFN models are of particular importance in 
the field of water resources and environmental engineering. As explained in this chapter and 
Section 21.1 and also by Salas et al. (1985) and Camacho et al. (1985% 1986), the physical con- 
straints dictated by a given hydrological system negate the n e d  for using the general form of the 
multivariate ARMA model and, therefore, usually some type of CARMA or TFN model is all 
that is required in a practical application. Additionally, as described in depth in Chapters 17 and 
21, model construction techniques are now fully developed for employment with TFN and 
CARMA models, respectively. The CARMA model constitutes a parsimonious version of the 
general multivariate ARMA model for describing multiple time series that are contemporane- 
ously correlated with one another. Besides being able to model the impacts of interventions 
upon the mean level of a series and estimate missing observations (see Chapter 19). the TFN 
model can describe the mathematical relationships between a single response variable and any 
number of covariate series (see Chapter 17). The most general form of the TFN or intervention 
model is defined in [19.5.8]. 

In Section 20.4 the historical development of multivariate ARMA modelling in hydrology 
is outlined while other kinds of families of multivariate models are referred to in Section 20.5. 
These additional types of multivariate models include various classes of disaggregation, 
nonGaussian, nonlinear and long memory models. For some of these models, such as the 
nonGaussian models of Lewis (1985) and the nonlinear threshold models of Tong et al. (1985). 
further research is nquKed for developing model construction techniques for use in modelling 
multiple time series. 
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For classifying the capabilities of a family of time series models, Hipel (1985b) suggests a 
list of twenty-five criteria that reflect the main statistical characteristics that could be modelled 
This list includes linear, nonlinear Gaussian, nonGaussian. long memory and short memory cri- 
teria Using these criteria a given multivariate model, such as the CARMA model, can be 
categorized as being linear, Gaussian and short memory. By understanding the modelling capa- 
bilities of each family of models, as well as the main physical and statistical characteristics of 
the time series being studied, a practitioner can decide upon which classes of models are most 
appropriate to consider for modelling the key statistical properties of his or her data set. Subse- 
quent to exploratory data analysis referred to in Section 1.2.4 and described in detail in Section 
22.3, the practitioner can select the best specific time series model at the confirmatory data 
analysis stage by following the three stages of model construction. 

An obvious extension to the work completed thus far in time series analysis is to develop 
more comprehensive families of models that can simultaneously handle a wider variety of the 
criteria. For example, it may be possible to design a multivariate model that can take care of 
both nonlinear and nonGaussian characteristics of the data. However, any new class of models 
should be designed to be as simple as possible and thereby not have too many parameters, as 
well as provide a good statistical fit to the data. Whenever possible, researchers are encouraged 
to incorporate both the physical and statistical aspects of the problem into the basic model 
design. Subsequent to the design, appropriate algorithms are required for use at the three stages 
of model construction. A continuous dialogue among the statisticians, water resources engineers 
and other scientists should increase the probability of designing new models that will be wel- 
comed by the practitioners for solving pressing water resources problems. 

Besides designing new models, existing models should be rigorously compared from both 
theoretical and empirical viewpoints in order to ascertain which families of d e l s  are most 
appropriate to use in practice. For instance, thorough scientific comparisons of the disaggrega- 
tion and aggregation approaches to time series modelling are long overdue. “To disaggregate or 
not to disaggregate”, that is the nagging question haunting both practitioners and theoreticians 
alike in hydrology. 

Due to the continued and growing abuse of the natural environment by man-induced activi- 
ties such as industrialization and agricultural development, there will continue to be a great 
demand for having flexible multivariate models for use in environmental impact assessment. 
Future research in the time series aspects of environmental impact assessment will probably 
entail developing more nonparamemc tests for handling a wider variety of situations in trend 
detection and evaluation, rigorously comparing the capabilities of both paramemc and non- 
parametric approaches, and providing guidelines for optimally designing sampling schemes for 
water quality variables. 

As is also emphasized in Section 3.6 and elsewhere in the book, Yevjevich and Harman- 
cioglu (1985) stress the importance of linking stochastic models with physical consistent proper- 
ties of any particular water resources time series. In some circumstances, it may be possible to 
employ purely stochastic models to accomplish this goal. Alternatively, it may be necessary to 
employ a combination of deterministic and stochastic models for realistically modelling certain 
kinds of water resources systems. 
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The authors maintain that the development and use of multivariate models, in general, and 
multivariate time series models in particular, will signrficantly increase in the future within the 
realm of water resources and environmental engineering. Besides hydrological time series, mul- 
tivariate models will be used more and more for modelling other kinds of water related timc 
series such as water quality (physical, chemical and biological), water demand, water pricing and 
meteorological time series. 

APPENDIX A20.1 

IDENTIFICATION METHODS FOR 

GENERAL MULTIVARIATE ARMA MODELS 
As advocated by Tiao and Box (1981), the sample CCF and PACF matrices are especially 

useful for identifying pure multivariate MA and AR models, respectively. When the set of time 
series follow a multivariate ARMA@,q) process, the extended sample cross correlation function 
(ESCCF) matrix of Tsay and Tiao (1984) and Tiao and Tsay (1983kb) can also be used. Section 
20.3 describes how model conshuction is carried out for general multivariate ARMA models. 

,420.1.1 Sample CCF Matrix 

Suppose k time series of length n are represented at time r by the vector 

z, = ( 2 , 1 4 2 ,  . . . 8 Z,LY 

For lag I ,  where I = 1,2, . . . , the rheorerical CCF mufrir of order kxk  is wriaen as p ( l ) .  A typi- 
cal entry, pii(I), in the matrix is theoretically defined as 

pii (I = cov (z,; Z, + I j  ) / [ ~ u r  (z, ;).vur (z,~)] [A20.1.1] 

The sample CCF mafrljc at lag I is denoted by R(I). Each element r i i ( I )  in the matrix is calcu- 
lated using 

[NO. 1.21 

where z. and 5 an the sample means of the ith and jth series, respectively. 

For a pure multivariate MA process of order q,  the theoretical CCF matrix vanishes aftcr 
lag q (Tiao and Box, 1981; Jenkins and Alavi, 1981). Hence, if Z, follows a MA(@ process. the 
entries in the sample CCF matrix are not significantly different from zero for I > q .  Because the 
asymptotic distribution of riiI is N(O,l/n), the 95% confidence limits given approximately by 

k- can be used to decide whether or not the estimated value is significantly different from 

zero. If each entry in R(1) falls within these limits, it can be assumed that the sample CCF 
matrix has cutoff at lag I and, consequently, I can be considered as the order of the multivariate 
MA model. If the series Z, follows a multivariate AR model of order p or a general multivariate 

2 
n 
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ARMA(p,q) model, no cut-off will appear in R(1). Tiao and Box (1981) suggest summarizing 
the numerical values of each r,$l) with “+” to indicate a value greater than - 2 

. IR ’ with “-” to 
Thisis indicate a value less than -p and with “.” to indicate a value between 7 and 3. -2 -2 

a very convenient way to interpret the entries in R(1). Similar to the situation for the identifica- 
tion of univariate ARMA models in Chapters 3 and 5,  one must define another statistic for 
detecting cutoff in pure multivariate AR@) models. 

,420.1.2 Sample PACF Matrix 

For a pure multivariate AR process of order p .  denoted by AR@), the theoretical PACF 
mamx. P(I), for lag I ,  where I = 1.2, . . . , can bc defined. Let Og be the j th AR matrix in a mul- 
tivariate AR process of order I so that 0, is the last matrix. The rheorericol PACF matrix, P(I), 
is defined as 4/,, where 411,412, . . . ,aII, arc the solutions of the system of equations 

I 

i=l 
CQL.r( j  - i )  = r(-j), j = 1,2, . . . , I  [A20.1.3] 

where r(j) = Cov[Z,,Z,+,]. This equation constitutes a multivariate generalization of the Yule- 
Walker equations in [3.2.17] for AR models in univariate time series analysis. If the process is 
multivariate AR@) then by definition OPp = 4p in [20.2.1] and @p+,p+, = 0 for j > 0. Conse- 
quently, for a pure multivariate AR@) process, P(1) = 0 for I > p. If the process is MA(@ or 
ARMA@,@, 

The sample PACF matrix at lag I where 1 = 1,2, , . . , is defined as the P(f) = 4” matrix in 

will not cutoff but rather decay to zero. 

the solution of the system of equations 

[ A20.1.41 
i=l 

The sample PACF matrix, P(1) at lag I, is calculated by fitting a multivariate AR(1) model using 

Z, = c + o ~ ~ z ~ - ~  + 41gl-2 + . . + Q~,,z~-~ +a,(’) [ A20.1.51 

and setting P(l) = QII,  where c is a vector of k constants that are recursively estimated along with 
the other model parameters using standard multivariate least squares (Tiao and Box, 1981). 

Asymptotically, the distribution for each entry in P(I) is N(0 , - ) .  To denote whether an entry in 

P(1) is greater than, less than, or falls within the approximate 95% confidence limits given by 
k-, one can employ “+”, ‘ I - ”  or “,”, respectively. Using the foregoing symbols rather than 

numerical values makes it easier to detect the important identification information contained in 

Basically. the sample PACF matrices are determined by fitting AR models of order 
I = 1,2, . . . , in [A20.1.5]. By analyzing the variance-covariance matrices corresponding to suc- 
cessive AR fittings, one can ascertain how much the statistical fit improves as the order I is 
increased. 

1 
n 

2 
n lR 

P(1). 
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For any given I, I = 1.2, . . . , a formal test of hypothesis for testing the null hypothesis: 
P(I)=O against the alternative P(I) f 0 can be performed. The likelihood ratio statistic is given 
by 

u = ISI IIIS(I - 1)l [ A20.1.61 

where 

S(I )  = ip.p 
1=l 

for which 4") arc the miduals of the fitted model in [A20.1.5]. 

Using Barlett's (1938) approximation, the statistic 

% ( I )  =-(N - 112 - Ik)*l~g[IS(I)I/IS(I - 1)1] [A20.1.7] 

will have a chi-square distribution with k2 degrees of freedom when I > p .  Now, for MA(@ or 
general M A @ , @  models, the sample PACF matrices do not have a cutoff and, therefore, they 
are expected to obtain significant values of % ( I )  even for large lags. Examples of the use of the 
sample ACF and PACF matrices in the identification of hydrologic time series are given by 
Carnacho et al. (1987~). 

The sample ACF and PACF matrices arc very useful for idenhfying pure MA and pun AR 
models, respectively. In practice, the difficulty arises in the identification of mixed ARMA@,q) 
models when both p and q are larger than zero. In these cases, the ESCCF can be employed to 
help in the identification. 

A20.13 ESCCF Matrix 

The ESCC (extended sample cross correlation) matrix was proposed by Tsay and Tiao 
(1984) and Tiao and Tsay (1983a.b) to help in the identification of the order of mixed multivari- 
ate ARMA models. The main idea of the technique is to calculate consistent estimates of the AR 
mamces 4,, . . . , 4p, say, and then use the properties of the transformed series 

[A20.1.8] 

to identify the order of the process. If Z, follows a multivariate ARMA@.@ process and the 
estimated parameters are consistenf then W, follow a multivariate MA(q) process, so that the 
sample CCF matrices of W, should be able to identify the proper order of the model. Tho and 
Tsay (1983a) have shown that when the order of the model is known, it is possible to obtain con- 
sistent estimates for the 4 ' s  using a process of iterated regressions. However, in practice the 
order of the model is not known in advance, and therefore. it is necessary to study the propexties 
of the iterated regression estimates and their associated transformed series W,. 

The following algorithm can be used to obtain the iterated regression estimates where 
further details are given by Tiao and Tsay, (1983a): 
Step 1: Form = 1 2 , .  . . ,M+J+l fit an AR(m) regression 
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jA20. 1.91 

using ordinary least quarts. Denote the estimated parameters as &&). me superscript ( 0 )  

indicates the ordinary least square estimates and the subscript (m)  indicates the order of the AR 
fit. 
Step 2: For j = 1.2, . . . , J ,  and rn = 1 ,  . . . , M, recursively compute the AR(m) jth iterated esti- 
mates &,$Ap I = 1, .  . . , m  as: 

[MO. 1.101 a (j-1) - (j-1 -1 - (j-1) &,$A) = &,$2\) -am+l (m+l ) [am(mb al - l (m) 

where 68;:) = -I. 

Now if Z, follows a multivariate ARMA@,q) and no linear combination of 
yPI = (z:, . . . , z,-~+,)~ follows a MA model with ode r  less than q.  then the matrices &$,) art 

consistent estimators for when (i) m 2 p and j = q ,  or, (ii) m = p  and j > q (Tiao and Tsay. 
1983a). Also, f o r j  > 9. the transformed series 

[A20.1.11] 

will approximately follow a multivariate MA(q) model. Therefore. the sample CCF mamx of 
W$ will have a cutoff after lag q.  In particular, the lag j CCF mamx of W$, pb)o) will be 
such that 

[A20.1.12] 

where C is a generic symbol for a matrix whose elements arc not necessarily all zero. 
The mth ESCCF matrix is now defined as p(,,,)u) is the lag j sample CCF matrix of W$j 

For a general multivariate ARMA@q) process, p,(j) has the following asymptotic property: 

[AZO. 1.13 

This property of the ESCCF can now be exploited in the following way to help in the identifica- 
tion of the order @,q) of an ARMA model: 
Stage 1: Arrange the ESCCF matrices P e ) ( j )  in a block mamx as is shown in Table A20.1.1. 

The rows numbered 0,1,2, . . . , signify the AR order and, similarly, the columns sigmfy the MA 
order. To investigate how to use this table. suppose that the true model for Z, is a multivariate 
ARMA(2.1) model. The pattern of the asymptotic behaviour of the ESCCF is shown in Table 
A20.1.2. 
It can be observed from Table ,420.1.2 that there is a eriangle of asymptotic zero matrices and 
that the vertex of the mangle is located at the entry (2.1). For a general multivariate ARMA@.q) 
model the same pattern is expected and the vertex of such a triangle will always be located at 
enay @,q). ’This observation suggests the second idea in the identification of the process. 
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0 
1 
2 
3 

7 

765 

0 
1 

Table A20.1.1. The ESCCF table. 

c c c c c c  
c c c c c c  

2 c 0 0 0 0 0  
3 c c 0 0 0 0  
4 c c c 0 0 0  

Table 20.1.2 The asymptotic ESCCF matrix table of an ARMA(2,l) model 
where C and 0 denote, respectively, a nonzero and 

a zero matrix. 

MA 

0 1 2 3 4 5  
AR 

Stage 2: Look for the vertex with enby (dl,d3 of a mangle of asymptotic zero matrices with 
boundary lines rn = d ,  and j-m = d2 1 0 and tentatively specify the order of the model as p = d ,  
and q = d2. As a crude approximation, the value (n-rn-j)-' can be used for the variance of the 
elements of ~ c , ) ~ )  under the hypothesis that the transformed series W:; is a white noise pro- 
cess. As an informative summary, (+, ., -) signs can be used to replace numerical values of the 
elements of ornu), where a plus sign (+) is used to indicate a value greater than two times the 
standard deviation, a minus sign (-) to indicate a value less than minus two times the standard 
deviation, and a period (.) for in-between values. 

Simulated and hydrological applications of using the ESCCF for multivariarte ARMA@q) 
model identification are given by Camacho et al. (1986). Consider, in particular, the simulated 
example. On hundred realizations of an ARMA(1,l) model with parameter matrices 

(A20.1.141 

were generated using the simulation algorithm of Camacho (1984) which is similar to the one 
described in Section 21.4.2 for CARMA models. The plot of the data is given in Figurc ,420.1.1 
and the paaem of the ESCCF matrices is shown in Table A20.1.3. As can be observed, the 
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vertex of a triangle of zero matrices is located at entry (1.1). indicating that an ARMA(1,l) 
model would be adequate to fit the data. 

'r 
2 

0 

-2  

-4  L 

4 

0 

- 4  

- 8  I I I I I 1 I I I 
0 20 40 60 80 100 

OBSERVATION NUMBER 

Figure A20.1.1. 100 simulated observations of an ARMA(1,l) model with 
parameter matrices given in [A20.1.14]. 

Table A20.1.3. ESCCF matrix for the simulated ARMA( 1 . 1 )  data. 

I MA 

A R (  0 1 2 3 4 5 

* +  . *  + *  * *  * *  * .  
* +  * *  + *  - 0  * *  0 .  
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PROBLEMS 

20.1 

20.2 

20.3 

20.4 

20.5 

20.6 

20.7 

20.8 

20.9 

The general multivariate ARMA model is defined in (20.2.11 and (20.2.21. Write 
down the following vector ARMA@,q) models using both the matrix notation and 
the full length description when matrices and vectors are not used. 
(a) ARMA(4.0) 

(b) ARMA(0.3) 
(c) ARMA(23) 
(4 ARMA(3.1) 
Demonstrate that the two equations for writing a TFN model given in (20.2.31 and 
(175.31 are equivalent. 
Explain why the PARMA model given in [14.2.15] can be considered as a special 
case of the multivariate ARMA model in [20.2.1]. 
By referring to [20.2.1] give the matrix equations as well as the equations where 
matrices and vectors are not employed for the following CARMA@,@ models: 
(a) CARMA(4,O) 
(b) CARMA(0,3) 
(c) CARMA(2.2) 
(d) CARMA(3,l) 
The general multivariate ARMA model for fitting to a set of seasonal time series is 
defmed in [20.2.1] and [20.2.2]. Assuming that there are 5 seasons per year, define 
the general multivariate deseasonalized ARMA model using both the matrix nota- 
tion and the full length notation when matrices and vectors are not used. Explain 
how you would fit this model to a set of seasonal time series by following the three 
stages of model construction. In your explanation bt sure to mention specific graph- 
ical methods and algorithms that you would employ. 
Repeat the instructions of problem 20.5 for the case of a general multivariate PAR 
model. 
Follow the insauctions of problem 20.5 for the case of a general multivariate 
PARMA model. 
In appendix A20.1. thrte procedures are presented for identifying general multivari- 
ate ARMA models. By refemng to this appendix and also the original references, 
compare the advantages and drawbacks of these approaches. Explain how they 
could be expanded for use with seasonal data. 
Using equations when necessary, outline the approach of Hillmer and Tiao (1979) 
for estimating the parameters of a general multivariate ARMA@,@ model. 
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20.10 

20.11 

20. u 

20.13 

20.14 

20.15 

20.16 

20.17 

20.18 

20.19 

20.20 

20.2 1 

20.22 

Employing equations when needed, summarize the procedure of Ansley and Kohn 
(1983) for calibrating a general multivariate ARMA model. 
Explain how the sample CCF and sample PACF described in Appendix A20.1 can 
be employed for checking the whiteness assumption about the residuals of a cali- 
brated general multivariate ARMA model. 
Define the modified Portmanteau test of Li and McLeod (1981) and explain how it 
can be utilized for testing the whiteness assumption of the residuals of a fitted gen- 
eral multivariate ARMA model. 
Using quations when necessary, explain how multivariate normality tests proposed 
by Royston (1983) can be employed for testing the normality assumption for the 
residuals of a calibrated general multivariate ARMA model. 
Select two nonseasonal time series which you suspect should be modelled using 
some type of multivariate ARMA model. Using the residual CCF approach 
presented in detail in Section 16.3.2 and outlined in Section 20.3.2, determine what 
kind of multivariate ARMA model could be fittcd to this data. 
For the two nonseasonal time series examined in problem 20.14, calibrate the most 
appropriate multivariate ARMA@,q) model. 
Execute the instructions of problem 20.14 for the case of two seasonal time series. 
Follow the instructions of problem 20.15 for the seasonal time series examined in 
problem 20.16. 
Mathematically define the input-output class of models put forward by Cooper and 
Wood (1982a,b). Explain the assets and drawbacks of this group of models, espe- 
cially with respect to the general multivariate ARMA family of models. How are 
the input-output models mathematically related to the multivariate ARMA models? 
The STARMA (space-time ARMA) class of models is discussed in Section 20.4. 
By refemng to appropriate references, mathematically define this group of models, 
summarize its advantages and drawbacks, and compare it to the multivariate ARMA 
family of models in [20.2.1] and [20.2.2]. 
Define mathematically the multivariate FGN model of Matalas and Wallis (1971) 
refemd to in Section 20.4. Is this a realistic model to employ in practice? Justify 
your response. You may wish to refer to the discussions on FGN given in Section 
10.5 as well as appropriate references listed at the end of Chapter 10. 
Within the hydrological literature there has been an ongoing and heated debate 
about whether one should employ disaggregation or aggregation models in hydrol- 
ogy. By referring to appropriate research work that is referenced in Section 20.5.2, 
mathematically define a disaggregation model and also an aggregation model based 
upon A R M  processes. Compare these two categories of models according to their 
relative advantages and disadvantages. Which class of models would you employ in 
hydrological applications? 
Using mathematical equations, extend the nonGaussian model of Lewis (1985) men- 
tioned in Section 20.5.3 to the multivariate case. Discuss any implementation prob- 
lems that you may encounter when applying this mathematical model. 
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20.23 Define mathematically the multivariate version of the threshold model of Tong et al. 
(1985) r e f e d  to in Section 20.5.4. Describe the types of data to which you think 
this model could be applied and discuss potential model construction techniques. 
Mathematically define the multivariate FARMA model of Section 20.5.5. Describe 
the types of model construction tools that would have to be developed to apply this 
model in practice. 

20.24 
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CHAPTER 21 

CONTEMPORANEOUS AUTOREGRESSIVE-MOVING 

AVERAGE MODELS 

21.1 INTRODUCTION 

The contemporaneous ARMA, or CARMA, family of models is designed for modelling two 
or more time series that are statistically related to one another only at the same time, or simul- 
taneously. For example, two riverflow series that are measured within the same climatic zone 
but not at locations where one station is upstream from the other, may be only correlated simul- 
taneously with one another. As demonstrated by the applications given in Section 21.5 of this 
chapter, a CARMA model is the most appropriate type of multivariate model to describe this 
situation mathematically. 

Because of the usefulness of CARMA modelling in water resources, this chapter is devoted 
entirely to presenting this interesting and simple model. As explained in Section 20.2.2 of the 
previous chapter, CARMA models actually form a special type of general multivariate ARMA 
models. Besides possessing far fewer parameters than the general multivariate ARMA models 
described in detail in Chapter 20, CARMA models can be conveniently fitted to multiple time 
series using well developed model construction techniques. 

Another useful subset of models from the general multivariate ARMA family is the group 
of TFN models which includes the closely related intervention models. TFN models can be 
employed when a single output series is dependent upon one or more input series plus a noise 
component. If a single output series is affected by one or more external interventions and 
perhaps also some input series, an intervention model can parsimoniously describe this situation. 
Along with many interesting applications, TFN models are presented in Part VII while interven- 
tion models are discussed in detail in Part VIII and Section 22.4. 

Descriptions of the historical development of multivariate models in water resources are 
presented in Sections 20.4 and 20.5 as well as in the papers by Salas et al. (1985) and Hipel 
(1986). In addition to other types of multivariate models, many references are listed at the end 
of Chapter 20 for previous research in CARMA modelling. Much of the material presented in 
this chapter is drawn from research completed by Camacho et al. (1985, 1986, 1987a.b.c) and 
Camacho (1984). 

In the next section, two alternative approaches to deriving the equations for CARMA 
models are presented. Following this, a comprehensive set of model construcfion tools are 
described in Section 21.3. To avoid introducing bias into synthetic sequences, a correct method 
for generating simulated data from a CARMA model is presented in Section 2 1.4. The practical 
applications in Section 21.5 demonstrate how convenient and simple it is to use the building 
methods for properly describing both water quantity and quality time series. 
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21.2 DERIVING CARMA MODELS 

21.2.1 Introduction 

CARMA models can be defined using two distinct viewpoints. Firstly, as noted in Section 
20.2.2, the CARMA group of models can be thought of as being a subset of the general mul- 
tivariate ARMA family of models. Instead of going from a more general class of models to a 
more specific subset of models, the second approach for defining the CARMA group of models 
goes in the reverse direction. In particular, a CARMA model can be considered as a collection 
of, say, k univariate ARMA models with contemporaneously correlated innovations. This 
second interpretation is particularly useful for the development of model construction tools, 
especially computationally efficient estimation algorithms. The subset and concatenation defini- 
tions of the CARMA group of models are now presented. 

21.2.2 Subset Definition 

The mathematical definition for the general multivariate ARMA family of models is given 
in  [20.2.1] and [20.2.2]. By constraining the AR and MA parameter matrices to be diagonal 
matrices, the CARMA subset of models is defined. More specifically, following the notation of 
Section 20.2.2, let k time series at time t be represented by the vector Z, = (ZIl.Zl2, . . . ,Z,k)T 
where the vector of the theoretical means for Z, is given by p = (p1.p2, . . , , p k f .  Assuming that 
the orders of the AR and MA components are p and q, respectively, the CARMA(p,q) mod41 can 
be written as 

(Z, - p) - 

8 1 1 1  

$22 1 

ZI-I - P) - 

8112 

$222 

z,-p - CL) [21.2.1] 
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0kk2 - 

78 1 

a,-2 - . 

where 

is the AR parameter mamx for i = 1.2, . . . , p ,  having zero entries for all the off diagonal ele- 
ments; 

is the MA parameter matrix for i = 1,2, . . . ,q,  possessing zero values for all the non-diagonal 
elements; and 

T a, = (a,l.a,2, . . . ,a lk)  

is the k dimensional vector of innovations for Z, at time t .  Notice that the model in [21.2.1] has 
the same form as the general multivariate ARMA model in [20.2.1] and r20.2.21, except for the 
fact that the AR and MA parameter matrices are diagonal. 

After performing the matrix multiplications in [21.2.1 J, one obtains a set of k simultaneous 
difference equations. In particular, the ith difference equation for the variable Z,i is 
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Zlj - ~ . i  - $jjl(ZI--1,i - pi) - $ij2(4-2.j - Pi) - . . . - $jip(G-p,i - Pi> 

= 0,; - Oiilul-l~i - Bjj2a,-Li - a - - Ojiqa,_q,j , for i = 1,2, . . . , k [21.2.2] 

Notice from [21.2.2] that only the ith variable and ith innovation series appear in the equation. 
The simultaneous correlation among the k variables is incorporated into the CARMA model by 
allowing the innovations to be contemporaneously correlated. More precisely, the vector of 
innovations given by a, are assumed to be IID vector random variables with a mean of zero and 
variance covariance matrix given by A=E[a,.aT]. For practical applications, the normality 
assumption is invoked and a,-NID(Ob). 

The model in [21.2.2] can be more compactly written as 

$,@)(ZIi -pi) = Oi(B)aIj , i = 1,2, . . . , k [21.2.3] 

where 

$i(B) = 1 - $ii,B - $ii$I2 - * * - $iipBp 

is the ith AR operator of order p and 

e , ( B )  = 1 - eij,B - ejj#2 - - . - OjjqB’ 

is the ith MA operator of order q .  For the CARMA model to be stationary and invertible, the 
zeroes of the characteristic equations $i(B) = 0 and Oi(B) = 0, respectively, must lie outside the 
unit circle. 
Example: Consider a bivariate CARMA(1,l) model for connecting the two variables contained 
in the vector 

z, = (41ZldT 

having theoretical means given by 

CL = (PI,PdT 

From [21.2.1], the bivariate CARMA(l.1) model is written as 

[21.2.4] 

After matrix multiplication, the two component equations of the bivariate model are 

211 -P1 - $ 1 1 1 ~ ~ , - 1 , 1  -P1)=011 - ~ l l l ~ l - l , l  

4 2  - P2 - $221(Z,-1.2 - P2) = 012 - fJ221%1,2 

a, = (0, 1ra,2) 

The vector of innovations for the bivariate model is 
T 

where the variance covariance matrix for a, is 

[21.2.5] 
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Because oZl = aI2, then A is a symmetric mabix. Under the normality assumption ar-NID(O,A). 

To satisfy the stationarity assumption, the roots of 

$ I @ )  = 1 - OlllB = o  
and 

$2(B) = 1 - $ElB = 0 

must lie outside the unit circle. Consequently, 1$1111 < 1 and 1$2211< 1. For invertibility, the 
roots of 

e1p)  = 1 - e l l l B  = o 

must lie outside the unit circle. Hence, lf31111 < 1 and 102211 < 1 for satisfying the invertibility 
condition. 

21.2.3 Concatenation Definition 

The clue to discovering the second approach to defining a CARMA model is given by the 
form of the component equation in [21.2.2] and [21.2.3]. Notice that the model in [21.2.3] for 
the ith variable is in fact an ARMA model and is identical to the ARMA model defined in 
[3.4.3] and [3.4.4]. Accordingly, one can consider the CARMA model to consist of a concatena- 
tion of k ARMA models where there is a separate ARMA model to describe each of the k series. 
In general, the orders of the AR and MA operators may vary across the k models. Therefore, the 
ARMA model for 2,; can be written more precisely as 

gi(B)(ZIi - p i )  = 8;(B)aIi , i = 1.2, . . . ,k [21.2.6] 

where 

is the ith AR operator of order pi and 
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is the ith MA operator of order qi. The chain that l i n k s  the k ARMA models together in terms of 
contemporaneous correlation is the variance covariance matrix, A, for the innovations 
a, = (a11,a12, . . . , u , ~ ) ~  where a,-NID(O,A). When using the notation CARMA(pq) to stand for 
the overall model, one sets p = max(plg2, . . . , p k )  and q = max(ql,q2, . . . , q k ) .  By constraining 
appropriate parameters to be zero in the subset definition of the CARMA(p,q) model in [21.2.1], 
one can also allow the orders of the AR and MA operators to vary when using this equivalent 
definition. 

In summary, from I21.2.61, the CARMA model can be thought of as a set of k univariate 
ARMA models for which the innovations are contemporaneously correlated. This contem- 
poraneous correlation is modelled using the variance covariance matrix, A, which has a typical 
entry denoted by aG. For the situation where none of the series are contemporaneously corre- 
lated with each other, oii = 0 for i # j and the multivariate CARMA model collapses into a col- 
lection of k independent univariate ARMA models. Consequently, one can interpret the 
CARMA model as a natural extension of the univariate ARMA model. Alternatively, under the 
subset definition in Section 21.2.2, the CARMA model can be considered to be a special case of 
a more general family of models. 

21.3 CONSTRUCTING CARMA MODELS 

21.3.1 Introduction 

Because flexible and simple model construction procedures are now available for fitting 
CARMA models to a data set, it is currently possible for practitioners to conveniently employ 
these models in practical applications. Some of the techniques used at the three stages of model 
construction have naturally evolved from the concatenation interpretation of the CARMA model 
presented in [21.2.6]. Consequently, construction methods used for fitting univariate ARMA 
models have been cleverly extended for use with CARMA models for which there are contem- 
poraneous correlations among the innovation series. Specific details and a comprehensive list of 
references regarding the available procedures for use in model fitting can be found in papers by 
authors such as Camacho et al. (1985, 1986, 1987a,b,c), Salas et al. (1985), Hipel (1986) and 
Jenkins and Alavi (1981). In this section, some of the most useful model construction tools are 
described. 

21.3.2 Identification 

A sound physical understanding of a given problem in conjunction with a thorough appre- 
ciation of the capabilities of the various types of multivariate ARMA models, are of utmost 
importance in model identification. For instance, when riverflows from different river basins are 
controlled by the same general climatic conditions within an overall region. a CARMA model 
may be appropriate to use with this multisite data. The residual CCF is a very useful statistical 
tool for ascertaining statistically whether or not a CARMA model is needed to fit to two or more 
time series and also to decide upon the orders of the AR and MA parameters. In Section 16.2.2. 
the theoretical and sample residual CCF functions are defined in [16.2.5] and [16.2.6], respec- 
tively, and it is explained how the residual CCF can be used to determine the type of causality 
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existing between two series and thereby confirm in a statistical manner what one may suspect a 
priori from a physical understanding of the problem. A summary of the use of the residual CCF 
in causality studies is given in Table 16.2.1 and also in Section 20.3.2 under the heading Causal- 
ity. 

Suppose that one has a set of k time series given by 

z, = (Z,]ZQ, . . . ,zJ 
where each series has n equally spaced observations that are available at the same time as the 
other series. For the ith time series, the data set is given as [Zli&i, . . . ,Zni]. Using the sample 
residual CCF for model identification involves the following two steps. 
Step 1 - Fitting Univariate ARMA Models: Using the ARMA model construction procedures 
of Part 111, the most appropriate ARMA model is fitted separately to each of the data sets 
f I 
f!li&i, . . . , Zni ) i = 1,2, . . . , k. This step produces a residual series 

for each series i = 1,2, . . . , k, for the univariate ARMA model in [21.2.6] or [3.4.3]. Obtaining 
the residuals of an ARMA model fitted to a given series is referred as prewhitening in Sections 
16.2.2 and 20.3.2. Besides the residuals, a vector of parameter estimates given by 

is found for each of the series i = 1,2, . . . ,k. The bar above a variable or parameter means that 
the variable or parameter has been estimated using an efficient univariate estimation procedure 
from Section 6.2.3 or Appendix A6.1. 
Step 2 - Analysis of the Residual CCF: As explained in Section 16.2.2, to determine statisti- 
cally the type of causality existing between two series 2,; and Z,,, one examines the residuul 

CCF which is calculated for the residuals series [qi]  and [ZG]. Following [16.2.6], the residual 
CCF is determined for lag I as 

where 

[21.3.1] 

is the estimated cross covariance function at lag 1 between the two residual series, and Fji(0) and 
Fj,(O) are the estimated variances of the ith and j th  residual series, respectively. 
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The residual CCF can be calculated for negative, zero and positive lags for all possible 
pairs of series. If a CARMA model is adequate for modelling the data, only the residual CCF at 
lag zero should be significantly different from zero. If this is not the case, a more complicated 
model such as a TFN model (see Chapter 17) or a general multivariate ARMA model (see 
Chapter 20) may be needed. Under the hypothesis that the CARMA model is adequate for 
describing the data, the quantities f2/n" can be considered as approximate 95% confidence lim- 
its to decide whether a value of the residual CCF is significant or not. The test for the signifi- 
cance of the cross correlations can be easily performed by plotting the residual CCF 

f i ( / ) ,  I = 031  *, . . . , fm 

where rn < n/4 together with the 95% confidence limits for each distinct pair of residual series. 
If a CARMA model is appropriate for modelling the series, only the residual CCF at lag zero 
will be significantly different from zero for all pairs of series. 

An alternative to plotting the residual CCF's is to summarize the significance of each value 
of the residual CCF in the residual CCF matrix denoted by R(/) = [F4( l ) ] .  Because there are k 
series, the dimension of k(/) is kxk  where the ( i j )  entry gives the result for the ith and jth 
series. Also, since f4(l) = - f j i ( / ) ,  one only has to determine the residual CCF matrices R(/) for 
zero and positive lags so that I = 0,1,2, . . . , m .  For convenience in detecting significant values 
in k(/), each f4(/) entry can be replaced by a "+" to indicate a value greater than 21t-I~ or or by 
a "-" to point out a value smaller than -2n-I" or by a "." to indicate a value falling between 
-2n-"2 and 2n1'2. Thus, "+", "-" and "." stand for values significantly greater, significantly 
less and not significantly different from zero, respectively. If the approximate 95% confidence 
interval given by (-2n",2n1'*) is not considered to be accurate enough, exact confidence inter- 
vals could be calculated (Li and McLeod, 1981), although this is not usually necessary. 

In summary, from Step 1, one knows the number of AR and MA parameters required to 
model each series and one has univariate estimates of these parameters. If the residual CCF cal- 
culated in Step 2 for each pair of series is only significantly different from zero at lag zero, then 
a CARMA model is the most appropriate type of multivariate model to fit to the k series. An 
advantage of using the residual CCF as an identification technique is that it may indicate the 
direction of departure from the CARMA model, if this model is not adequate to fit the data. For 
example, if the residual CCF were significantly different from zero for lag zero and also a few 
positive lags but not significant for any negative lags, this may indicate that a TFN model is 
required (see Part VII). Although one could also use the model identification techniques 
described in Appendix A20.1 of the previous chapter, these techniques are not as convenient to 
use as the residual CCF, especially when one suspects from a physical viewpoint that a CARMA 
model is needed. 

21.3.3 Estimation 

After a tentative model has been identified, the next step is to estimate the parameters of 
the model. General multivariate ARMA estimation procedures based upon maximum likelihood, 
such as the methods of Hillmer and Tiao (1979) and Nicholls and Hall (1979) referred to in Sec- 
tion 20.3.2, could be employed to estimate the parameters of the CARMA model. It should be 
pointed out, however, that these algorithms are not computationally efficient for the estimation 
of the parameters of the CARMA model, and efficient algorithms can be readily obtained, as 
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- 
explained below. On the other hand, the univariate estimates Pi obtained for each of the series 
Z,i, i = 1,2, . . . , k in Step 1 in Section 21.3.2, do not provide statistically efficient estimators of 
the parameters in the overall CARMA model. This is because the variance of the estimated AR 
and MA parameters contained in Pi for the ith time series may be quite high. Camacho (1984) 

and - Camacho et al. (1987a,b) show theoretically that the variances of the univariate estimators 
Pi, i = 1.2, . . . , k, are greater than the variances of the estimators obtained using the joint mul- 
tivariate estimation algorithm described below. In some cases, the univariate estimators are 
much less efficient than the joint multivariate estimators. 

To overcome the aforementioned inefficiencies of the estimation techniques, Camacho et 
al. (1987a,b) developed an algorithm to obtain efficient MLE's of the model parameters. As is 
also assumed at the identification stage, let Z, = (Z,1,Zr2, . . . , Z,k) for t = 1,2, . . . , n be a sam- 

ple of n consecutive observations for the k time series Zri. i = 1.2, . . . , k. Hence, for the ith time 
series the set of observations is given as 

T 

{ZrJ = IZliZ2i9 * * 'Znil 

Let the parameters of the CARMA model for the ith series be contained in the vector 

Consequently, the vector of parameters for the complete CARMA model is written as 

The CARMA estimation algorithm consists of the following steps: 
For each series Z,i, i = 1.2, . . . ,k, obtain univariate estimates of the ARMA model parame- 
ters using univariate ARMA estimation techniques such as those by Newbold (1974), Ans- 
ley (1979), Ljung and Box (1979), and McLeod (1977) referred to in Section 6.2.3. The 
ARMA estimator of McLeod is described in Appendix - A6.1. In Step 1 of the identification 
stage of the previous section, the univariate estimates pi, i = 1,2, . . . , k, are already found 
in order to produce the prewhitened series for each fitted ARMA model. Recall that a bar 
written above a vector indicates that an efficient univariate estimator has been employed to 
obtain estimates of the parameters contained in the vector. 

1. 

2. Calculate 

[ 2 1.3.21 

- - -  - 
where P = (P1.P2, . . . , Pk)T is the vector of univariate estimates for which pi is the vector 
of univariate estimates of the ARMA model for the ith series; 

- 
is the inverse of the variance-covariance matrix for the parameters contained in P, which is 
the information matrix: 
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denotes the vector of partial derivates of the sum of - squares function, S, with respect to the 
CARMA parameter p, evaluated at the point p=p. The sum of squares function S, is 
defined as 

S = iaTA-'a,/2n 
1=l 

where 
T a, = (a,l,a,2. . . . ,a,k) . 

A = (au) 

is the variance covariance matrix of a,, and qi is defined in 

a . - Z . - $ . .  z 
li - ti  ii I 1-1,; - $iiA-2, i  - * * * - $iip,Z,-p,,i 

+ eiila,-l,i + eii2~I-2.i + - . + eiiq,a,-q,.i , t >pi 

Initial values for aIi can be calculated using the algorithm given by McLeod and Sales 
(1983) or can be set equal to zero. To calculate the information matrix or, equivalently, 
V(p)-' which is the inverse of the variance-covariance matrix of p, the algorithm given by 
Ansley (1980) and Kohn and Ansley (1982) - can be employed. Camacho (1984) proves that 
p* is asymptotically efficient. Using p as the initial point, the estimation procedure 
corresponds to one iteration of the Gauss Newton optimization scheme. To obtain the max- 
imum likelihood estimator, p, for the complete CARMA model, iterations can be continued 
until convergence is reached. 
Camacho et al. (1985, 1987a) extend their estimation algorithm for CARMA models to 

include the situation where the multiple time series have unequal sample sizes. In this way, the 
modeller can take full advantage of all the available data and none of the observations in any of 
the series have to be omitted from the analysis. This estimation algorithm is outlined in Appen- 
dix A21.1. 

Camacho et al. (1986) consider the effect on the estimation of the panmeters when a 
bivariate series Z, = (Z,l,Z,2)T is incorrectly modelled as a general multivariate AR(1) model 
using [20.2.1] when a CARMA(1.0) model from [21.2.1] would suffice. As pointed out in Sec- 
tion 20.4, the general multivariate AR(1) model has been proposed for utilization in hydrology. 
Using simulation studies, they show that the loss in efficiency of the parameter estimates 
obtained using the full multivariate model can be very substantial and in many cases can be well 
over 50%. 

I 

21.3.4 Diagnostic Checks 

After obtaining efficient estimates for the model parameters, possible inadequacies in the 
fitted model can be found and subsequently corrected by examining the statistical properties of 
the residuals. As explained in Section 20.3.2, a range of tests are available for ascertaining 
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whether or not the residuals are white (Li and McLeod, 1981), homoscedustic (see Section 7.5.2) 
and normally disrributed (Royston, 1983). 

For detecting misspecifications in the model, the residual CCF is both informative and sen- 
sitive. In addition to the joint estimates for the model parameters, one can obtain the model resi- 
duals d,;, i = 1.2, . . . ,k, using the efficient estimation procedure of Section 21.3.3. To calculate 
the residual CCF, fc(l), at lag I between two residual series, one simply replaces ii,; and a,i by d,; 
and do. respectively, in r21.3.11. Each entry in the residual CCF matrix, R(l), should not be sig- 
nificantly different from zero for I > 1. As is done at the identification stage, it is convenient to 
use the symbols "+", "-", and "." in R(l) to indicate entries that are significantly larger, signi- 
ficantly smaller, and not significantly different from zero, respectively. 

Based upon the work of Li and McLeod (1981). Camacho et al. (1985) suggest a modified 
Porrmanreau test statistic to test for the independence of the residuals. As in Section 21.3.3, let 
A = E[aI.alT] be the variance-covariance matrix of a1 = ( U , ~ , U , ~ ,  . . . ,a,$ and let 

f ( l )  = ( f 1 1 ( l ) & ( l ) ,  . . . 9 ~ ~ l ( I ) , f 1 2 ( l ) , f 2 2 ( 1 ) ,  . . . , & ( I ) ,  . . . t f i d , ( O f  

The modified Portmanteau test statistic is then written as 

[ 2 1.3.31 

Under the assumption that the residuals are white noise, Q L ,  is approximately x2 distributed with 
k2L - k ( p  + q )  degrees of freedom for large values of L and n .  

If the residual CCF possesses significantly large values at lags other than zero, the 
CARMA model must be appropriately redesigned. Perhaps it may be only necessary to add 
additional AR and MA parameters to the CARMA model. If the CARMA class of models itself 
is not adequate, a more complex family of multivariate models, such as the TFN set of models, 
may have to be considered. When the residuals are not approximately normally distributed 
and/or homoscedastic, it may be required to transform one or more of the series using an 
appropriate transformation such as the Box-Cox transformation in [3.4.30]. Subsequent to this, 
the parameters of the CARMA can be estimated again using the algorithm in (21.3.31. 

21.3.5 Seasonality 

The CARMA@,q) model presented in Sections 21.2.2 and 21.2.3 is defined for handling 
nonseasonal series and the model construction techniques of this section are explained for the 
nonseasonal case. When one wishes to fit a CARMA model to seasonal data, the two 
approaches described in more detail in Section 20.3.3 can be used. In particular, one can first 
deseasonalize each series using a technique from Section 13.2.2 and then fit a nonseasonal 
CARMA model to the deseasonalized data. An alternative approach is to employ a periodic ver- 
sion of the CARMA model to fit directly to the seasonal data. 

As explained in Part VI for univariate models, usually deseasonalized (Chapter 13) or 
periodic (Chapter 14) models are the most appropriate types of seasonal models to fit to natural 
time series. This is because data within a given season for a natural time series are usually sta- 
tionary across the years. However, when the data within seasons are nonstationary over the 
years, it may be appropriate to seasonally and perhaps also nonseasonally difference the data to 
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remove the nonstationarity (see Chapter 12). For example, a seasonal economic time series may 
possess an upward trend which causes the overall level of the series to increase over the years. 
After appropriately differencing the series, a seasonal ARMA model can be fitted to the resulting 
stationary data in order to obtain the parameter estimates for the seasonal ARIMA model. 

In a manner similar to that for the univariate seasonal ARIMA model of Chapter 13, a 
CARIMA model containing differencing operators can be easily defined. To accomplish this, one 
simply introduces seasonal and nonseasonal differencing operators along with seasonal AR and 
MA operators into t21.2.71. A model containing differencing operators could also be defined for 
the general multivariate ARMA models of the previous chapter. 

21.4 SIMULATING USING CARMA MODELS 

21.4.1 Introduction 
Comprehensive techniques for generating synthetic sequences using ARMA and ARIMA 

models were developed by McLeod and Hipel (1978b) and are presented in detail in Chapter 9. 
To avoid the introduction of systematic bias into the simulated series by employing fixed start- 
ing values, the simulation methods described in Sections 9.3 and 9.4 are designed such that ran- 
dom realizations of the underlying model are used for starting values. The simulation techniques 
developed for the univariate ARMA and ARIMA models can be extended for use with CARMA 
models. 

Originally, McLeod (1979) suggested a simulation algorithm for use with CARMA models 
possessing no MA parameters while Camacho (1984) presented the algorithm for the general 
case. Simulation experiments which employ this new algorithm are given by McLeod (1979). 
Camacho (1984), and Camacho et al. (1985, 1986). A similar type of simulation algorithm can 
be developed for use with the general multivariate ARMA models of Chapter 20. 

21.4.2 Simulation Algorithm 

Overall Algorithm 
Suppose that there are k time series and at time t the vector of time series is denoted by 

z, = (Z,,.2,*’. . . JJ 

For the ith time series, let the order of the AR and MA parameters needed in [21.2.6] be pi and 
qi ,  respectively. Now, define 

T 
Z p , , j  = (ZliZ2jt * * , z p , , j >  

and 

aq,,i = ( ~ p , - q , + l , i . ~ p , - q , + 2 . i ,  * * * PUjJJT 

for series i = 1.2, . . . ,k. Then, the values contained in the vectors Zp,,; and aq,,; represent the 
starting values for the ith series where i = 1,2, . . . ,k. 
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Suppose that it is required to generate N synthetic observations for the CARMA model in 
[21.2.6]. Without loss of generality, it is assumed that the mean of each of the k series is zero. 
The following algorithm provided by Camacho (1984, pp. 57-68) is used to obtain simulated 
values Zl,Z2, . . . ,ZN where Z, = (Z,l.Z,2, . . . ,Z,JT.  Moreover, this algorithm is exact in the 
sense that it is not subject to inaccuracies associated with fixed initial values. 
1.  

2. 

3. 

4. 

5. 

Determine the lower triangular matrix M by Cholesky decomposition such that (Ralston, 
1965) 

A = M M ~  [21.4.1] 

where A is the variance-covariance matrix for a, = (U,~.Q,~, . . . , u , ~ ) ~  in [21.2.6]. 

Obtain the vectors of initial values Zp,,i,aq,,i,  i = 1.2, . . . , k. (See next subsection for the 
method used to calculate the initial values.) 
Following the two steps given next, generate ap+l,ap+2,. . . ,aN which is a sequence of 
N -p  vectors each of which has dimension k and is NID(0.A). As in [21.2.6], the 
P = max(p192, . . . FPk).  

(i) Simulate e,,,e,,, . . . ,erkr which is a sequence of N - p  vectors each of which has 
dimension k and is distributed as NID(0,l) where 0 is a kxl vector consisting of k 
zeroes, 1 is diagonal matrix of dimension kxk  having entries of unity along the main 
diagonal. 

(ii) Calculate 
I 

ali = Crniied [21.4.2] 
j =  1 

for i = 1.2,. . . , k and t =p+l, . . . ,N. 
Obtain Zp+l,Zp+2, . . . , ZN, where each vector of observations at a given time has k entries, 
by using 

Z,i = 4ii14-1.i + 4ii&-zi + * * * + @iip,&-p,,i + a,i 

- eiila,-l,i - eii2a,-2,i - a a - - eiiq,a,-q,,i 

for i = 1,2, . . . , k and t =p+lg+2, . . . ,N. 
If another series of length N is required return to step 2. 

The above algorithm is described for simulating stationary series having no Box-Cox 

[21.4.3] 

transformations. If the original set of series were differenced and also were transformed using 
Box-Cox transformations, the techniques of Sections 9.5 and 9.6, respectively. could be 
employed in conjunction with the algorithm of this section to obtain synthetic sequences in the 
original untransformed domain. 
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Calculation of the Initial Values 

The joint distribution of Zp,,i and aq,,i, i = 1,2, . . . , A ,  is used to generate the starting values 
for the simulation algorithm for a CARMA model. As demonstrated by Camacho (1984, p. 59), 
the joint distribution of 

~=(zp,.l,zpl,21 * 1 * 'zp,,aq,,1.aql.2~ * * .  ,aq,.dT 

is multivariate normal having a mean of zero and variance covariance mamx given by 

where 

[21.4.4] 

[21.4.5] 

Ansley (1980) and Kohn and Ansley (1982) provide an algorithm to obtain the theoretical auto- 
covariance function of the general multivariate ARMA model. This algorithm could be 
employed to calculate the terms ygh(i- j )  in [21.4.4]. However, due to the diagonal structure of 
the CARMA model, Camacho (1984, p. 61-62), has developed a computationally efficient algo- 
rithm for the calculation of the theoretical autocovariance function of the CARMA model. 

The following algorithm can be used to obtain the initial values required in step 2 of the 
overall algorithm for simulating using the CARMA model given in  Section 21.4.2. 

1 .  Calculate yg(s), g = 1 ,  . . . ,k; s = 0,1, . . . , max(p,9) from [21.4.5]. 

2. Calculate the theoretical autocovariance functions ygh(r), 

r =  I-p,. . . ,0, . . . ,p-1 , 1 < g < h < k 

3. Form the variance-covariance matrix V of II given by [21.4.4] and obtain the lower mangu- 
lar matrix L by Cholesky decomposition such that 

v = L L ~  

4. Generate ele2, . . I , e,@*,), a sequence of k(p+q) NLD (0.1) random variables and deter- 
mine the vector of initial values by: 

i 
(I. = Z1-e. , j = 1.2,. . , ,k(p+9) J J' 1 

i=l 

Note that if another series is required only step 4 is needed. 

21.5 PRACTICAL APPLICATIONS 

21.5.1 Introduction 

In order to clearly demonstrate the usefulness of CARMA modelling in water resources and 
environmental engineering, three case studies are presented. The first and third applications 
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involve water quantity data while the second one deals with water quality time series. All three 
applications show how the model construction techniques of Section 21.3 can be conveniently 
used in practice to obtain models that adequately describe the series and possess efficient pararn- 
eter estimates. In the third example where one series has more data points than the other, the 
estimation algorithm of Appendix A21.1 is employed so that all of the measurements can be 
used for efficiently estimating the CARMA model parameters. These three applications were 
originally presented by Camacho et al. (1985). 

21.5.2 Fox and Wolf Rivers 

Average annual riverflows in m’/s for the Fox River near Berlin, Wisconsin, and the Wolf 
River near London, Wisconsin, are available from Yevjevich (1963) and also the hydrological 
data tapes of Colorado State University at Fort Collins, for the years from 1899 to 1965. A plot 
of the data is given in Figure 21.5.1, where the overall shapes and dependencies of the data can 
be compared. In order to facilitate these comparisons, the y-axes have been purposely deleted 
and the data have been scaled so that each of the two series takes up half the graph (these con- 
siderations were also taken into account to produce the plots given in Figures 21.5.3 and 21.5.5). 

0 10 20 30 40 50 60 70 
0 BS E RVATlO N N U M BE R 

Figure 21.5.1. Annual riverflows for the Fox and Wolf Rivers (m3/s). 

Because the Fox and Wolf Rivers lie within the same geographical and climatic region of 
North America, a priori one may expect from a physical viewpoint that a CARMA model would 
be more appropriate to use than separate univariate ARMA models. Subsequent to taking a 
natural logarithmic transformation of the observations in both time series, univariate identifica- 
tion results from Chapter 5 suggest that it may be adequate to fit a MA model of order one (i.e., 
MA(1)) given in [3.3.1] to each data set. After prewhitening each series using the calibrated 
MA(1) model, the residual CCF for each series is calculated using l21.3.11 with the prewhitened 
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Fox and Wolf rivefflows in order to obtain the graph of the residual CCF shown in Figure 21.5.2, 
along with the 95% confidence limits. Because the residual CCF in this figure is only signifi- 
cantly different from zero at lag zero, this indicates that a CARMA model could be fitted to the 
logarithms of the bivariate series. Additionally, the fact that each series can adequately be 
described by a univariate MA(1) model suggests that the following CARMA(0,l) model should 
be used. 

l og l i  - pi = (1 - Oiil)uli, i = 1.2 [21.5.1] 

where i = 1, and i = 2 refer to the Fox and Wolf logarithmic riverflows, respectively, pi is the 
theoretical mean of the logarithmic series for Z,i, and the general definitions of all parameters 
and variables follow [21.2.7]. 

1.00 r+ 

I I I I I 
12 8 4 0 4 0 12 

LAG 

+ - 

Figure 21.5.2. Residual CCF for the Fox and Wolf Rivers. 

Table 21.5.1 lists thk parameter estimates along with their standard errors appearing in 
brackets, using the univariate approach (Appendix A6.1) and the joint estimation algorithm 
described in Section 21.3.3. As can be observed in Table 21.5.1, there is a significant reduction 
in the variance of the parameter estimates when the joint estimation is employed. This in turn 
means that the relative efficiency of the univariate estimates with respect to the joint multivariate 
estimator is much less than unity. This relative efficiency is calculated using 

8 = vur(8iil)/var(6ii1) [21.5.2] 

where diil and Giil are the joint and univariate estimates, respectively, for the parameter €Iiil. The 
correlation between all and d12 is calculated to be 0.78. When the residuals of the CARMA(0,l) 
are subjected to residual checking, no misspecifications of the fitted model are detected. 
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Table 21.5.1 Parameter estimates for the CARMA model and 
univariate models for the Fox and Wolf Rivers. 

Fox River Wolf River 
Univariate -0.483 -0.41 1 
~stimates of eii, (0.1 10) (0.111) 

Joint -0.626 -0.543 
~ s t i m a t e ~  of e,, (0.075) (0.080) 

Efficiency of 
Univariate Estimator 0.465 0.519 

Mean of Log Zli 3.39 3.84 
(0.037) (0.042) 

Residual Variance 5.52~10-~ 7 . 5 ~ 1 0 - ~  

795 

21.5.3 Water Quality Series 

In the second example, two series corresponding to different measurements of the concen- 
tration of nitrogen in the Middle Fork Creek near Seebe, located in the Province of Alberta, 
Canada, are modelled. The series represent monthly measurements of total nitrogen and nitro- 
gen Kjeldahl from 1972 to 1979 and are part of an overall data set that are studied using both 
exploratory and confumatory data analysis tools in Sections 22.3 and 22.4, respectively. The 
seasonal adjustment algorithm of Section 22.2 was used to obtain the monthly means of the 
series from data available at irregular time intervals. A plot of the estimated monthly series is 
given in Figure 21.5.3. 

Following Chapter 5 and Section 12.3.2, univariate identification techniques suggest that 
an adequate model for describing the natural logarithms of the total nitrogen series, Z,  is a sea- 
sonal AR( model of the form 

(1 - +116B6)(@?Zl1 - PI) = Of1 [21.5.3] 

where B610gZf1 = l~gZ,-~,, .  An appropriate model to fit to the nitrogen kjeldahl series, Zf2 is an 
AR(1) model of the form 

(1 - +221B)OOgZ12 - P2) = Of2 [21.5.4] 

The univariate estimated parameters and their SE’s given in brackets are are listed in Table 
21.5.2. 

A perusal of the residual CCF for the fitted models from [21.5.3] and [21.5.4], shows that 
only the CCF at lag zero is significantly different from zero. This identification result implies 
that a CARMA model is appropriate for fitting to the bivariate series. The specific parameters 
required in the two component equations of the overall CARMA model are the same as those 
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0 12 24 36 48 60 72 84 96 

Figure 21.5.3. Concentration of total nitrogen and nitrogen kjeldahl 
(mgll) for the Middle Fork Creek, near Seek,  Alberta, Canada. 

OBS ERVATI 0 N N U M BE R 

used in [21.5.3] and [21.5.4]. Following the joint estimation procedure of Section 21.3.3, the 
efficient estimators for the CARMA model are calculated and displayed in Table 21.5.2. The 
reduction in the variances of the joint estimators compared with the variances of the univariate 
estimators is quite substantial. If only univariate series were used to estimate the parameters of 
the model for each one of the series, it would be necessary to increase the sample size of the 
series by a factor of four in order to obtain the same reduction in the variances of the parameters 
estimates. This increase in the sample size of the series is very expensive and in some cases 
infeasible. Consequently, this demonstrates that the CARMA model could also be employed to 
increase the accuracy of the parameters of the univariate models. The correlation at lag zero 
between 2,, and Ci,* for the models given in [21.5.3] and [21.5.4], respectively, is found to be 
0.88. 

21.5.4 Two Riverflow Series Having Unequal Sample Sizes 

As an example of two riverflow time series possessing unequal numbers of observations, 
consider the French Broad River at Asheville, North Carolina and the French Broad River near 
Newport, Tennessee, which have average annual flows from 1896 to 1965 and 1921 to 1965, 
respectively. As is the case for the application in Section 21.5.2, these flows are available from 
Yevjevich (1963) and also the hydrological data tapes of Colorado State University. 

A plot of the 70 observations of the flows at Asheville and the 45 observations of the flows 
near Newport are displayed in Figure 21.5.5. Univariate MA(1) models like the ones in [21.5.1] 
were found to be adequate to f i t  the logarithms of the series. A plot of the residual CCF is given 
in Figure 21.5.6 Although the flows near Newport are measured downstream from the flows at 
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Figure 21.5.4. Residual CCF for the total nitrogen and nitrogen kjeldahl. 

Table 21.5.2. Parameter estimates for the CARMA model and 
univariate models for the total nitrogen and nitrogen 

kjeldahl series for the Middle Fork Creek. 

Total Nitrogen Nitrogen Kjeldahl 
Univariate Estimates of 0.310 0.294 

$1 16 and $221 (0.097) (0.097) 

Joint Estimates of 
$116 and &21 

0.141 0.141 
(0.049) (0.049) 

I Efficiency of Univariate Estimator 0.255 0.255 

Mean of Log Z,i - 1.33 - 1.59 
(0.084) (0.104) 

I Residual Variance 0.131 0.152 
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Asheville, implying that a TFN model (see Chapter 17) may be required to model the bivariate 
series, it is observed from the plot of the residual CCF that a CARMA model would suffice, 
(only the residual CCF at lag zero is significantly different from zero). This is due to the fact 
that annual riverflows are being considered and this femporul aggregation of the data, by its very 
nature, incorporates some of the lagged relationships, which would be expected to hold in the 
model of the system (Granger and Newbold, 1977). If monthly data or less temporal aggregated 
data were considered, a TFN model would probably be required to model the data. The algo- 
rithm given in Appendix A21.1 is used to jointly estimate the parameters of the model. These 
estimates are given in Table 21.5.3. The significant reductions in the variances of the estimators 
compared with the univariate estimates can be observed. The correlation at lag zero between the 
residuals of the two series is calculated to be 0.91. 

21.6 CONCLUSIONS 

As illustrated by the practical applications of the previous section, the CARMA family of 
models can be used to model efficiently hydrological and other types of environmental series. 
When taking the physical characteristics of the system being modelled into account along with 
output from the identification methods of Section 21.3.2, the CARMA class of models is often 
found to be the most appropriate type of multivariate model to use. The application of Section 
21.5.4 shows that the CARMA model can be ideal for modelling time series formed by temporal 
aggregation. Another attractive feature of fitting this kind of model is that well developed, yet 
simple, model construction tools are currently available for use in practical applications. For 
example, when estimating the parameters of time series having equal and unequal sample sizes, 
the estimation procedures presented in Section 21.3.3 and Appendix A21.1, respectively, can be 
utilized. Furthermore, the flexible algorithm described in detail in Section 21.4.2 can be used for 
simulating synthetic sequences from a CARMA model. 

Besides environmental series, the CARMA class of models has been successfully employed 
to model and forecast economic time series. Umashankar and Ledolter (1983). Moriarity and 
Salomon (1980) and Nelson (1976) used CARMA models to increase the efficiency of the 
estimated parameters and to improve the accuracy of the forecasts. Risager (1980) fitted 
CARMA models to mean annual ice core measurements. Research related to the development 
and application of CARMA models in hydrology was referred to throughout this chapter as well 
as Section 20.4. 

Research in CARMA modelling can be extended in a variety of directions. For instance, as 
mentioned in Sections 21.3.5 and 20.3.3, model construction methods could be developed for 
various kinds of periodic CARMA models. Camacho (1984, Section 2.4) defines a contem- 
poraneous TFN model in which the innovations among a set of k TFN models are contem- 
poraneously correlated. If practical applications dictate the need for this rather sophisticated 
type of contemporaneous model, appropriate model construction methods could be developed. 
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Figure 21.5.5. Annual rivefflows for the French 
River at Asheville and near Newport (rn3/s). 
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Figure 21.5.6. Residual CCF for the French Broad 
River at Asheville and near Newport. 
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Table 21.5.3. Parameter estimates for the CARMA model and univariate models 
for the French Broad River at Asheville and near Newport. 

~~ ~~ 

At Asheville Near Newpon 
n =70 n =45 

eii 1 (0.1 15) (0.1 31) 
Univariate Estimates of -0.283 -0.469 

Joint Estimates of -0.170 -0.470 
eii 1 (0.087) (0.081) 

Efficiency of Univariate 
Estimator 0.572 0.382 

Mean of Log 
4 i  

4.01 4.36 
(0.040) (0.048) 

I Residual Variance 6.72~10-~  5 .79~10-~  

APPENDIX A21.1 

ESTIMATOR FOR CARMA MODELS HAVING 

UNEQUAL SAMPLE SIZES 

Within this appendix, an estimator is presented for obtaining maximum likelihood esti- 
mates for the parameters of a CARMA model [21.2.1] or [21.2.6] when the k time series used to 
calibrate the model do not have the same lengths. This algorithm was originally developed by 
Camacho et al. (1985). The CARMA estimator to be used with samples having the same number 
of observations over the same time period is given in Section 21.3.3. 

When fitting models to multivariate hydrological data, it is common to find series with 
unequal numbers of observations. What is customary in this circumstance is to eliminate the 
additional information available in the longer series so that all the series end up with an equal 
number of observations. For example, Risager (1980) considered the modelling of a bivariate 
time series of mean annual ice core measurements for which data were available for the years 
1861-1974 and 1169-1975, respectively. In his analysis, only data for the common period 
1861-1974 could be used to jointly estimate the parameters of the model. Another possibility is 
to consider some of the Observations of the shorter series as missing and use a procedure such as 
that given by Ansley and Kohn (1983) to estimate the parameters of the model. This approach, 
although sensible, is not computationally efficient for a large number of missing observations or 
for series having a large sample size. Another disadvantage of this procedure is the i n d u c t i o n  
of many additional parameters to be estimated, which reduce the accuracy of estimators. If a 
CARMA model is sufficient to fit to the data, the estimator described below can be employed for 
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estimating the parameters of the CARMA model using all the available information in a very 
efficient way. 

Suppose that the set of observations available for the series Zf;, i = 1.2, . . . , k ,  is given by 

where t = l-m;,l-m;+l, . . . ,0,1,2, . . . , n .  are the times at which the mi+n observations in series 
i occur, t = 1.2, . . . , n ,  are the common times for which all k series have measurements and 
hence n is the number of common observations across all k series. Although it is assumed that 
all the series go up to the same time n ,  it is possible to extend the procedures given below to 
include the case where not all the series end at the Same time. 

As in Section 21.3.3, let the parameters of the CARMA model for the ith series be con- 
tained in the vector 

p; = (g;i l ,+i i2,  . . . , +i;,,,,e;;1,e;i*, . . . , eijJ 

Hence, the vector of parameters for the complete CARMA model is written as 

p = ( p 1 9 p 2 ,  . . . t p k ) T  

An approximate log-likelihood function of the CARMA model in [21.2.1] or [21.2.6] is 

n k mi 1 so; @,S) =---logs - C-loga;; + s - -c- 
2 i= 1 2 2 ;=I 6;; 

where 

Using this approximation, it is possible to modify the algorithm given in Section 21.3.3 to esti- 
mate the parameters of a CARMA model when an equal number of observations are available for 
each series, to handle the case where the sample sizes are unequal. 

The algorithm is as follows: 
For each series Z,;, i = 1.2,. , . , k ,  obtain MLE's of the ARMA model parameters in 
[21.2.6] using an appropriate univariate ARMA estimation technique, such as one of those 
given by Newbold (1974), Ansley (1979), Ljung and Box (1979) or McLeod (1977) 
referred to in Section 6.2.3, with the complete set of observations {ZJ, 

t = l-m;,l-m;+l, . . . ,0,1, . , , , n .  Let the vector of univariate estimates be given by 

1.  
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2. Estimate 6 = (aii) by solving the system of nonlinear equations 

where 
n 

,=I 
ssii = xu,ia,j 

3. Calculate 

where V is obtained as follows: Let 

n Ixh = plim (a2s /ap,aph ) 

Then 

where 6-l = (dh) and D i a g [ .  . . ] indicates a block diagonal matrix. The [dhIgh] can be 
determined using the algorithm provided by Ansley (1980) and Kohn and Ansley (1982). 
Iterations of the algorithm are continued until convergence is reached for giving the 
approximate MLE's of p. An application of the estimator in this appendix for fitting a 
CARMA model to two annual riverflow series having unequal sample sizes is furnished in 
Section 21.5.4. 

PROBLEMS 

21.1 In Sections 21.2.2 and 21.2.3, the subset and concatenation definitions are given for 
CARMA@q) models. For the following CARMA@,@ models, write down the sub- 
set and concatenation definitions, the stationarity and invertibility conditions, and 
the entries in the variance covariance matrix for the innovations: 
(a) CARMA(3.0) 
(b) CARMA(0,4) 
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21.2 

21.3 

21.4 

21.5 

21.6 

21.7 

21.8 

21.9 

21.10 

21.11 

(c) CARMA(2.2) 

(d) CARMA(4,3) 

Select two annual time series that you think could be adequately modelled using a 
CARMA model. Follow the identification procedure of Section 21.3.2 to ascertain 
whether or not your supposition is justified. 
Carry out the instructions of problem 21.2 for the situation when you have three 
time series. 
Describe in detail how the estimation algorithm of Section 21.3.3 works for the fol- 
lowing bivariate CARMA models: 
(a) CARMA(l.0) 

(b) CARMA(0.2) 

(c) CARMA(1,l) 

Find two annual time series that are only contemporaneously correlated with one 
another as indicated by the residual CCF. Fit a CARMA to these series and check 
that the calibrated model provides an adequate fit. 
Carry out the instructions of problem 21.5 for the case when you have three time 
series. 
Suppose that in a set of k seasonal time series, each time series has s seasons per 
year. Using both the subset and concatenation definitions of CARMA models from 
Sections 21.2.2 and 21.3.2, write down the equations for the periodic CARMA 
model. 
Carry out the instructions of problem 21.7 for the case of a seasonal CARIMA 
model. 
Suppose that you wish to simulate 10 values for a bivariate CARMA model. Using 
the algorithm of Section 21.4.2, explain in detail how these are calculated for the 
following bivariate CARMA models 
(a) CARMA(1,O) 

(b) CARMA(0,l) 

(c) CARMA(1,l) 

Select a CARMA which is of direct interest to you. After setting the model parame- 
ters at some reasonable values or else using a model that you have already calcu- 
lated, simulate three synthetic series of lengths 100, 500 and 1,OOO. Now fit a 
CARMA model to each of these series. Compare your modelling results for the 
three sets of simulated sequences and draw appropriate conclusions. 
Explain how you would calculate minimum mean square error forecasts for a 
CARMA model. 
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HANDLING MESSY ENVIRONMENTAL DATA 

In an environmental impact assessment study, an analyst may be ques ted  to detect and 
model trends in a data set provided by the client. Unfortunately, as discussed in detail in Section 
19.3.1, there are many reasons as to why the quality of environmental data, such as a set of water 
quality time series, is often not very high. One of the major problems with environmental series 
is there are often missing data points among which there may be long periods of time for which 
no observations were taken. In addition, there may be one or more external interventions which 
affect the stochastic manner in which a series behaves. In other words, environmental data are 
often quite messy. 

The major objective of Part X is to explain how an optimal amount of information from 
messy environmental series can be detected and modelled. To accomplish this, the data analysis 
methodology of Tukey (1977) can be followed. As initially mentioned in Section 1.2.4, the two 
main steps in an overall data analysis study are: 
1. Exploratory Data Analysis (Section 22.3 as well as Sections 5.3.2. 19.2.3 and 24.2.2); 

2. Confirmatory Data Analysis (Section 22.4 as well as Chapter 3 to 21 and Sections 23.3 
and 24.2.3). 

In Section 22.3, a range of useful exploratory data analysis tools are suggested for discovering 
important patterns and statistical characteristics such as trends, caused by external interventions. 
To demonstrate the insights that can be gained by employing exploratory data analysis tools, 
they are applied to water quality series in Sections 22.3 23.5, 24.2.2 and 24.3.2 within Part X, as 
well as many other locations in the book. 

To rigorously characterize mnds and other desired statistical traits which may be known in 
advance or else detected using exploratory data analysis studies (see Section 19.2.3). formal sta- 
tistical techniques can be employed at the confirmatory data analysis stage. In Part X. the fol- 
lowing three types of confirmatory data analysis methods are described and used in environmen- 
tal applications: 
1. 

2. Nonparametnc Tests (Chapter 23). 

3. Regression Analysis (Section 24.2.3). 

As explained in detail in Chapter 19 and exemplified by applications throughout Chapter 
19 and in Section 22.4, intervention analysis can be used to ascertain the magnitudes of 
changes in the mean levels of a series due to one or more external interventions. To determine 
the most appropriate intervention model to fit to a given data set at the confirmatory data 
analysis stage, one can follow the identification, estimation and diagnostic check stages of model 
construction. However, in order to be able to fit an intervention model to the time series, a 
sequence of data points evenly spaced in time must be available. If there are missing observa- 
tions, an appropriate data filling technique can be used to estimate an evenly spaced time series 
from the original observations which are available at irregular time intervals (see Section 19.3.2 

Intervention Analysis (Section 22.4 and also Part WI), 
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for a discussion of data filling methods). For the situation where there is a large number of miss- 
ing observations, a procedure based on seasonal adjustment can be used (see Section 22.2). As 
pointed out in Chapter 19, intervention analysis constitutes a very powerful technique for use in 
environmental impact studies. 

An inherent advantage of using most nonpanumtric tests and regnxsion analysis tech- 
niques given in Chapters 23 and 24, respectively, is that they can be used directly with evenly or 
unevenly spaced observations. As described in Chapter 23, since the early 1980’s. a number of 
researchers have used nonparametrk tests for detecting trends in water quality time series. A 
useful variety of nonparametric trend tests. including the Mann-Kendall and Spearman’s partial 
rank correlation tests, are described in detail in Section 23.3. Regression models that can be 
employed as exploratory and conf i i to ry  data analysis tools arc discussed in Sections 24.2.2 
and 24.2.3, respectively, The exploratory data analysis techniques described in Section 22.3 can, 
of course, be used in conjunction with the nonparamcaic tests and regression analysis, as well as 
the intervention models. 

As summarized in Table 1.6.4, three trend assessment methodologies are presented in 
Part X for canying out trend assessments of water quality and water quantity time series. For 
each of these studies, a methodological approach is developed within the overall framework of 
exploratory and confirmatory data analysis. The first study presented in Section 22.3 employs 
intervention analysis for modelling trends in water quality and water quantity time series 
measured in rivers. Within the second study discussed in Section 23.5, nonparametric trend 
tests and other appropriate statistical methods are utilized for discovering trends in water quality 
samples observed in a lake that may be affected by nearby industrial developments. Finally, in 
the third case study a methodology is designed in Section 24.3 for assessing trends in water qual- 
ity time series measured in rivers. A particularly useful technique for tracing trends and 
accounting for the effects of flow upon a given water quality variable is the robust locally 
weighted regression smooth of Cleveland (1979) described in Section 24.2.2. Moreover, the 
Spearman partial rank correlation test is employed to detect trends in water quality time 
series when the impacts of seasonally are partialled out. 
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CHAPTER 22 

EXPLORATORY DATA ANALYSIS AND 

INTERVENTION MODELLING IN 

CONFIRMATORY DATA ANALYSIS 

22.1 INTRODUCTION 

The main purpose of this chapter is to present a comprehensive methodology to identify 
and, if possible, stochastically model any trends which may be present in water quality as well as 
other kinds of environmental time series. These trends, if any, may be due to the presence of 
known or unknown interventions such as various types of land-use changes. In addition to possi- 
bly being affected by external interventions, usually a given water quality variable is measured at 
irregular time intervals and often there are large time gaps at which no data are collected. Con- 
sequently, water quality data are often very messy and systematic procedures are developed in 
this chapter, as well as Chapters 23 and 24, to optimize the amount of meaningful statistical 
information which can be gleaned from the currently available data. 

As explained by Tukey (1977) and also briefly mentioned in Sections 1.2.4, 5.3.2, 19.2.3 
and 24.2.2, there are usually two major steps in a statistical study. The first step is called 
exploratory data analysis and the objective of this phase of the work is to uncover important 
properties of the data by executing simple graphical and numerical studies. Some of the tech- 
niques available for this phase include a graph of the data against time, the 5-number summary 
graph which Tukey (1977, Ch. 2) calls the box-and-whisker plot, crosscorrelation function, 
Tukey smoothing (Tukey, 1977, Ch. 7) and the autocorrelation function. The purpose of the next 
step which is referred to as confirmatoory data analysis is to confm statistically in a rigorous 
fashion the presence or absence of certain properties in the data. For example, when sufficient 
measurements have been taken for a water quality variable, exploratory data analysis may indi- 
cate that there is a possible trend in the data due to a known external intervention. Following 
this, the intervention analysis approach of Chapter 19 can be utilized as a confmatory data 
analysis tool to determine if there has been a significant change in the mean level of the series. 

The exploratory and confirmatory stages of data analysis can be compared to the process 
which takes place after a crime is committed (Tukey, 1977). At the exploratory stage of investi- 
gating a crime, a sleuth uses forensic tools and his common sense to discover evidence about the 
crime. If the detective does not understand how to execute an investigation, he may fail to look 
in the proper places for the criminal’s fingerprints. On the other hand, if the investigator has no 
fingerprint powder he will not detect fingerprints on most objects. In an analogous fashion, the 
statistical analyst requires both the tools of the trade and common sense. 

In the criminal justice system, the suspected criminal is taken to court after the collection of 
evidence by the investigative bodies. Following the evaluation of the available evidence, the 
jury and judge must ascertain if the criminal is guilty based upon the current information. Like- 
wise, in a statistical study the purpose of the second main step, confimatory data analysis, is to 
verify quantitatively if suspected statistical characteristics such as different kinds of trends are 
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actually present in the data, When enough evidence is available, the results of a confirmatory 
data analysis can be quite useful to decision makers. For instance, when intervention analysis is 
employed in an environmental impact assessment study for properly confuming the presence of 
trends in water quality time series, the results can be used in court for forcing the polluters to 
adopt appropriate pollution abatement procedures. 

Many exploratory and confmatory methods require that equally spaced data be available, 
and as is pointed out earlier in this section, environmental series arc often measured at uneven 
time intervals. Accordingly, in the next section a methodology based on seasonal adjustment is 
devised for estimating the entries of an average monthly time series when daily values arc avail- 
able at irregular time intervals and often there are time gaps spanning many months for which no 
measurements were taken. In addition to estimating values for a monthly sequence, this pro- 
cedure can of course be used for estimating averages at other equal time intervals such as weekly 
or quarterly intervals by having fifty-two and four seasons per year, respectively. 

Following the section on data filling, specific exploratory data analysis techniques are 
described in Section 22.3. In order to demonstrate clearly the efficacy of using exploratory data 
analysis and, when appropriate, the confirmatory data analysis tool of intervention analysis, 
practical applications are presented throughout the chapter. Possible trends in water quality and 
riverflow series are examined for two locations in Canada. In the province of Alberta, Canada, 
both exploratory and confmatory data analysis techniques are employed to ascertain the effects 
of cutting down a forest upon total organic carbon and turbidity in the Cabin Creek near Seebe. 
On the Mill River near St. Anthony in Rince Edward Island, exploratory data analysis results 
suggest that perhaps due to acid rain, alkalinity levels may be increasing over time. These illus- 
trative applications were originally presented in the paper by McLeod et al. (1983) and are in 
fact part of an extensive environmental study executed by the authors in which fifty environmen- 
tal time series were exhaustively analyzed. 

Besides the intervention onalysis approach of Chapter 19 and Section 22.4 in this chapter, 
other confirmatory data analysis techniques include the nonparamerric tests and regression 
onalysis methods of Chapters 23 and 24, respectively. An advantage of most nonparametric tests 
and regression analyses is that they can be used with observations measured at either unequally 
or equally spaced time intervals. In fact, as pointed out in Chapter 23, nonparametric tests have 
been used extensively for checking for the presence of trends in water quality time series. In Sec- 
tion 23.3 and Appendices A23.1 to A23.3. many of these nonparametric tests are described in 
detail. As an alternative procedure, the regression models of Chapter 24, offer a promising 
parametric approach for modelling trends in unevenly spaced measurements. 

It is important that the scientist always keep in mind the fact that suficient duto or informa- 
tion must be available if he or she wants to carry out confirmatory data analyses. Until further 
measurements arc available, inadequate series must for the present time be “thrown out of 
court” due to lack of sufficient evidence. Often a detective has ‘‘a feeling” about whether or 
not a person is guilty of a crime. If he thinks that the suspect is actually guilty, he wilI continue 
to follow his prey until he collects sufficient information so the courts can eventually convict 
him. The same situation holds for statistical studies. Even though it may not be presently feasi- 
ble to fit an intervention model or another type of confirmatory model to a specific water quality 
time series, if this series is deemed important, the further collection of data will eventually per- 
mit a full confmatory data analysis study. 
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22.2 DATA FILLING USING SEASONAL ADJUSTMENT 

Many exploratory data analysis methods arc valid for use with either unequally or evenly 
spaced data However, Tukey smoothing, which is explained in Section 22.3.5. is an example of 
an exploratory tool where the measurements, or estimates thereof, must be available at equal 
time intervals before the method should be used. Except for many of the nonparameaic tests and 
also the regression analysis methods presented in Chapters 23 and 24, respectively, all of the sto- 
chastic models described in this book, including the intervention models of Chapter 19 and Sec- 
tion 22.4, can only be used with evenly spaced data at the confirmatory data analysis stage. 
Therefore, when data are unevenly spaced. procedures arc required for creating an evenly spaced 
sequence which stochastically represents what could have occurred historically. As explained in 
Section 19.3. intervention analysis can be employed for estimating missing values from an 
evenly spaced data set when the number of unknown observations is not too large (usually not 
more than 5% of the data set). However, for evenly spaced daily observations with a large 
number of missing values, a different procedure must be adopted for estimating a sequence of 
evenly spaced average monthly values. The particular technique presented in this section is 
related to methods developed for seasonal adjustment models. 

In seasonal adjustment modelling, a time series is decomposed into various components, 
one of which is the seasonal term. Various seasonal adjustment procedures are available and the 
reader may wish to refer to the statistical literature for a description of these techniques (see, for 
example, KendaU (1973). Shiskin et al. (1976), Granger (1980). Hillmer and Tiao (1985), and 
Cleveland et al. (1990)). Suppose that x, represents an observation at time t either for the origi- 
nal time series or for some Box-Cox transformation of the given data. One reason for invoking 
the Box-Cox transformation in [3.4.30] is to cause data that are not normally distributed to 
approximately follow a normal distribution. For instance, a logarithmic transformation may 
reduce the skewness and improve the symmetry of the distribution if there are quite a few large 
values in the series. When the variance of a series depends on the level of the series, this 
transformation may rectify the problem. Furthermore, as explained in Section 3.4.5 and else- 
where, a Box-Cox transformation can often alleviate problems with the propenies of the residu- 
als of the stochastic model fitted to the series of equally spaced data. 

An additive seasonal adjustment model can be written as: 

x , = C , + S , + f , = C , + S m + f ,  

where t is the Julian day number (i.e., the number of days since January 1.4713 B.C.), r is the 
year, m is the month for monthly data, C, or C, is the trend factor for modelling relatively long 
term causes, S, or S,,, is a stable seasonal factor which is assumed not to evolve with time, f ,  is 
the nonseasonal irregular component made up of short-run effects and is not necessarily white 
noise. The original seasonal adjustment algorithm presented by McLeod et al. (1983) consists of 
the following steps: 
1. Obtain preliminary estimates of C,, S, and f , .  6, = d is taken to be a constant which is 

equal to the median of x,. To get $, first calculate f',,, as the median of x, - f for the data 
1 12 - 

in the mth month. Then use S,,, = S', - S',,,. Estimate the irregular component 

utilizing 
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2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

- -  
I , = x , - C - S ,  

Replace far-out values in the I, series by the nearest outer fence (see Section 22.3.3 on 
box-and-whiske: graphs for definitions of far-out values and outer fences) to form the 
irregular series I’,. The process of replacing far-out values by outer fences is called Win- 

sorizing (Tukey, 1977). 

Estimate the destasonalized series given by 

D, =C +it, 
l. .L 

Determine the revised trend estimate, C,, where each year in C, is the mean of D, for that 
year. If no data are available for the rth year, the mean of D, for surrounding years is used. 

Calculate the revised seasonal component 
- L l .  1 12 l. 
s, = s:, - - S’, 

12 
-L 

where S’, is the median of x, - C ,. 
The revised irregular series is estimated using 

I ,  = X I  -s, -c, 
Winsorize the revised irregular series, I,, to obtain the Winsonzed series, I’,. This is 
accomplished by replacing the far-out values of I, by the appropriate outer fences. 

Obtain an adjusted version (i.e., Winsorized) of the x, series using 
% I - &  

x’, = c, + s, + I’, 

For a given month for a specified year in which data were originally given, take the median 
of the x’, values to get the estimated average monthly value. 

Adjust the trend for each year by employing 
‘ i r  .I. 

C, = C,  + mean of 1’, for the whole series. 

To obtain an estimated monthly average value for a given month in which no data were 
given use 

t -- 
x,,,, = c, + s, 

where x,,,, is the estimated monthly value for the rth year and mth month. The total 
estimated monthly series is formed by using Steps 8 and 10. Note that if a Box-Cox 
transformation is taken of the given data, then an inverse Box-Cox transformation must be 
invoked to obtain the estimated monthly averages for the original untransformed series. 
In Section 24.2.2, the robust locally weighted regression smooth (RLWRS) of Cleveland 

(1979) is explained as a flexible procedure for smoothing a time series. The above seasonal 
adjustment algorithm can be improved by employing the IUWRS in the algorithm. In particu- 
lar, the fourth step in the algorithm becomes: 
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* 
4. Determine the revised trend estimate, C,, as the RLWRS fitted to the deseasonalized series, 

4. 
In order to demonstrate how well the seasonal adjustment algorithm works, consider the 

flows in m3/s of the Cabin Creek near Seebe in Alberta, Canada, from January. 1964, till 
December, 1979. A daily flow value has been measured for each day during this time period 
and for each month in a given year an average monthly value can be readily calculated. Because 
riverflow measurements are often highly skewed, it is advantageous to take natural logarithms of 
the data. In Figure 22.2.1, the natural logarithms of the actual average monthly values are 
marked with black circles for one particular four year interval. For exactly the same days on 
which observations are missing for the turbidity data in the Cabin Creek. the corresponding daily 
observations are removed from the flow data. Following this, the seasonal adjustment algorithm 
is employed to estimate the average monthly flows of the logarithmic daily data for the period 
from 1964 to 1979 and these estimated flows are marked by circles in Figure 22.2.1. It should 
be pointed out that for the turbidity series and hence the estimated flows, only about 8% of the 
data are used in the seasonal adjustment algorithm. In addition, there are many months during 
which no observations are available. However, as can be seen in Figure 22.2.1, the estimated 
values from the seasonal adjustment algorithm are reasonably close to the actual enmes during 
this four year period and also the other years not shown in Figure 22.2.1. 

As noted in Section 22.1, the seasonal adjustment algorithm can also be used for estimating 
averages at equal time intervals other than monthly spacings. For instance, it can be employed 
for determining average bimonthly and quarterly time series. Moreover, the RLWRS discussed 
in Section 24.2.2 can be employed for improving step 4 of algorithm. The reader may wish to 
refer to Section 24.3.2 for a description of how the RLWRS can assist in analyzing trends of 
messy water quality series measured in rivers. 

22.3 EXPLORATORY DATA ANALYSIS 

22.3.1 Introduction 

A wide range of exploratory data analysis tools are available for detecting important statist- 
ical characteristics contained in a data set (see, for example, Tukey (1977). Velleman and Hoag- 
lin (1981), Berthouex et al. (1981). Chambers et al. (1983). Chis  (1983). McLeod et al. (1983). 
Hoaglin et al. (1983), du Toit et al. (1986) and Ramsey (1988)). In Section 19.2.3, a number of 
exploratory procedures are suggested for detecting known and unknown interventions in a time 
series and some of these techniques are discussed in detail in this section. Indeed, all of the 
identification tools which are recommended for designing the different kinds of time series 
models discussed throughout the book can be considered as exploratory data analysis techniques 
for specifically deciding upon the parameters required in these models. For example, in Figure 
19.2.4, the graphical methods used to detect known and unknown interventions and the identifi- 
cation techniques needed to design the intervention models, could both be considered as explora- 
tory data analysis tools. Nevertheless, in this section exploratory tools are presented which do 
not assume that a specific type of stochastic model will be used at the confirmatory data analysis 
stage. Because, in some situations, confirmatory data analysis may not be warranted, due, for 
example, to a lack of sufficient data, confirmatory data analysis may not be executed subsequent 
to exploratory data analysis. However, when a confirmatory data analysis is canied out, many of 
the results from the exploratory data analysis stage may be used along with specially designed 
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Figure 22.2.1. Monthly logarithmic flows of the Cabin Creek. 

identification methods for constructing time series models at the confiiatory data analysis 
stage. 

Some useful exploratory data analysis tools are presented in this section and the efficacy of 
using the techniques is demonstrated by applications to water quality and water quantity time 
series. Although many of the exploratory data analysis tools do not require the observations in a 
time series to be available at equally spaced time intervals, some of the techniques are designed 
for use with equally spaced measurements. The approaches discussed in this section which do 
not require equally spaced observations are: 
1. 

2. 

3. cross-correlation function. 
The following two techniques assume that the data points are separated by equal time intervals: 
4. 

5. autocorrelation function (ACF). 
When data are unevenly spaced, an appropriate technique such as the seasonal adjustment algo- 
rithm from Section 22.2 or one of the other data filling methods of Section 19.2.3, can be 
employed for estimating the entries of an evenly spaced time series. Additionally, except for the 
third technique, all of the exploratory data analysis tools constitute valuable methods for detect- 
ing possible interventions. 

graph of the data against time; 
the 5-number summary graph which Tukey (1977, Ch. 2) calls a box-and-whisker plot; 

Tukey smoothing (Tukey, 1977. Ch. 7; Velleman and Hoaglin. 1981. Ch. 6); 
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The exploratory data analysis methods presented in this section and elsewhere can be 
employed for revealing interesting properties of the data under consideration. Each exploratory 
technique possesses its own inherent attributes that are useful for uncovering certain data charac- 
teristics. Because no single method can clearly portray everything there is to learn about the 
data, it is advantageous to examine the tim series by employing a number of useful investiga- 
tive graphical and numerical tools. 

22.3.2 Time Series Plots 

One of the simplest and more useful exploratory graphical tools is to plot the data against 
time. Characteristics of the data which may be easily discovered from a perusal of a graph 
include the detection of extreme values, trends. known and unknown interventions, dependencies 
among observations, seasonality, need for a data transformation. nonstationarity, and long term 
cycles. 

When considering unequally spaced daily data, the actual time intervals between adjacent 
observations must be calculated before plotting the observations against time. A convenient 
technique to employ is to determine the Julian day number for each observation using the for- 
mula given by Hewlett-Packard (1977). With this information, the gap between adjacent obser- 
vations can be determined as the difference of the Julian day numbers of the observations. This 
procedure is employed to obtain the graph in Figure 22.3.1 of the natural logarithms of the turbi- 
dity in the Cabin Creek, where each data point is marked by a small circle and is joined to its two 
neighbours by straight lines. As shown by the time gaps between observations, then are many 
days and even months during which no measurements were taken. For instance, from August 2 
to November 22.1975. inclusive, no observations were recorded. 

Other examples of time series plots are presented throughout the textbook. In Chapter 2, 
Figure 2.3.1 displays the average annual flows of the St. Lawrence River at Ogdensburg, New 
York, for which there are no missing observations and no known interventions. An illustration 
of an annual series for which there is a known intervention is the average annual flows of the 
Nile River at Aswan in Figurc 19.2.1. As seen in Figure 19.2.1 and discussed in Section 19.2.4, 
the completion of the Aswan dam in 1902 caused the average annual flows of the Nile River to 
decrease significantly from 1902 onwards. In Chapter 4. Figures 4.3.8.4.3.10 and 4.3.15, show 
trends present in annual water use, electricity consumption, and Beveridge wheat price index 
time series, respectively. As noted in Section 4.3.3, each of these three nonstationary series can 
be adequately modelled using an ARIMA model. 

Some interesting seasonal time series are also presented in the book. Consider, for exam- 
ple, Figure 1.1.1 or Figurc 19.1.1 which displays the 72 average monthly phosphorous data 
(mg/l) from January 1972, until December. 1977. for measurements taken downstream from the 
Guelph sewage treatment plant located on the Speed River in the Grand River Basin. Ontario, 
Canada. As can be clearly seen, the commencement of phosphorous removal at upstream 
sewage treatment plants dramatically decreased the mean level of the series after the intervention 
date. Additionally, as indicated by the blackened circles, there are missing observations before 
and after the intervention. In Section 19.4.5, an intervention model is fitted to the water quality 
series in Figure 1.1.1 or 19.1.1 in order to statistically ascertain the effects of the intervention 
upon the level of the series and to estimate the missing observations. 
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Figure 22.3.1. Natural logarithms of the turbidity (mg/l) data for the Cabin Creek. 

22.3.3 Box-and-Whisker Graphs 

A box-and-whisker graph is based upon what is called the 5-number summary (Tukey, 
1977, Ch. 2). For a given data set. the 5-number summary consists of the smallest and largest 
values, the median, and the 0.25 and 0.75 quantiles which are called hinges. When the data are 
ranked from the smallest to largest value, the first data point is the smallest value while the 1a.t 
entry is the largest value. 

In order to calculate the values of quantiles, it is convenient to employ the operational 
definition of quantiles given by Chambers et al. (1983). Suppose that the given data represented 
by xi for i = 1.2, . . . , n ,  are ordered from smallest to largest such that the sorted data are denoted 
by x ( ~ ~  i = 1,2, . . . , n. If p represents any fraction between 0 and 1, the corresponding quantile 
is given by QQ). Whenever p is one of the fractions 

p i  = ( i  - 0.5)/n for i = 1,2, . . . , n [22.3.1] 

QQ) is assigned the value x(~,. which is one of the given data points. For instance, if there were 
10 observations, x ( ~ )  would have api value of 

p2=(2-0.5)/10=0.15 

Hence, the 0.15 quantile, Q(0.15). would be exactly equal to x(~). When p is a fraction f of the 
way from p i  to pi+l, one must use linear interpolation to estimate Qb). In particular, for this 
situation the interpolated quantile is calculated as 
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Q(P) = (1 -f)Q@i) +m(Pi+l) [22.3.2] 

Returning to the example for which there are 10 data points, the pi for x(3) and x(4) are deter- 
mined from [22.3.1] to be, respectively, 

p3 = (3 - 0.5)/10 = 0.25 

p4 = (4 - 0.5)/10 = 0.35 

By utilizing [22.3.2], the quantile forp = 0.31 is determined to be 

Q(0.31) = (1 - 0.6)Q(0.25) + 0.6Q(0.35) 

= + O . ~ X ( ~ )  

A plotting position is a value at which an ordered observation in a sample should be plotted 
for use on probability paper. In [22.3.1], pi  stands for the plotting position of the ith ordered 
value denoted by x(~,. The plotting position given by [22.3.1] is actually a special case of the 
general plotting position formula written as 

p i  = (i - a)/(n + 1 - 2a) [22.3.3] 

where a is usually assigned values between 0 and 0.5. Detailed discussions regarding probabil- 
ity plotting positions are given by Barnett (1975) and Cunnane (1978) within the statistical and 
hydrological literature, respectively. As explained by these authors, when a = 0 in [22.3.3] one 
obtains Weibull’s formula which is recommended for use with uniformly distributed data. For 
normal observations, Blorn’s formula using a = 3/8 in [22.3.3] should be employed. Finally, 
[22.3.1] is referred to as Hazen’s formula and to obtain this, one substitutes a = 0.5 into [22.3.3]. 

As noted by Chambers et al. (1983). there are many reasons for choosing p i  to be 
(i - 0.5)/n in [22.3.1] or, equivalently, a = 0.5 in [22.3.3], rather than some other value such as 
i l n .  One consideration is that when the ordered observations are split into two groups exactly on 
an observation, the use of ( i  - 0.5)/n means that the observation is counted as being half in the 
lower group and half in the upper group. 

Because extrapolation must be done only when necessary and with great care, the formula 
in [22.3.2] for calculating Q@) should not be used outside the range of the data for which p is 
smaller than 0311 or larger than 1 - 0.911. The safest rule for extrapolation is to define 
Q @ ) = x ( ~ )  for p c p I  and Q(P)=x(,,) for p >pn.  According to this rule, Q(0) and Q(1) are 
assigned values of and x(,,), respectively, which are the smallest and largest observations, 
respectively, in the given data set. 

Equations [22.3.1] and r22.3.21 can be used with a data set of length n 2 2. Keeping in 
mind that the only difference between a percentile and a quantile is that a percentile refers to a 
percentage of a data set and a quantile refers to a fraction of the data, these equations can also be 
used to calculate a percentile. 

The median, given by Q(0.5). divides the data into two groups of equal size. If n is odd, 
the median is x(( , ,+~~~) .  When n is even, Q(0.5) is calculated using [22.3.2] as the average of 
x(,,2) and ~ ( , , , 2 + ~ ) ,  which are the two ordered values closest to the middle. 
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The lower and upper quartiles which are defined as Q(0.25) and Q(0.75). rcspectively. am 
called hinges by Tukey (1977). The distance between the first and third quantile, given by 
Q(0.75) - Q(0.25) is called the inrerquortile runge. This distance, which can be used to judge 
the spread of the data, is referred to by Tukey (1977) as the H spread. 

To assist in characterizing extrtm values, Tukey (1977) has suggested the following 
definitions. A step is 1.5 timcs the H-spread or i n t e q d e  range. Inner fences are one step out- 
side hinges and outer fences arc two steps outside hinges. Values between an inner fence and its 
neighbouring outer fence are called ourside. Values beyond outer fences an far-out. Assuming 
that the data follow a given distribution, such as a normal distribution, one can calculate the 
expected numbers of outside and also far-out values, and compare these to the observed 
numbers. 

When entertaining seasonul data such as monthly or quarterly data, it is instructive to cal- 
culate a 5-number summary plus outside and far-out values for each season. A convenient 
manner in which to display this information is to plot a box-and-whisker diagram for each sea- 
son. Figurc 22.3.2 depicts the monthly box-and-whisker plots for turbidity in the Cabin Creek 
before July 1, 1974, when part of the forest was cut down. In this figure, the data have not been 
transformed using a Box-Cox transformation. The upper and lower ends of a rectangle for a 
given month represent the two hinges and the thick line drawn horizontally within the rectangle 
is the value of the median. The minimum and maximum values for a particular month are the 
end points of the lines or whiskers attached to the rectangle or box. The far-out values are indi- 
cated by a circle in Figure 22.3.2, where far-out values are not marked if there are four or less 
data points for a given month. Below each month is a number which gives the number of data 
points used to calculate the box-and-whisker graph above the month. When there are not many 
data points used to determine a box-and-whisker plot for a given month, any peculiarities in the 
plot should be cautiously considered. The total number of observations across all the months is 
listed below November and December. 

Another way to investigate extreme values is to calculate far-out values when all of the data 
across all of the seasons are used. Certainly, if a data point is far-out overall, the scientist should 
determine whether the measurement is accurate and represents what actually occurred or the 
observation is really due to measurement error or some other type of mistake. If the validity of a 
far-out overall or perhaps a far-out seasonal value is in doubt, in certain situations it may be 
advantageous not to include this data point in subsequent analyses. In the data filling procedure 
described in Section 22.2, far-out values an adjusted using a technique called Winsoriring 
(Tukey, 1977). 

In addition to detecting far-out values, box-and-whisker diagrams have other uses. If the 
data are approximately symmetrical with respect to the median, they may follow a symmetric 
distribution such as the normal distribution. If there is an obvious lack of symmetry in a box- 
and-whisker graph, this may indicate the need for a transformation, such as the Box-Cox 
transformation in [3.4.30] to cause the data to be approximately normally distributed. Since. by 
definition, 25% of the data is contained between the median and a hinge, for normally distributed 
data the hinge is located 0.68 times the standard deviation from the median or mean. It can also 
be shown for normal data that inner fences are located a distance of 2.70 standard deviations on 
either side of the mean and the outer fences are a distance of 4.72 standard deviations from the 
mean. Consequently, the probability of having a far-out value with normally distributed data, is 
extremely small. Therefore, using a transformation to normalize a given data set will tend to 
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Figure 22.3.2. Box-and-whisker plots for turbidity (mg/l) in the Cabin Creek 
before July 1 ,  1974, where there is no data transformation. 

reduce the number of far-out values. 
For a given season in a box-and-whisker diagram. symmefn*c data would cause the median 

to lie in the middle of the rectangle and the lengths of the upper and lower whiskers would be 
about the same. Notice in Figure 22.3.2 for the turbidity data that the whiskers arc almost 
entirely above the rectangle for all of the months and for six of the months there are a total of 14 
far-out values. This lack of symmetry can at least be partially rectified by transforming the 
given data using the Box-Cox transformation in [3.4.30]. By comparing Figure 22.3.2 to Figure 
22.3.3 where natural logarithms are taken of the turbidity data, the improvement in symmeay 
can be clearly seen. Furthermore, the Box-Cox transformation has reduced the number of far-out 
entries from 14 in Figure 22.3.2 to three in Figure 22.3.3. 

Box-and-whisker plots can be employed as an important exploratory data analysis tool in 
intervention studies. If the date of the intervention is known, box-and-whisker diagrams can be 
constructed for each season for the data before and after the time of intervention. These two 
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Figure 22.3.3. Box-and-whisker plots for turbidity (mg/l) in the Cabin Creek 
before July 1,1974, where there is a logarithmic data transformation. 

graphs can be compared to ascertain for which seasons the intervention has caused noticeable 
changes. When there are sufficient data, this type of information is crucial for designing a 
proper intervention model to fit the data at the confirmatory data analysis stage. 

The Cabin Creek basin, which has an area of 2.12 km2. was originally forested but from 
July to October, 1974.40% of the forested area was clear-cut. Total organic carbon readings arc 
available from March 17, 1971, to January 10. 1979. Figures 22.3.4 and 22.3.5 display the box- 
and-whisker plots of the natural logarithms of the total organic carbon in mg/l for the Cabin 
Creek before and after the intervention, respectively, caused by the removal of the trees. As can 
be observed, there are obvious drops in the medians for almost all the months after the interven- 
tion. These and other changes cannot be as easily detected in a plot of the entire series against 
time. 
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When examining seasonal box-and-whisker diagrams, such as those given in Figures 22.3.2 
to 22.3.5, one may wish to compare the statistical characteristics of data among seasons in order 
to ascertain if there are any significant differences. One may be tempted, for instance, to check 
if two boxes do not overlap with one another which is the case for the June and July box-and- 
whisker plots in Figure 22.3.3. Unfortunately, the hinges which delineate the top and bottom of 
each box are not the appropriate guides to employ when checking for sigruficant differences in a 
statistic such as the median between two seasons. A way for comparing medians between two 
box-and-whisker diagrams to check if they are significantly different, is to employ the notched 
box-and-whisker plot concept proposed by McGill et al. (1978). More particularly, for each 
box-and-whisker plot, a notch of specified size given below is drawn on the left and right side of 
the box with its centrc at the median. When two box-and-whisker plots arc compared to one 
another, the two medians are significantly different or not different according to whether the 
notches do not overlap or overlap, respectively. A suggested size for the notch is the 

median f 1.58 x H-spread/& 

where n is the number of data points used to construct the box-and-whisker plot for a given sea- 
son. Assuming normality and independence of the data for each season, the significance level 
for which the median test is designed is approximately the 5% level. Examples of notched sea- 
sonal box-and-whisker plots are given in Figure 24.3.4 in Section 24.3.2. 

Notice that at the bottom of each month for the seasonal box-and-whisker plots drawn in 
Figures 22.3.2 to 22.3.5, the number of data points is given. An approach for visually portraying 
the number of observations is to make the width of a box to be proportioned to the number of 
measurements. McGill et al. (1978) suggests drawing variable-width box-ond-whisker plot for 
which the width is proportional to 6 for each season or group of data. 

22.3.4 Cross-Correlation Function 

In Section 16.2, it is explained how meaningful causality can be detected between two 
series labelled x, and y,, when the observations in each time series are equally spaced and suffi- 
cient observations are available. Subsequent to fitting an appropriate ARMA model to each of 
the series, the sample cross-correlation function (CCF) between the estimated residuals or 
prewhitened series of the two data sets can be calculated using [16.2.6]. By examining the pro- 
perties of the residual CCF at negative, zero and positive lags, the type of causality between x, 
and y, can be ascertained. Illustrative applications for using this procedure are given in Section 
16.3 and, in Sections 17.3.1, it is explained how the information from the residual CCF analysis 
can be used for identifying a TFN model to link the x, and y ,  series, when this type of model is 
warranted. In Sections 20.3.2 and 21.3.2, it is described how the residual CCF can be used to 
identify when a general multivariate ARMA model and a CARMA (contemporaneous ARMA) 
model are needed to model formally the mathematical relationship between x, and y,. 

In exploratory data analysis, often there may be many missing data points and before two 
series can be prewhitened by fitting an ARMA model to each series, evenly spaced time series 
must be estimated. Further, at the exploratory data analysis stage one may only wish to have a 
general idea about the relationship between two series and to examine the CCF of the two given 
series at lag zero. If necessary, at a later stage in the data analysis study a proper residual CCF 
analysis can be executed. Consequently, even before an evenly spaced series is estimated for the 
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Figure 22.3.4. Box-and-whisker plots of the logarithmic total 
organic carbon (mg/l) in the Cabin Creek before July 1, 1974. 

situation where data are missing, the CCF for x, and y, can be calculated for the values of the two 
series which arc measured at the same time. 

The CCF between two time series can be calculated to detenninc the amount of linear 
dependence between the two series. When x, represents the observation recorded at time t for 
one series and y, is the observed value at the same time for a second series, the sample CCF at 
lag zero can be calculated using 

n 

ChI -w, -9 
[ 22.3.41 

where n is the number of times observations occur at the same time in the two series. f is the 
mean of the x, series, and 7 is the mean of the y, series. The value of rv(0) can range from -1 to 
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Figure 22.3.5. Box-and-whisker plots of the logarithmic total organic 
carbon ( m d )  in the Cabin Creek after October 31,1974. 

+l. If the x, and y, series are both white noise and also independent of one another, for large 
samples rJ0) is normally independently distributed with a mean of zero and variance of lln 
(Haugh, 1976). Consequently, the 95% confidence limits are approximately fl.%n-". 

The sample CCF at lag zero can be calculated for either the original series or else the series 
transformed using the Box-Cox transformation in r3.4.301. Recall that when the parameter 1 = 1 
in [3.4.30]. this indicates that there is no transformation while 1 = 0 means that each data point is 
transformed using natural logarithms. Suppose that a number of water quality variables plus 
rivefflows have been measured at one location in a river. For a given site, r,(O) in [22.3.4] can 
be calculated for all possible pairs of water quality and water quantity time series. Consider, for 
example, seven time series measured on the Mill River near St. Anthony, Prince Edward Island, 
Canada. Table 22.3.1 lists according to a number each of the seven series where the Box-Cox 
transformation in [3.4.30] used for each series is given. Below the List of series is the correlation 
matrix which is calculated using [22.3.4]. An ( i j )  entry in the correlation matrix gives the value 
of the CCF at lag zero between series i and j which are defined above the correlation maaix in 
the table. For example, in Table 22.3.1 the CCF at lag zero between the 6th and 2nd series is 
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-0.817. Because this is the same as rq(0) between series 2 and 6, the cornlation matrix is sym- 

metric and only the lower part of the matrix is presented. Moreover, the negative value indicates 
that the observations in one series tends to be larger whenever the values in the other series arc 
smaller, and vice versa. Notice that all the diagonal entries have a value of unity since a series is 
fully cornlami with itself at lag zero. ~f an rq(0) value is within the range of *l.%n-”’ it is 
automatically assigned a value of zero to indicate that it is not significantly different from zero. 

Table 22.3.1. Cross-comlations for the MiU River time series. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

DATA SETS 
pH @H Units), X = 1 

Stability Index, X = 0 
Daily Mean Discharge (m3/s), 3, = 0 
Dissolved Sulphate (mg/l), 3, = 0 
Total Alkalinity (mgll), 3, = 0 
Dissolved Calcium (mg/l), 3, = 1 

Water Temp. (degrees Celcius), 1 = 1 
CROSS-CORRELATION MATRIX 

1 .Ooo 
-0.908 1.OOO 
-0.764 0.916 1.OOO 
0.268 4.397 -0.436 1.OOO 
0.827 -0.965 -0.929 0.321 1.Ooo 
0.535 -0.817 -0.793 0.OOO 0.768 1.OOO 
0.326 -0.376 -0.402 0.OOO 0.366 0.316 1.OOO 

Measuring a large number of phenomena at a given location is usually quite expensive. If 
it is required to record less variables in order, for example, to allow the remaining items to be 
measured more frequently, the cross-correlation matrix may be helpful for deciding upon which 
variables to continue measuring. When one variable is highly correlated with another, then 
measuring only one of the variables furnishes an indication of the possible magnitudes of the 
actual values for the other unobserved variable. Consequently, based upon a firm understanding 
of the actual physical process plus the statistical evidence in the cross correlation matrix, it may 
be feasible to only continue to measure one of the series. If enough equally spaced measure- 
ments are taken of the remaining variable to permit the resulting time series to be thoroughly stu- 
died using a technique such as intervention analysis (see Chapter 19) at the confirmatory data 
analysis stage, this could be of great benefit to the decision makers. 

A perusal of Table 22.3.1 reveals that many variables are highly correlated with one 
another. For example, notice in Table 22.3.1 for the Mill River time series that the stability 
index is highly correlated with pH(rzl(0) = -0.908), daily mean discharge (r3,2(0) = 0.916), total 
alkalinity (r5,’(0) = 4) .%5) ,  and dissolved calcium (r6,’(0) = -0.817). Of course, it is known 
from a definition of the stability index that it is a function of the other mentioned water quality 
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variables and this is confumed by the appropriate entries in the correlation matrix in Table 
22.3.1. 

The zero entries in Table 22.3.1 demonstrate that sometimes there is no significant linear 
dependence between many of the variables. For example, in Table 22.3.1 for the Mill River 
series, the value for r ~ , ~ ( 0 )  between water temperature and dissolved sulphatc is not sigruficantly 
different from zero. When no sigruficant cross-correlation exists between two series, then the 
decision about possibly dropping one of the series must be based upon other factors. 

22.35 Tukey Smoothing 

Introduction 

Sometimes a graph of a given time series blurs statistical information in the data which a 
smoothed plot of the series at equally spaced time intervals may reveal more clearly. Consider, 
for example, Figure 22.3.6, which is a plot of the average annual total organic carbon in mgll, for 
the Cabin Creek where the average annual entries are calculated using the estimated monthly 
values obtained from the seasonal adjustment algorithm developed in Section 22.2. In this 
graph, there appears to be a drop in the mean level of the series in the later years compared with 
the values in the early 1970’s. When the blurred smooth in Figure 22.3.7 is studied, the general 
characteristics of the data are more clearly portrayed. Figure 22.3.7 is a b l d  smoothed plot of 
the average annual total organic carbon for the Cabin Creek where the vertical lines reflect the 
magnitude of the rough or blur of the series and a smoothed observation is located at the mid- 
point of the bar. Notice from Figure 22.3.7 that the smoothing characteristics for the data before 
1974 are more or less the same but from 1974 onwards there is an obvious decrease in the mean 
of the series. This property was also suggested by the box-and-whisker plots of the series shown 
before and after the intervention in Figures 22.3.4 and 22.3.5, respectively. 

Although a smoothed graph does not contain any more information than what is already 
present in the plot of the raw data, in many instances the smoothed graph portrays the essential 
features much more clearly. The purpose of a smoothed curve is to reveal the systematic struc- 
ture and interesting statistical characteristics of the data. Consider, for example, the blurred 
smoothed graph in Figure 22.3.8 for the total alkalinity in mg/l for the Mill River at St. Anthony 
in Prince Edward Island, Canada. This graph is a blurred smoothed plot of the average annual 
values which were calculated from the estimated monthly entries obtained from the seasonal 
adjustment algorithm in Section 22.2. In Figure 22.3.8. there is an obvious shift downwards in 
alkalinity from 1973 to 1977 followed by abrupt decreases in 1978 and 1979. Because the soil in 
the Mill River basin is sandy, acid rain could quickly drain through the ground without undergo- 
ing substantial chemical changes and thereby adversely affect the water quality. Consequently, 
the decrease in alkalinity in Figure 22.3.8 could be mainly due to acid rain which could severely 
affect the biological life in the river. However, it is still necessary to collect more data and 
determine when the acid rain intervention came into effect before proper confumatory data ana- 
lyses can be executed. 

To construct a smoothed curve, consider qualitatively subdividing a given time series as 

Data = Smooth + Rough 

By filtering out the rough or noise portion of the data, the smoothed curve or smooth can be 
examined for important statistical features. The filter which maps the given series into a 
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Figure 22.3.6. Estimated annual values of the total organic 
carbon (mg/l) in the Cabin Creek. 

smoothed curve is referred to as a smoother. A trace plot of the smooth (against time) can 
display trends and changes in level of the series more clearly than a plot of the raw data. Of 
equal importance, a graph of the rough (over time) can reveal outliers, changes in variance and 
other unusual features. 

Smoothed curves could be calculated for time series available at different time intervals 
between each pair of data points such as daily, monthly or yearly time separations. If one is 
attempting to detect short fern trends, then it may be advantageous to examine smoothed curves 
and also time series plots for data points separated by short time intervals. However, at short 
time intervals long term trends may not be as easy to detect due to the large amount of rough in 
the data. Consequently, in order to discover long tern t rend,  it may be advantageous to use 
annual data as is done in Figure 22.3.6 for the time series plot of the estimated annual values of 
total organic carbon (mgh) in the Cabin Creek and Figure 22.3.7 of the blurred 3RSR smooth of 
the annual data plotted in Figure 22.3.6. As noted earlier, the long term mnd in the total organic 
c h n  time series can be easily visualized by examining these two figures. Within this section 
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Figure 22.3.7. Blurred 3RSR smooth of the estimated average annual total 
organic carbon (mg/l) in the Cabin Creek. 

and also Section 22.3.6, annual time series are considered so that long term trends can be con- 
veniently discovered and their behaviour can be better understood. 

The nonlinear smoothers developed by Tukey (1977, Ch. 7) and also discussed by McNeil 
(1977). are very flexible when used in practical applications and are capable of detecting all of 
the items discussed for a plot of the series except, possibly, for occasional outliers. Mallows 
(1980) explains the desirable properties that any smoother should possess and also presents some 
theoretical mathematical results for Tukey smoothers. Some of the more important attributes 
that a smoother should have include the ability to be responsive to abrupt changes in level, mar- 
ginal distribution, and covariance structure. 

Figures 22.3.7 and 22.3.8 are examples of what Tukey (1977, Ch. 7) calls a blurred 3RSR 
smooth. In fact, Tukey defines a variety of useful nonlinear smoothers. Within the next subsec- 
tion the blurred 3RSR smooth is defined while the 4253H. twice, smooth is described in the last 
part of Section 22.3.5. The reader may also wish to read about the flexible smooth of Cleveland 
(1979) which is based upon regression analysis and defined and applied in Sections 24.2.2 and 
24.3.2, respectively. Finally, Velleman (1980) provides comparisons of robust nonlinear data 
smoothing algorithms. 
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Figure 22.3.8. Blurred 3RSR smooth of the estimated average annual total 
alkalinity (mgl) in the Mill River. 

Blurred 3RSR Smooth 

Blurred 3RSR smooths are displayed in Figures 22.3.7 and 22.3.8. When developing a 
blurred 3RSR smooth for a series ~1x2, . . . , x,,, various calculations must be done (Tukey. 1977, 
Ch. 7; McNeil, 1977, Ch. 6) and these are outlined below. 

1. Smoothing by repeated medians of 3 (called 3R)  - To smooth the given time series using 
running medians of 3, replace the observation at time t by the median of x f - l ~ f ,  and .x~+~. 

The smoothed values for the end points xl and x,, are calculated according to the rules in 
Step 2. Next, the smooth which was just determined is itself smoothed by using running 
medians of 3 and once again the smoothed end points arc determined from Step 2. This 
pmedure is repeated until the curve can be smoothed no further. The label 3R indicates 
that the smoothing is repeated using running medians of 3 until convergence is reached. 
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2. Smoothing endpoints - To obtain the smoothed values for the end points of the given series 
(or for the end points to any given sequence) replace xI by the median of x I &  and 
3x2 - 2.q and substitute the median of x,,~,,-~, and 3X,,-1- 2x,,-2 forx,,. 

Repeoted splitting (called SR) - The use of medians instead of means tends to create mesas 
which arc pairs of adjacent points with the same value that is below or above the points at 
each side of the mesa. Therefore, a mesa is simply a two-point local minimum or max- 
imum. To smooth the mesas, split the series at the centre of each mesa and apply the end- 
point d e  in Step 2 separately to the values on each side of each of the divisions. The 
resulting series is then smoothed using the 3R method in Step 1. The procedure of using 
the end-point rule for replacing the values at the mesas and then employing 3R is called 
splitting (i.e., S). If mesas still exist after splitting, the splitting is repeated until either a l l  
of the mesas disappear or convergence is reached. This is referred to as repeated splitting 
or simply SR. A computer program for calculating the 3RSR curve, which is created upon 
the completion of Step 3, is given by McNeil(l977, Ch. 6). 
Blurring - When Steps 1 to 3 are used to obtain the smooth 3RSR a series of single points 
can be plotted. To reflect the variation, blur or rough in the series beyond the 3RSR curve, 
vertical bars can be plotted which are centered at each point on the 3RSR smooth. To cal- 
culate the length of the bars, first determine 

3. 

4. 

rough = data - smooth (i.e. 3RSR) 

for each point in the series. Wherever the rough has a value of exactly zero replace it by 0.5 
as was suggested by Tukey (1977, Ch. 7). The bar length is then taken as the magnitude of 
the median of the absolute values of all the roughs. The 3RSR curve which is plotted using 
bars is called the blurred 3RSR smooth. 

Summary - To obtain a blurred 3RSR smooth first determine the smooth 3R from Step 1 where 
the smoothed end points are calculated using Step 2. Next, determine the curve 3RSR by 
employing repeated splitting according to Step 3 and the relevant portions of Steps 1 and 2. 
Finally, Step 4 can be utilized to procure a blurred 3RSR smooth. Figures 22.3.7 and 22.3.8 are 
examples of blurred 3RSR smoothes which are calculated using the foregoing algorithm. 

4253H, Twice Smooth 

A particularly robust smooth is the 4253H, twice smooth (Velleman and Hoaglin. 1981. Ch. 
6). As indicated by the name, it involves taking medians of 4, then 2. then 5. then 3, then Han- 
ning and then applying 4253H to the residuals of the first pass and adding this to the first pass 
smoother. To clarify how each step is calculated, an illustrative example is included in the 
explanation given below. 
1. Smooth using running medians of 4 - When determining the median of an even number of 

observations, the measurements being considered are ranked from smallest to largest and 
the median is taken as the average of the middle two values. Consequently, when calculat- 
ing the median of four observations, the four values are listed in ascending order of magni- 
tude, and the median is the average of the two middle numbers. For smoothing in using 
running medians of 4, which is simply called 4 smoothing, the endpoints themselves are 
just copied on in the 4 smooth series. The value located second from either end in the 4 
smooth is simply the averages of the appropriate two end points in the given series. All 
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other entries in the 4 smooth are calculated as running median of 4.  

As an illustrative example which is used to explain the entire 4253H. twice smooth, con- 
sider a hypothetical sequence of eight values given as: 

5 , 2 , 4 , 4 , 0 , 2 , 3 , 4 .  

The 4 smooth consisting of nine values is found to be: 

5,3.5,4,3,3,2.5,2.5,3.5,4. 

To explain how each value in the 4 smooth is detennined, the calculations are given below 
for each of the numbers by starting on the left and working to the right. 

5 = copied on 

3.5 = med(5.2) = (5+2)/2 = 3.5 

4 = med(5,2,4,4) = ( 4  + 4)/2 = 4 

3 = med(2,4,4,0) = ( 2  + 4)12 = 3 

3 = med(4,4,0,2) = (2  + 4)/2 = 3 

2.5 = med(4.0.2.3) = (2 + 3)/2 = 2.5 

2.5 = med(0.2.3.4) = (2  + 3)12 = 2.5 

3.5 = med(3.4) = (3 + 4)/2 = 3.5 

4 = copied on 

2. Smooth utilizing running medians of 2 - In step 1, except for the end points, each sequence 
of two numbers in the smooth can be thought of as lying on either side of the appropriate 
number in the original series in terms of the time axis. For example, the second and third 
entries from the left in a 4 smooth can be interpreted as residing on both sides of the second 
number in the original series. To line up in time the 4 smooth with the given series, a run- 
ning median of two is applied to the 4 smooth after copying on the end points. In other 
words, the average is calculated for each sequential set of two values in the 4 smooth, 
excluding the two end points. 
In terms of the application, applying a 2 smooth to the previous 4 smooth creates the series 
of eight values given as: 

5,3.15,3.5,3,2.15,2.5,3,4. 

Notice that the end points given by 5 and 4 are simply copied on. The second number from 
the left is calculated as: 

3.15 = med(3.5,4) = (3.5 + 4)12. 

3. Smooth using running medians of 5 - When determining the median of an odd number 
sequence of observations, the measurements being entertained are ranked from smallest to 
largest and the median is selected as the value falling in the middle. For a 5 smooth, the 
ends are just copied on and lower order smoothing is employed near the ends while running 
medians of 5 are employed to calculate all other entries. 
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When the 5 smooth is applied to the smooth obtained a! step 2, the result is 

5 .3 .15 ,3 .5 ,3 ,3 ,3 ,3 ,4 .  

Once again the two end points are copied on as 5 and 4. The second entry from the left is 
determined as: 

3.15 = med(5,3.75,3.5). 

Likewise, the second value from the right is found to be: 

3 = med(2.5.3,4). 

All other values an determined using running medians of 5. For instance, the third entry 
from the left is found using: 

3.5 = med(5,3.15,3.5,3,2.15).  

4. Smoothing employing running medium of 3 - Suppose that the series to be smoothed at this 
stage is represented as x ’ , ~ ‘ ~ ,  . . . ,x‘,,. where the original series is represented as 
xIj2 ,  . . . ,x,,. The left and right end points of the 3 smooth are calculated as: 

med(3d2 - 2 ~ ’ ~ .  x’,. 1’2) and 

med(x’,,-,, x’,,, 3x’,,-, - 2x’,,-2), respectively. 

Notice that the point 3 ~ ’ ~  - derived by exmpolating 
backwards the line joining (2 .x; )  and ( 3 , ~ ’ ~ ) .  By working from left to right, all other 
entries, excluding the end points, are calculated as running medians of 3. 

Applying the 3 smooth to the example as developed in the previous steps, produces the 
series 

corresponds to an estimate of 

4.25,3.15,3.5,3,3,3,3,3.  

The left end point is determined using: 

4.25 = md(3(3 .15 )  - 2(3.5),5,4) 

= med(4.253.4). 

The second entry from the left is found as: 

3.15 = med(5,3.75,3.5) 

5. Hunning - Hanning (H) refers to a rather gentle smoothing operation for which a given 
value is replaced by a running weighted average. Let the current series to which hanning is 
to be applied be given as ( x l ” , x ~ ,  . . . ,x,,”). A practical running weighted average to 
employ for calculating the hanned value at time t is 

As can be seen, the weights given by [ - :,l,: - - sum to unity. Although an unlimited 
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number of running weight averages arc available for use, the hanning smoother utilized 
here employs the weights given above. When employing hanning, the two end points arc 
copied on and all other entries are calculated using the running weighted average just 
presented. 
For the case study as developed in the previous step, applying the hanning smoother pro- 

duces the sequence 

4.25,3.8125,3.4375,3.125,3,3, 3 

The second entry from the left is calculated as: 
1 1 1 
4 2 4 

3.8125 = -(4.25) + -(3.75) + -(3.5) 

6. Twice - Smothers based upon running medians generally tend to cause too much smooth- 
ing in a sequence and thereby remove interesting patterns. Recall that the original data set 
can be envisioned as being decomposed as: 

data = smooth + rough 

To recover patterns from the original series that may be still contained in the rough, one 
can smooth the rough sequence and then add the result to the smoothed series. Hopefully, 
key patterns that may have been smoothed away during the first pass of smoothing can be 
recovered from the rough in this manner. This operation is referred to as reroughing. 

For the 4253H, twice smoother being considered in this section, the word twice indicates 
the following calculations: 

(i) rough = data - 4253H, 

(ii) apply the 4253H smoother to the rough, and 
(iii) final smooth = 4253H (applied to given series) + 4253H (applied to rough). 
In the application the 4253H smooth is listed in step 5. By comparing this sequence to the 
original series. the rough values are found to be 

0.75, -1.8125,0.5625,0.875,-3, -1,O, 1 

The first entry on the left, for example, is calculated as: 

0.75 = (5  - 4.25). 

while the third entry is: 

0.5625 = (4 - 3.4375) 

Next, the 4253H smoother is applied to the rough by using steps 1 to 5 with the rough data. 
The sequences calculated at each step are listed below: 

Step 1: Apply 4 Smoothing 

0.75, -0.53125,0.65625,-0.625, -0.21875, -0.5.-0.5,-0.5,  1 

Step 2: Apply 2 Smoothing 
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0.75,0.0625,0.015625, -0.421875, -0.359375, -0.5.0.1 

Step 3: Apply 5 Smoothing 

0.75,0.0625,0.015625, -0.359375, -0.359375,-0.359375,0,1 

Step 4: Apply 3 Smoothing 

0.15625.0.0625,0.015625, -0.359375, -0.359375, -0.359375,O. 0.71875 

Step 5: Apply Hanning 

0.15625,0.0742im, -0.06640625, -0.265625, -0.359375, -0.26953125. 

-0.08984375, -0.71875 

After applying the 4253H smooth to the rough, the last stage is to produce the final smooth 
by adding this to the 4253H smooth of the original data to get: 

Final 4253H, twice Smooth 

4.40625,3.88671875, 3.37109375,2.859375,2.640625,2.73046875,3.08984375, 

3.71875 

Figures 22.3.9 and 22.3.10 display the original hypothetical series and the 4253H, twice 
smooth of the data used in the application. As can be seen. the large amount of rough con- 
tained in the given series is eliminated by using the 4253H twice smoother. 
Electricity Consumption Application - The total annual electricity consumption for the 
U.S.A. is available from 1920 to 1970 in millions of kilowatt-hours (United States Bureau 
of Census, 1976) and a plot of the series is displayed in Figure 4.3.10. As explained in Sec- 
tion 4.3.3, the most appropriate nonstationary model to fit to the square roots of this data 
set is an ARIMA(0.2.1) model. 
The 4253H. twice graph of the electrical consumption series without a data uansformation 
is shown in Figure 22.3.11. When compared to the original series depicted in Figure 
4.3.10, the smooth is similar in shape to the given highly nonstationary time series. In fact, 
in both Figures 22.3.1 1 and 4.3.10, there are clearly visible trends that are increasing 
dramatically over time. The rough for the 4253H. twice smooth can be calculated using 

rough = data - 4253H, twice. 

As shown in Figure 22.3.12, there is indeed a significant rough for the series which is 
increasing in variance with time. In order to cause the variance to become constant or 
homoscedastic with time, a square root transformation is required. When comparing Fig- 
ures 22.3.11 and 22.3.12, the reader should keep in mind that different multiplication fac- 
tors (lo6 and lo3, respectively) are used on the ordinate axes. Nonetheless, this example 
clearly illustrates that benefits can be gained by examining both the smooth and the rough 
for a given series. 
Summary - By following steps 1 to 5, a 4253H smooth can be obtained for a given series. 
To ensure that some key characteristics of the data are not missed, in step 6 the 4253H 
smooth is applied to the rough of the smooth obtained for the original data and then the 
resulting smooth is added to the first 4253H smooth to get the 4253H, twice smooth. In 
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Figure 22.3.9. Graph of the original hypothetical data used 

in the 4253H smoothing example. 

addition to examining plots of the 4253H. twice smooth to study the main statistical pro- 
perties of the data, insights can also be gained by studying a plot of the rough for the 
4253H, twice smooth. 

22.3.6 Autocorrelation Function 

The ACF at lag k for a given time series reflects the linear dependence between values 
which are separated by k time lags. The estimate for the ACF at lag k for an evenly spaced 
series,x,, of length n can be calculated using [2.5.9] as  (Jenkins and Watts, 1968) 

[22.3.5] 

where x' is the estimated mean of the x, series. As noted in Section 2.5.4, the value of rk can 
range from -1 to +1 when ro has a value of unity. Because the ACF is symmetrical about lag 
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Figure 22.3.10. Plot of the 4253H, twice smooth for the 
hypothetical data of Figure 22.3.9. 

zero, it is only plotted for positive lags. When the theoretical ACF is zero and, therefore, the 
series is white noise, rk is asymptotically normally independently distributed with a mean of zero 
and variance of lln. Using simulation experiments, Cox (1966) demonstrated that when rl is 
calculated for a sequence of uncorrelated samples the sampling distribution of rl is very stable 
under changes of distribution and the asymptotic normal form of the sampling distribution is a 
reasonable approximation even in samples as small as ten. 

The ACF furnishes a method for interpreting trends in the data. If, for example, there is a 
large positive correlation at lag one, this means that in the plot of a series a sequence of high 
values will often be grouped together and low values will frequently follow other low values. In 
other words, when rl and sample ACF’s at other lags arc significantly different from zero, this 
indicates the presence of stochastic trends in the data (see Section 23.1 as well as Section 4.6 for 
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Figure 22.3.11. Plot of the 4253H smooth of total annual electricity 
consumption in the U.S.A. from 1920 to 1970. 

discussions of stochastic and deterministic trends). If, for instance, the significance level is less 
than 0.05 this means that rl is significantly different from zero at the 5% significance level. The 
value of rl for the annual total organic carbon series in Figure 20.3.6 is 0.371 with a significance 
level of 0.137. Consequently, because the significance level of 0.137 is much larger than say the 
0.05 significance level, then rl is not significantly different from zero. When there is an inter- 
vention which causes a significant change in the mean level of a time series such as the change 
shown in Figures 22.3.6 and 22.3.7 for the total organic carbon series, this introduces a trend in 
the data due to the observations fluctuating about different mean levels at specified sections in 
the series. This enforced step trend should cause a rather large value for rl for the entire series 
which is the case for the total organic carbon series. Likewise, an overall trend in the data can 
cause r l  to be large. In Section 23.4, simulation experiments demonstrate that the parametric 
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Figure 22.3.12. Rough plot for the 4253H, twice smooth of the total 
annual electricity consumption in the U.S.A. from 1920 to 1970. 

test using rl is more powerful than the nonparametric Mann-Kendall test presented in Section 
23.3.2 for detecting stochastic trends (see Sections 23.1 and 23.3.1 for a discussion and com- 
parison of parametric and nonparametric tests). However, the Mann-Kendall test is more power- 
ful for discovering deterministic trends. 

22.4 CONFIRMATORY DATA ANALYSIS USING INTERVENTION ANALYSIS 

22.4.1 Introduction 

At the exploratory data analysis stage, important statistical characteristics of the data 
discovered by employing simple graphical and numerical procedures such as those presented in 
Section 22.3. Figures 22.3.1 to 22.3.8 show how different exploratory data analysis tools can 
effectively reveal various statistical properties of the water quality time series which are studied 
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in Section 22.3. Moreover, Figures 23.3.9 to 23.3.12 demonstrate how the 4253H. twice smooth 
and also the rough which accompanies this smooth, can uncover interesting statistical charac- 
teristics contained in a given lime series. When sufficient data arc available, confirmatory data 
analyses can be executed subsequent to the completion of the exploratory data analyses. The 
main objective of the confirmutory data analysis stage is to confm statistically in a rigorous 
manner the absence or presence of certain statistical properties in the data which were uncovered 
by exploratory data analyses. For example, in this section the conha to ry  data analysis tech- 
nique of intervention analysis is used to test the hypothesis that cutting down a forest caused sig- 
nificant changes in the mean levels of certain water quality time series. As noted in Section 
22.1, the foregoing systematic approach to data analysis is analogous to a detective solving a 
crime. At the exploratory data analysis stage, the sleuth collects and studies evidence which is 
used in rigorous corn proceedings at the confirmatory data analysis stage in order to convict the 
suspected criminal. 

Three main approaches to confirmatory data analysis are discussed in Part X of the book. 
The first technique is intervention analysis which is explained in detail in Chapter 19. As noted 
in Section 19.1, one of the main purposes of intervention analysis is to ascertain whether or not 
one or more external interventions have caused significant changes in the mean level of a time 
series. Another use for intervention analysis is to estimate missing observations when there are 
not a great number of missing values. Due to these and other uses outlined in Section 19.1, 
intervention analysis is extremely versatile for solving problems in an environmental impact 
assessment study. Within the water quality and quantity applications in Section 22.4.2, interven- 
tion analysis is employed for assessing the stochastic effects of an external intervention and also 
estimating missing values. The different forms of the intervention model used in Section 22.4.2 
are described in Sections 19.3 and 19.5 of Chapter 19. 

When employing intervention analysis by itself, not more than about 5% of the observa- 
tions should be missing. If this is the case, intervention analysis constitutes a powerful tool for 
data tilling and also assessing the statistical effects of interventions upon the mean level of a 
time series. When there are a great number of missing observations, which is the situation for 
the water quality time series studied in this chapter, the seasonal adjustment algorithm of Section 
22.2 can be used to estimate the entries of a time series consisting of equally spaced observa- 
tions. Subsequent to this, intervention analysis as well as other data analysis tools which can 
only be used with evenly spaced observations, can be employed. 

The second and third major approaches to confirmatory data analysis are the nonparamefric 
tests and the regression analysis methods described in Chapters 23 and 24, respectively. 
Although these procedures may not be as powerful as intervention analysis for checking for 
trends, they do not require the obsetvations to be evenly spaced over time. Consequently. the 
nonparametric tests and regression analysis can be used with either evenly or unevenly spaced 
observations and no data filling is required. 

22.4.2 Intervention Analysis Applications 

Case Study 

In 1%1 the Marmot Creek experimental basin was established on the eastern slopes of the 
Rocky Mountains in Alberta, Canada (Jeffrey, 1965; Golding. 1980). The objective of the study 
was to determine the hydrology of the area so that guidelines which are consistent with the 
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importance of the eastern slopes as a water supply area for Alberta and Saskatchewan, could be 
formulated for harvesting trees. Both the Middle Fork and Cabin Creeks are located within the 
Marmot basin in the province of Alberta and flows in these creeks are unregulated. Upstream 
from the gauging station, the area of the forested Middle Fork basin is 2.85 km2 while the 
upstream arca of the Cabin Creek basin is 2.12 km’. From July to October, 1974, an intervention 
took place in the Cabin Creek basin when 40% of the forested area was clear-cut. Because the 
trees in the forested Middle Fork basin were not cut down and the basin is located close to the 
Cabin Creek basin, the appropriate water quality and quantity series from the Middle Fork Creek 
can be used as covariate series for intervention models developed for the Cabin Creek data sets. 
In this way the intewention components in the intervention models will more accurately measure 
the effects of the intervention in the Cabin Creek series. 

Three different types of intervention models are developed in this section and also by 
McLeod et al. (1983) for solving various aspects of the problem created in the Marmot basin due 
to cutting down the trees in the Cabin Creek basin. The most important and interesting of the 
three intervention models is the third one which is called the General Water Quality Intervention 
Model. For a given water quality series for the Cabin Creek. the purpose of the third interven- 
tion model is to rigorously ascertain for which months the forest cutting intervention caused sig- 
nificant changes in the mean level of the water quality series. As will be seen, in order to cali- 
brate this model, complete average monthly flow records are needed for the Cabin Creek flows 
which in turn are closely correlated with the Middle Fork Flows. Because there are eight miss- 
ing values for the average monthly flows of Middle Fork River, an intervention model similar to 
the one in Section 19.3 is constructed in order to obtain efficient estimates for the missing obser- 
vations. Following the development of the Middle Fork Flow Intervention Model, The Cabin 
Creek Flow Intervention Model is built for estimating four missing values in the time series of 
average monthly flows of the Cabin Creek and also for determining the effects of the clear- 
cutting intervention upon the Cabin Creek flows. In order to increase the accuracy of the Cabin 
Creek Flow Intervention Model, the average monthly flows of the Middle Fork River are used as 
a covariate series. Hence, this model is similar to the one described in detail in Section 19.5. 
Subsequent to the completion of the first two water quantity intervention models, a General 
Water Quality Intervention Model can be built for each of the water quality variables measured 
in the Cabin Creek. Because each of the water quality series consists of observations which are 
unevenly spaced, the data filling technique of Section 22.2 can be utilized for estimating a 
sequence of average monthly values. Water quality models are developed for all of the time 
series except the dissolved iron series, since no data are available after the intervention for this 
series, and also the extractable iron series. For each water quality intervention model, the covari- 
ate series are the same water quality series for the Middle Fork basin and also the monthly flows 
of the Cabin Creek. As an illustrative example, the procedure for fitting an intervention model 
to the total organic carbon series on the Cabin River, is fully explained. This water quality 
model constitutes an interesting version of the types of intervention models presented in Section 
19.5. 

Middle Fork Flow Intervention Model 

Before the Middle Fork flows can be used as a covariate series in an intervention model for 
the Cabin Creek flows, the missing observations for the Middle Fork Creek must be estimated 
using a separate intervention model similar to the one in [19.3.5]. Average monthly flows are 
unknown for the Middle Fork Creek for April and May of 1974, February, March and April of 
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1975, and for January, February, and March of 1978. The entire data set for the Middle Fork 
flows extends from January 1964 to December 1979. 

Following the notation used in Chapter 19. let y, represent the logarithmic monthly flow of 
the Middle Fork Creek at timc 1. From [19.3.5], an intervention model for estimating the unk- 
nown observations has the form 

8 

j =  1 
Y ,  -Y= ZOqttj +N, [22.4.1] 

where is the mean of the en& y, series. %, is the parameter of the jth transfer function, &, is 
the jth intervention series which is assigned a value of unity where the jth observation is miss- 
ing and zero elsewhere, and N, is the noise component 

To identify the noise term, N,, in [22.4.1], a seasonal ARIMA or SARIMA model can be 
fitted to the series prior to the first missing value, by utilizing appropriate model construction 
tools from Section 22.3. When fitting a SARIMA model to average monthly riverflows. usually 
it is necessary to take natural logarithms of the data and then to difference the transformed series 
seasonally using the operator defined in [ 12.2.31. Figure 22.4.1 is a plot of the sample ACF for 
the seasonally differenced logarithmic data for the period from January, 1964 to December. 
1973. The ACF can be calculated by substituting the data into [2.5.9] and the 95% confidence 
limits in Figure 22.4.1 are calculated using [ 12.3.11 under the assumption that the theoretical 
ACF is zero after lag k = 13. Because the ACF attenuates starting at lag 1,  this may indicate the 
need for a nonseasonal AR parameter. Since there is a large value of the sample ACF at lag 12, 
this indicates that a seasonal MA parameter may be required. Consequently, following the nota- 
tion from Section 12.2, it may be appropriate to fit a SARIMA (1 ,0 ,0)~(0,1,1)~~ model from 
[12.2.7] to the series. The sample PACF presented in Sections 3.2.2 and 12.3.2, also confms 
that this may be a reasonable model. After fitting the SARIMA (l,0,0)x(0,1,1)12 model to the 
Middle Fork data before the intervention, the ACF for the residuals can be calculated. In Figure 
22.4.2, the 95% confidence limits are calculated using the formula given in [ 12.3.71. Except for 
the residual ACF value at lag 24, all of the values lie within the 95% confidence limits and, 
therefore, the assumption of white noise is satisfied. The slightly large value at lag 24 could be 
due to chance. 

Following the identification of A', for use in [22.4.1]. all of the parameters in the interven- 
tion model can be simultaneously estimated. Because natural logarithms are taken of the data, a 
positive quantity must be placed at the location where the observations are missing. For con- 
venience, the logarithm of the appropriate monthly mean is substituted for each missing value in 
the series. In the second column of Table 22.4.1. the MLE's (maximum likelihood estimates) of 
the parameters and SE's (standard errors) are given for the eight 00, intervention parameters in 
[22.4.1]. From Section 9.3.3. the estimate of the missing observation in the logarithmic or 
transformed domain is 

fi, = In monthly mean + 4, 
where ti is the time for which the observation at t, is missing. By taking the inverse logarithmic 
transformation, the estimate of the missing observation in the untransformed domain is 
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Figurc 22.4.1. Sample ACF for the seasonally differenced logarithmic 
Middle Fork flows before the intervention. 
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Figure 22.4.2. Residual ACF for the Middle Fork SARIMA model for 
before the intervention. 
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f,j = e’j = expm montMy mean + hj) [22.4.2] 

The estimates for the missing monthly observations in m31s arc displayed in the last column in 
Table 22.4.1. 

Table 22.4.1. Estimated parameters for the Middle Fork Flow intervention model. 

Parameter 

%l 

0, 

%3 

w, 
%5 

0, 

0, 

%a 

0.6029 f 0.2976 
-0.5316 f 0.2959 

0.1849 f 0.3083 
0.3057 f 0.3456 

0.6885 f 0.3084 
-0.1244 f 0.3150 
-0.0236 f 0.3571 
-0.0838 f 0.3164 

April. 1974 

May, 1974 
Feb., 1975 
March, 1975 
April, 1975 

Jan., 1978 

Feb.. 1978 

March, 1978 

Estimate of 
Missing Value 

in m3/s 

0.0219 
0.0348 

0.0048 
0.0041 

0.0139 
0.0044 

0.0039 
0.0028 

Cabin Creek Flow Intervention Model 

Because the missing values in the Middle Fork riverflow series have all been estimated, the 
complete data set can now be used as a covariate series for an intervention model for the Cabin 
Creek. However, there are four missing observations for the Cabin Creek which occur in Febru- 
ary, March, April, and May of 1979. Consequently, in addition to the clear-cutting intervention 
which took place from July to October of 1974, intervention components must be included in the 
model so that the four missing values can be estimated. 

Some of the exploratory data analysis tools from Section 22.3 can be employed to check if 
there appear to be changes in the Cabin Creek flows due to the forest cutting intervention. For 
example, box-and-whisker graphs from Section 22.3.3 can be constructed for the series both 
before and aftcr the intervention date. When the medians for each month before and after the 
intervention are compared, the median levels do not appear to change very much. Likewise, 
when other exploratory tools are employed, no noticeable changes in the flow series are detected 
as a result of cutting down the forest. 

To ascertain rigorously if clear-cutting the forest has significantly affected the mean levels 
of the average monthly flows of the Cabin Creek, an appropriate intervention model can be con- 
smctcd at the confirmatory data analysis stage by following the three steps of identification, 
estimation and diagnostic checking described in Section 19.5.3. Following the general format of 
the model in [19.5.8], the intervention model for the flows of the Cabin Creek can be written as 
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r22.4.31 

where y ,  is the monthly logarithmic Cabin Creek flows and is the mean of the entire y, series, 
% is the transfer function parameter for the ith monthly intervention where there is one parame- 
ter for each month of the year, hi is a monthly step intervention which is given a value of unity 
for the month it represents during and after the intervention but given a value of zero elsewhere, 
qj is the transfer function parameter for a missing data point where there art four such parame- 
ters, E;i is the intervention series for q, where it is given a value of unity at the time that the 
observation is missing and a value of zero elsewhere, x, is the logarithmic Middle Fork flows 
and T is the mean of the entire x, series, abI7 is the transfer function parameter for the covariate 
x, series, and A’, is the comlatcd noise term. 

The transfer functions in r22.4.31 are designed from a physical understanding of the prob- 
lem. Since it would be expected that the Middle Fork and Cabin Creek flows would be closely 
related during the same month due to common climatic conditions, the parameter 0017 is 
included as the parameter in the covariate transfer function. Because only six observations for 
each month are available after the intervention, the step intervention series. bi. along with the 
O, parameter is included in the f a t  term for each month on the right hand side in [22.4.3]. 
When more data becomes available, it may be reasonable to include a parameter in the denomi- 
nator of each transfer function that models the clearcutting intervention. In [19.5.10], it is 
shown how a term in the denominator can model the attenuating affects of a forest fire upon 
riverflows as the forest slowly recoven over the years. In this study, transfer functions of the 

form o, were included in the first summation term on the right hand side of [22.4.3] but 
1 - 61iB12 

meaningful results were not obtained due to the lack of sufficient data and a long enough time 
period after the intervention. Perhaps after about ten years, enough data will be available so that 
two parameters can be included and thereby allow the impacts of forest recovery to be more fully 
explored within the structure of the intervention model. 

After designing the transfer functions in [22.4.3], the noise term, N,, must be identified. As 
noted throughout Chapter 19, a convenient procedure to employ is to first assume that N, is 
white noise. The parameters and residuals in [22.4.3] can then be estimated. Since the residuals 
will probably not be white noise, a SARIMA model can be identified for fitting to the residuals. 
For the case of the Cabin Creek residuals. the most appropriate model is found to be a SARIMA 
(1,0,0)~(1,0,0)~~ model. Assuming this form for N,, the parameters for the complete model in 
[22.4.3] are simultaneously estimated again. Diagnostic checks applied to the residuals from the 
latest model design, demonstrate that the model is satisfactory since the residuals are uncom- 
lated. In practice, various forms of the transfer functions and noise term must be hied before a 
satisfactory model is found. Consequently, the model building procedure is not quite as simple 
as it may appear in the foregoing explanation. Experience, coupled with a sound understanding 
of both the physical problem and the capabilities of the intervention model, help to reduce the 
time required to design an appropriate intervention model. 
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Parameter 

ool3 
%I4 

%,6 

The parameter estimates and SE's for the four missing observations are given in Table 
22.4.2. Since natural logarithms arc taken of the data, it is necessary to include positive values at 
the four locations where the observations are missing. The logarithm of the appropriate average 
monthly value across all the years is substituted at each location where an observation is miss- 
ing. After calibrating the complete intervention model written in [22.4.3], each estimated miss- 
ing value can be calculated using [22.4.2]. In the last column in Table 22.4.2, the estimated 
monthly values ore displayed. 

Estimate Date of Estimate of 
f Standard Error Missing Value Missing Value 
0.2893 f 0.2300 Feb., 1979 0.004 

0.1351 f 0.2607 March, 1979 0.003 

0.6682 f 0.261 1 April, 1979 0.012 

0.5834 f 0.2300 May, 1979 0.079 

The MLE for %,7, which is the transfer function parameter for the covariate series consist- 
ing of the logarithmic Middle Fork flows, is 0.814 with a SE of 0.020. Because &17 is much 
larger than 1.96 times the SE, it is significantly different from zero. Accordingly, it is 
worthwhile to include the covariate series in the intervention model in [22.4.3] in order to 
enhance the credibility and accuracy of the model. 

The MLE's and SE's for the twelve intervention parameters for the clear-cutting, are 
presented in Table 22.4.3. To calculate the percentage change in the mean level of a specific 
monthly flow due to the intervention, the following formula given in [19.2.20] is employed. 

% change = (eO" - 1)100 [22.4.4] 

To calculate the 95% confidence limits simply add and subtract 1.96 times the SE to the 
estimated o, and then substitute these two values into [22.4.4]. The percentage change in the 
mean level for each month along with the 95% confidence levels are presented in Table 22.4.3. 
For nine out of twelve months, zero falls within the 95% confidence limits. Therefore, for these 
months it can be argued that the percentage changes in the mean levels are not significantly dif- 
ferent from zero. However, for January, March and November, zero does not fall within the 95% 
confidence limits and, consequently, there appear to be significant changes in the mean levels for 
these months. For January and March the mean levels have decreased while for November the 
average flow has risen. Nevertheless, notice that for each of these three months, one side of the 
limits for the 95% confidence limits, is quite close to zero. Consequently, to simplify the inter- 
vention model developed in the next subsection, it is assumed that the clear cutting of the forest 
has not significantly altered the Cabin Creek flows. 



Exploratory and Confirmatory Data Analyses 

Parameter 

845 

Estimate Percentage 
fStandardError Change 

Table 22.4.3. Estimated parameters for modelling the intervention effects in 
the Cabin Creek flow intervention model. 

Month 

Jan. 
Feb. 

March 
April 

June 
July 
Aug. 
Sep. 
oct. 
Nov. 
Dec. 

May 

%I 

0, 

%3 

WW 
% 
0, 

%l 

0, 

0, 

0010 

001 1 

0012 

-0.2303 f 0.1153 

-0.1930 f 0.1 183 

-0.2353 f 0.1 191 

-0.1652 f 0.1 192 

-0.093 1 f 0.1 197 
-0.0682 f 0.1206 

-0.0872 f 0.1290 
-0.1353 f0.1411 

0.0802 f 0.1454 

-0.1468 f 0.1419 
0.3007 f 0.1396 

-0.0337 f 0.1289 

-20.57 

-17.55 

-20.96 

-15.23 

-8.89 

-6.59 

-8.35 
-12.65 

8.35 

-13.65 

35.08 

-3.31 

95% 
Confidence 

Interval 
-36.64, -0.43 
-34.62, 3.97 

-37.42, -0.18 

-32.88, 7.07 

-27.94, 15.20 

-26.25, 18.31 

-28.83. 18.01 

-33.75. 15.17 

-18.51, 44.08 

-34.62, 14.04 
2.75, 77.58 

-24.90, 24.49 

General Water Quality Intervention Model 

Intervention models were developed for twelve water quality variables on the Cabin Creek 
although representative results are only shown in this section for the total organic carbon inter- 
vention model. For each water quality intervention model, the covariate series are the same 
water quality series for the Middle Fork basin and also the monthly flows of the Cabin Creek. 
Qualitatively, the General Water Quality Intervention Model is written as 

Cabin Middle 
Creek monthly Cabin Fork 
water = interventions + Creek + water + Noise 

quality flows quality 
series series 

Mathematically, appropriate components from the finite difference equation in r19.5.21 can be 
utilized in order to write the General Water Quality Intervention Model as 

r22.4.51 

where y, is the average monthly water quality series for the Cabin Creek that was estimated 
using the seasonal adjustment algorithm of Section 22.2, y’ is the mean of the y, series, ci is the 
intervention series for a given month where it is assigned a value of one for the month it 
represents from the intervention onwards and a value of zero elsewhere, a,-,i is the transfer func- 
tion parameter for the {,i series and the MLE for @,-,i can be used to ascertain the effects of the 
intervention for the month being studied, x , ~  is the estimated monthly logarithmic series for the 
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Cabin Creek where the seasonal adjustment algorithm in Section 22.2 is used to estimate the 
monthly flows from daily flows that occur at the samc time as the water quality observations. f, 
is the mean of the xI1 series. (1l013 is the transfer function for the Cabin Creek flow series, xf2 is 
the samc estimated monthly water quality series as yI but for the Mddle Fork Creek and the sea- 
sonal adjustment algorithm is used to estimate xl2. -32 is the m a n  of the x , ~  series, 0 0 1 4  is the 
transfer function parameter for the covariate Middle Fork water quality series, and N, is the noise 
term which can be modelled by an appropriate SARMA or SARIMA model from Chapter 12. 

In [22.4.5] the seasonally adjusted monthly flows are employed as a covariate series, x,~. 

The reason for using the seasonally adjusted series rather than the known monthly riverflows is 
that this may help to eliminate any problems due to seasonal adjustment that are contained in the 
y, series. It should be kept in mind that by considering the flows as a covariate series, the sto- 
chastic or statistical relationship between the flow, x f l ,  and the water quality series. y,, is for- 
mally modelled through the transfer function parameter, 0013 ,  in the overall intervention model 
in [22.4.5]. 

When constructing the water quality intervention models in [22.4.5], the identification, 
estimation and diagnostic check stages of model development described in Section 19.5.3 are 
adhered to. Although the transfer functions for all the water quality series are the same as those 
in [22.4.5], it should be pointed out that quite a few different types of transfer functions wen 
actually tested. For instance, because not too many observations for each month are available 
after the intervention, a step intervention along with a o, parameter is included in the first term 
for each month on the right hand side in [22.4.5]. As also noted for the intervention model in 
[22.4.3], if more data were available the possibility of including a parameter in the denominator 
of each transfer function would have been feasible. In [19.5.10] within Section 19.5.4, it  is 
explained how a term in the denominator can model the attenuating effects of a forest fire upon 
riverflows as the forest slowly recovers over the years. Finally, a specific SAFUMA model had 
to be identified separately for modelling N, in [22.4.5] for each water quality intervention model. 
The same procedure described for the Cabin Creek flow intervention model was employed to 
design a specific noise term for each intervention model. 
Tdal Organic Carbon Application: As shown by the applications in Section 22.3, exploratory 
data analyses clearly detect the effects of the forest clearing upon the total organic carbon series 
for the Cabin Creek. For example, when the box-and-whisker graphs for before and after the 
intervention are compared in Figures 22.3.4 and 22.3.5, respectively, the decrease in the median 
level after the intervention can be easily seen for almost all the months. Likewise, the average 
annual plot in Figure 22.3.6 and the blurred smooth in Figure 22.3.7 clearly detect the drop in the 
mean level of total organic carbon in later years. Finally, since the value of the ACF at lag one 
calculated using r22.3.51 for the annual series is significantly different from zero, this suggests 
the presence of a trend in the data. 

The foregoing exploratory facts are rigorously confirmed in a statistical sense by fitting the 
intervention model in r22.4.51 to the total organic carbon series which is available from the start 
of 1971 to the end of 1978. Natural logarithms are used for the two total organic carbon series 
given by y, and x12 for the Cabin and Middle Fork Creeks, respectively. The SARIMA model 
identified for the noise term, N,, contains one nonseasonal AR parameter and one seasonal AR 
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parameter. and as explained in Section 12.2.2, it can be written as (1 ,0 ,0)~(1,0,0)~~ The parame- 
ter, ~ 0 1 3 ,  which relates the Cabin Creek flows to the total organic carbon in the Cabin Creek has 
a MLE of 0.081 with a SE of 0.095. Since the MLE of 0 0 1 3  is about the same size as its SE, it 
may be worthwhile to include the flows as a covariate series in the intervention model. The 
MLE for is 0.620 with a SE of 0.082 and, consequently, it is very informative to incor- 
porate the covariate total organic series from Middle Fork Creek into the model. In Table 23.4.4, 
the MLE’s and SE’s are presented for the twelve intervention parameters contained in the first 
component on the right hand side of [22.4.5]. Also included in Table 23.4.4 is the percentage 
change in mean level for each month along with the 95% confidence limits which are calculated 
using [22.4.4]. For all the months where zero is not included in the 95% confidence limits, the 
percentage change in the mean level is confmed to be significantly different from zero. 
Accordingly, from Table 22.4.4 it can be seen that there is a significant drop in the mean level of 
total organic carbon in the Cabin Creek during the summer months of June, July and August. 

Table 22.4.4. Intervention parameter estimates for the 
total organic carbon intervention model for the Cabin Creek. 

Month 

January 
February 
March 
April 

June 
July 
August 
September 
October 
November 
December 

May 

Parameter MLE 

0.002 
0.085 

-0.169 
-0.216 
-0.053 
-0.716 
-0.524 
-0.566 
0.026 

-0.0 19 
0.048 

-0.344 

Change 

0.23 1 

0.23 1 
0.227 
0.224 
0.228 
0.227 
0.256 
0.260 
0.260 
0.258 
0.266 
0.270 

0.17 

8.92 
-15.52 
- 19.42 
-5.12 

-51.12 
-40.8 1 
-43.21 

2.65 
-1.91 

4.90 
-29.13 

95 % 
Confidence 

Limits 
~~ ~ 

-36.33, 57.59 

-30.71, 71.22 
-45.86, 31.82 
-48.11, 25.11 
-39.25, 48.20 
-68.69, -23.68 
-64.18, -2.20 
-65.88, -5.49 

-38.34, 70.90 
-40.86. 62.69 
-37.75, 76.79 
-58.26, 20.32 

22.5 CONCLUSIONS 

To execute a comprehensive data analysis study, one can follow the exploratory data 
analysis and confirmatory data analysis stages. As demonstrated by water quality applications, 
this approach is especially effective for detecting and modelling trends which may be contained 
in messy environmental data The time series being analyzed may be very messy because the 
series may possess various handicaps such as having missing observations, being nonnormally 
distributed, possessing outliers and being short in length. Nevertheless, by employing appropri- 
ate exploratory and confmatory data analysis tools, as much useful information as possible can 
be gleaned from the available data, even if the quality and quantity of the data are not very good. 
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The purpose of the exploratory data analysis stage is to uncover important statistical pro- 
perties of the data by utilizing simple graphical and numerical tools. some of which arc dis- 
cussed in detail in Section 22.3. Some exploratory techniques such as a graph of the series 
against time (Section 22.3.2). box-and-whisker graphs (Section 22.3.3) and the cross-correlation 
function (Section 22.3.4), do not require that the time series bc evenly spaced over time. On the 
other hand, other exploratory data analysis techtuques like Tukey smoothing (Section 22.3.5) 
and the ACF (Section 22.3.6) are designed to bc used with data points that are equally spaced 
over time. Fortunately, a number of flexible data filling procedures an now available for 
estimating the entries of an evenly spaced time series from a data set for which the time intervals 
between adjacent observations art not the same. Depending upon how much information is 
missing and the number of observations available, an appropriate data filling technique can be 
selected from Section 22.2, 19.3, or 18.5.2. Subsequent to filling in missing observations, one 
can employ suitable exploratory and confmtory data analysis tools which require evenly 
spaced measurements. 

At the confirmatory data analysis stage, three different types of approaches which can be 
used to rigorously characterize trends are intervention analysis, nonparametric tests and regres- 
sion analysis, described in Section 22.4 and Chapter 19, Chapter 23, and Chapter 24. respec- 
tively. Nonparameaic tests and regression analysis can be used with unequally or equally 
spaced data whereas intervention analysis must be employed with an evenly spaced sequence of 
observations. As demonstrated in this chapter and also Chapter 19, the intervention model con- 
stitutes an extremely powerful and comprehensive parametric model which can accurately model 
the magnitude and shape of a trend caused by a known intervention. Furthermore, as explained 
in Section 22.4.2. the impacts of water quantity upon water quality can be realistically incor- 
porated into the intervention model by including the water quantity time series as a covariate 
series in the intervention model in [22.4.5]. 

In many situations, an analyst is requested to execute a comprehensive data analysis study 
in order to discover and model trends after the data have already been collected by other people. 
As a result, the data may be rather messy and thereby difficult to model. Of course, there are no 
data analysis tools that can extract information which is not contained in the data to begin with. 
Nonetheless, by using the most suitable data analysis techniques, the maximum amount of useful 
information can be discovered and modelled. When the analyst can assist in optimally designing 
the data collection scheme, then some of the suggestions given in Section 19.7 and elsewhere 
may be helpful. 

PROBLEMS 

22.1 The seasonal adjustment algorithm in Section 22.2 is described for estimating aver- 
age monthly values for a time series using daily values that arc available at irregular 
time intervals. Explain how this algorithm would work for the following situations: 

(a) estimating average quarterly values, and 
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(b) estimating weekly values. 
22.2 Select a daily rime series for which all of the observations are available over a ten 

year time period. Randomly remove about 70% of the daily data and then employ 
the seasonal adjustment algorithm of Section 22.2 to estimate the average monthly 
values. Compare these monthly estimates to those obtained when the complete set 
of daily values an employed for determining the average monthly values. 
In Section 22.3, some useful exploratory data analysis tools are presented. By refer- 
ring to an appropriate reference on exploratory data analysis, describe three other 
exploratory data analysis techniques which are not discussed in Section 22.3. You 
may, for instance, wish to write about stem-and-leaf displays. Be sure to mention 
the main statistical characteristics that each method is designed to uncover in a 
given data set. 
Select an average monthly time series that is of interest to you. Obtain a plot of the 
observations over time as well as a box-and-whisker graph for each season. 
Describe the main statistical characteristics contained in your data set which are 
graphically revealed using each exploratory data analysis technique. Which of the 
two graphical methods was most helpful for better understanding the statistical and 
stochastic properties of your data? 
As mentioned in Section 22.3.3, a seasonal notched box-and-whisker graph can be 
employed for graphically testing whether medians across two or more seasons are 
significantly different. Explain why using seasonal notched box-and-whisker plots 
in this way is equivalent to graphically carrying out a formal hypothesis test (see 
Section 23.2.2 for a review of hypothesis tests). In your explanation, be sure to 
clearly state the null and alternative hypotheses as well as the test statistic. Assum- 
ing normality and independence of the data for each season, derive the 5% signifi- 
cance level for the test. Finally, state advantages of graphically implementing sta- 
tistical tests as part of exploratory data analysis tools. 
Select a set of water quality time series measurements that are available for a variety 
of water quality variables measured in a river or lake. Following the procedure of 
Section 22.3.4, determine the cross-correlation matrix for these series. When com- 
menting upon your results use physical explanations of the phenomena to help con- 
firm what is found statistically. 
Choose an annual time series which you suspect may contain trends. For this series, 
plot the following graphs and then comment upon your findings regarding the main 
statistical characteristics of the series. Be sure to make comparisons across the 
graphs and clearly point out the advantages of studying each type of graphical out- 
Put- 
(a) Plot of the data, 
(b) Box-and-whisker graph, 
(c) Blurred 3RSR smooth, 
(d) 4253H3, twice smooth, 

22.3 

22.4 

22.5 

22.6 

22.7 
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(e) Rough for the 42538. twice smooth. 
Carry out the instructions of 22.7 for a seasonal time series of your choice. 
Select an annual time series to which you apply all of the most appropriate explora- 
tory data analysis tools of Section 23.3 and elsewhere. Justify the reasons for choos- 
ing these exploratory techniques and summarize your main statistical findings. 
Execute the instructions of problem 22.9 for a seasonal time series. 
By referring to an appropriate reference, find a smoother not covered in Section 
22.3.5 which you think may work well in practice. Outline the steps that are fol- 
lowed when applying this smoother to a timc series. Assess the main capabilities 
and weaknesses of the smoother. Fmally, apply this smoother to a time series of 
your choice and comment upon your statistical findings. 

22.8 

22.9 

22.10 

22.11 

22.12 In a column on the left hand side of a page, write down a fairly extensive list of sta- 
tistical characteristics which you would like exploratory data analysis tools to dis- 
cover when examining water quality time series. In a row across the top of the page 
copy down the names of a variety of informative exploratory data analysis tech- 
niques. Then, below each technique put check marks opposite the statistical proper- 
ties that the method is designed to find when these properties are present in the data. 
Explain how this table that summarizes the capabilities of exploratory data methods 
can be useful in a case study. 

22.13 

22.14 

22.15 

Carry out the instructions of problem 22.12 for hydrological time series. 
Execute the instructions of problem for 22.12 for meteorological data sets. 

Select a set of water quantity and quality time series that may have been signifi- 
cantly influenced by a known external intervention.. Cany out a comprehensive 
data analysis of these time series by employing appropriate exploratory and confir- 
matory data analysis tools in order to detect and model possible trends as well as 
other interesting statistical characteristics. 

DATA SET 

United States Bureau of the Census (1976). The Statistical History of the United States from 
Colonial Times to the Present. United States Government 

EXPERIMENTAL BASINS 

Golding, D. L. (1980). Calibration methods for detecting changes in streamflow quantity and 
regime. In The Influence of Man on the Hydrological Regime with Special Reference to 
Representative and Experimental Basins, Proceedings of the Helsinki Symposium, IAHS (Inter- 
national Association of Hydrological Sciences), 130:3-7. 
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NONPARAMETRIC TESTS FOR TREND DETECTION 

23.1 INTRODUCTION 

As demonstrated by the water quality and quantity applications in Sections 22.4 and 19.2 to 
19.5, intervention analysis constitutes a flexible tool for rigorously ascertaining the effects of 
interventions upon the mean level of a series. Because the intervention model in [19.5.8] con- 
tains parameters which can be conveniently estimated when the innovations are assumed to be 
normally independently distributed, this model is referred to as a paramenic model. Even when 
the data an quite messy and contain many missing values, after employing a technique such as 
the seasonal adjustment procedure of Section 22.2 to fill in the missing observations, the water 
quality applications of Section 22.4.2 demonstrate that an appropriate intervention model can 
then be conveniently calibrated to the estimated series of evenly spaced data. Diagnostic checks 
of the model residuals of the fitted water quality intervention model in [22.4.5], as well as all the 
other intervention models fitted to time series in Chapters 19 and 22, c o n f m  that the underlying 
assumptions of intervention models can be readily satisfied in practical applications. Conse- 
quently, the intervention model is a powerful parametric statistical technique for use in environ- 
mental impact assessment. 

Another family of parametric models for employment in environmental impact assessment 
is the regression analysis set of models described in Chapter 24. An advantage of regression 
analysis is that it can be used with both evenly or unevenly spaced observations. 

In order to lessen the number of underlying assumptions required for testing a hypothesis, 
such as the presence of a specific kind of trend in a data set, researchers developed non- 
parametric tests. Because a nonparametric test is a method for testing a hypothesis whereby the 
test does not depend upon the form of the underlying distribution of the null hypothesis, a non- 
parametric test is often referred to as a distn’bution free or distribution independent method. As 
a matter of fact, some distribution free methods assume there are parameters in the models which 
form the basis for the tests whereas other distribution free tests do not involve any parameters, 
either directly or indirectly in the tests. Although the term nonparametric should be confined to 
describing distribution free tests for which there art no parameters, in practice it has been inter- 
preted as standing for the set of all distribution free methods. Hence, within this text the more 
commonly used phrase of nonparametric tests will be used even though it is more correct to util- 
ize the expression of distribution free tests. 

Nonparametric tests were developed for use in environmental impact assessment because 
scientists were concerned that the statistical characteristics of messy environmental data would 
make it difficult to use parametric procedures. As noted by Hirsch and Slack (1984). natural 
time series may contain one or more of a number of properties which are undesirable for use 
with parametric tests. In particular, hydrologic and water quality data may be nonnormally distri- 
buted and follow a distribution which is usually positively skewed. Because the adoption of 
proper sampling procedures are often not considered, environmental time series are not com- 
monly measured at uniform time intervals. Moreover, data are often censored by only listing 
measurements below a certain level as being “less than” or measurements above a specified 
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level as being “greater than”. For instance, concentration values for metals or organic com- 
pounds which fall below the defection limirs for certain chemical tests are reported simply as less 
than the limits of detection. Fortunately, the foregoing and other characteristics of environmcn- 
tal time series can often be properly accounted for in order to make the data suitable for use with 
parametric testing. For example, as noted at many locations in this text, invoking a data 
transformation, such as the Box-Cox transformation in [3.4.30], can often help to alleviate non- 
normality, although this is not always the case. Depending upon how much data arc missing, an 
appropriate datafilling procedure can be selected from Sections 22.2.19.3. or 18.5.2 to obtain an 
estimated evenly spaced time series. When observations an given as less than the detection 
limit, one way to estimate what they should be is to consider them to be missing and estimate 
them using a suitable data filling procedure. 

Nonparametric tests have few underlying assumptions and tend to ignore the magnitude of 
the observations in favour of the relative values or ranks of the data. As a result. a given non- 
parametric test which is designed, for instance, for checking for the presence of a trend, may 
only provide a yes or no answer as to whether or not a a n d  may be contained in the data. The 
output from the nonparametric test may not give an indication of the type or magnitude of the 
trend. In order to have a more precise test about what is occurring. many assumptions must be 
made and as more and more assumptions are formulated, nonparametric tests begin to look more 
and more like parametric tests. As a matter of fact, as noted by Savage in the encyclopedia 
edited by Kruskal and Tanur (1978, p. 637). the dividing line between nonparametric and 
parametric tests is not a sharp one. Finally, Conover and Iman (1981) explain how rank transfor- 
mations of data sets act as a bridge between parametric and nonparametric statistics. 

Because nonparametric tests are usually designed to indicate the presence but not the mag- 
nitude of a given statistical characteristic, some authors consider them to be exploratory data 
analysis procedures. Nonetheless, as is explained for the nonparametric tests described in Sec- 
tion 23.3, and Appendices A23.1 to A23.3, all these tests are designed for specifically testing 
certain hypotheses. Since they are utilized for hypothesis testing, within this text nonparametric 
tests are deemed to be confirmatory data analysis tools. Of course, after detecting the presence 
of a trend using a nonparametric test, a more powerful confirmatory data analysis method such 
as the intervention analysis technique of Section 22.4 and Chapter 19. can be employed for 
obtaining precise statistical statements about the trends. 

Over the years practitioners have argued about whether nonparametric or parametric tests 
should be employed. An advantage of nonparametric tests is that they are distribution free and 
hence fewer assumptions have to be made about the data. On the other hand, as shown for the 
intervention model in Section 22.4, often many difficulties with the data which appear to make 
the series unusable with a parametric technique, can, in fact, be overcome. Cox and Hinkley 
(1974, Section 6.1) describe a number of drawbacks to nonparametric tests which they say limit 
their practical importance. One of the limitations is that when a parametric test is appropriate. a 
nonparametric test cannot be as powerful as the most efficient parametric test Additionally, the 
results from a nonparametric test often do not adequately describe what is happening with a data 
set. In order to achieve a reasonable description and understanding of the system under investi- 
gation in concise and simple terms, a parsimonious parametric model is required where each 
parameter describes some imporrant aspect of the system. Keeping in mind the assets and limi- 
tations of both parametric and nonparametric tests, a pragmatic approach to data analysis may be 
to use whatever tests Seem to be most appropriate, whether they are nonparamemc or parametric 
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tests. For example, when analyzing vast amounts of environmental data for the presence of 
trends, in conjunction with the exploratory data analysis tools of Section 22.3. nonparametric 
testing can be used to locate the data which contain trends. Parametric techniques for detecting 
trends in a time series are referenced in Sections 19.2.3 and 24.2.1. Subsequent to a perusal of 
the written historical records to find physical causes for trends in the data, intervention analysis 
(Chapter 19 and Section 22.4) or regression analysis (Chapter 24) can be employed for obtaining 
rigorous statistical statements about the types and magnitudes of the trends. Bloomfield et al. 
(1983). Bloomfield (1992) and Bloomfield and Nychka (1992) present frequency domain 
approaches for analyzing trends. Lettcnmaier (1976) compares the ability of various non- 
parametric and parametric tests for detecting step and linear trcnds. 

From an intuitive point of view, it may be instructive to consider an overall trend to consist 
of deterministic and stochastic components such that 

deterministic stochastic overall 

trend - - trend + trend 

component component 

In fact, this kind of interpretation forms the basis of the general intervention model in [19.5.8]. 
The stochastic trend is accounted for by the noise component which contains AR and MA opera- 
tors to reflect the nonseasonal and seasonal correlation structures of the output and a white noise 
term for modelling what is left over when all the linear relationships contained in the output have 
been removed. Additionally, the noise component may require nonseasonal and seasonal dif- 
ferencing operators for modelling the nonstationary characteristics of a stochastic trend. Notice 
for the intervention model in [19.5.8] that when covariate series are available, they can also be 
incorporated into the model as extra information which usually increases the accuracy of all the 
parameter estimates in the overall intervention model and also removes effects upon the output 
which are not due to one or more interventions. Because it models the effects of one or more 
known interventions upon the output, the intervention term in [19.5.8] is dependent upon the 
time of Occurrence of an intervention and therefore can be thought of as being a deterministic 
component. However, it should be kept in mind that this component is specifically designed to 
statistically describe the effects of known physical causes upon the output. Further discussions 
regarding deterministic and stochastic trends are prcsented in Sections 23.4.4 and 4.6. 

When utilizing a statistical test, such as a specific kind of nonparamemc test, to ascertain if 
there are trends in the data, one should always keep in mind exactly what the test is designed to 
detect and what are the underlying assumptions for the test. For example, due to the theoretical 
construction of a certain nonparametric test, it may only be designed for discovering the pres- 
ence of an overall trend and may be incapable of distinguishing between stochastic and deter- 
ministic trend components. Further. as is the case for all of the nonparametric tests described in 
Section 23.3 for finding trends, nonparametric tests can only detect if a trend exists between the 
beginning and end of a time series and they cannot ascertain when the trends started due to exter- 
nal interventions. As a matter of fact, when only a small amount of data is available, the detec- 
tion of the presence of trends is often all that one can realistically hope to achieve. Upon the col- 
lection of additional data, a more sophisticated procedure, such as intervention analysis, can be 
employed to describe more precisely the trend effects of known interventions. 
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When employing a nonparametric or parametric test to check for the presence of a n d s  in a 
time series, there an different general approaches by which a given statistical test can be 
designed and executed. Therefore, a brief review of the sfurisricol testing proccduns consisting 
of hypothesis testing and significance testing is presented in the next section. Following a gen- 
eral discussion of available nonparametric tests in Section 23.3.1, specific nonparameuic tests, 
which an used in the water resources literature for discovering ands in w a r  quality and quan- 
tity timc series (Hirsch et al., 1982; Hirsch and Slack, 1984, Van Belle and Hughes, 1984; Hirsch 
and Gilroy, 1985), an described in detail in Section 23.3.2. Of particular importance is the sea- 
sonal Mann-Kendall test (Hirsch et al., 1982) which can be used to test for the presence of a 
trend in each season of the year for a given data sct When testing for the presence of trcnds in. 
say, monthly data, one may wish to know whether each month should be checked separately or 
perhaps different groups of months should be tested together. Consequently. within Section 
23.3.3 procedures arc discussed for deciding upon how data should be grouped, and, in parficu- 
lar, the technique suggested by Van Belle and Hughes (1984) is discussed. For combining tests 
of hypotheses across Seasons or groups of seasons, Fisher’s (1970) method described in Section 
23.3.4 is recommended. When dealing with water quality time series, often the effects of water 
quantity upon the water quality variables must be properly accounted for and in Section 23.3.5, 
regression analysis approaches for accomplishing this are described In Section 24.3.2, the 
robust locally weighted regression smooth of Section 24.2.2 is utilized to allow for the effects of 
flow upon water quality when carrying out trend analysis studies of water quality time series 
measured in rivers. The Spearman partial rank correlation test is presented in Section 23.3.6 as a 
flexible nonparametric test for discovering trends in, say, a water quality variable measured over 
time when partialling out the effects of seasonality or riverflows upon the water quality variable. 
A nonparamemc test is described in Section 23.3.7 for checking for the presence of a step trend 
caused by a known intervention in series measured at multiple stations. This test was devised by 
Hirsch and Gilroy (1985) and Crawford et al. (1983) and is related to the Mann-Whitney rank- 
sum test. In the final part of Section 23.3, procedures are presented for handling multiple cen- 
sored data that are to be subjected to nonparamemc trend testing. Within Section 23.4, the ACF 
(autocorrelation function) at lag one is suggested as a parametric test for finding trends. Using 
simulation experiments, the power of Kendall’s tau (or equivalently the Mann-Kendall statistic) 
for detecting trends is compared to the power of this parametric statistic. The ACF at lag one is 
found to be more powerful than Kendall’s tau for discovering purely stochastic trends while 
Kendall’s tau is more powerful for finding purely deterministic trends. To demonstrate clearly 
the efficacy of utilizing various nonparametric tests and also some parametric methods in 
environmental impact assessment, practical applications are given in Section 23.5. In particular, 
nonparametric tests arc utilized for discovering trends in water quality variables in Lake Erie 
caused by industrial development at the town of Nanticoke situated on the north shore of Lake 
Erie in the Canadian province of Ontario. 

The nonpammetric tests described in Chapter 23 are listed in Table 23.1.1 along with brief 
descriptions of their main purposes, equation numbers for the test statistics and the reference 
sources. Notice that the first six nonparametric tests arc designed for checking for the presence 
of trends for a variety of situations and all of the trend tests are explained in Section 23.3. In 
addition to handling tied data it is pointed out how the aend tests can be employed with cen- 
sored time series. For the case of the seasonal Mann-Kendall test, procedures for taking care of 
correlation are also given. Finally, the last three nonparametric tests given in Table 23.1.1 arc 
described in the three appendices and can be utilized for various useful tasks within a systematic 
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data analysis study. 

NAMES 

857 

PURPOSES 

Table 23.1.1. Nonparmemc tests described in Chapter 23. 

Nonseasonal h4ann- 
Kendall 
Seasonal Mann- 
Kendall 

Aligned rank 

Spearman's rho 

Spearman partial rank 
correlation 

Step trend 

Kendall mnk correla- 
tion 

Wikoxonsignedrank 

KrusLal-Wallis 

Derenrune ' ifatimesaiescontains 
a monotonic trend over time. 
Fioutifasasonalt imeseries  
contains an overall trend c m -  
powt. 

Ascertain if a desesonalized time 
series possesses a trend. 

Check if there is significant correla- 
tion between 2 variablesx and Y. 
Can also be used as a trend test if 
one of the variables is time and the 
other is a sequence of observations. 
Determine the correlation between 
variables x and Y after the effects 
of upon x and Y are parlialled 
out. Can be used to check if there 
is a trend in a series over time a f t a  
seasonality is partialled out. 
Find out if a lolown intervention 
c a w  significant step trends in 
series maured at multiple sta- 
tions. Test is based on MYln- 
Whitney rank-sum test on p u p e d  
data 
Ascertain if two seriesx and Y an 
independent of one another. The 
Mann-Kendall trend test is a special 
case when one series is time and 
the other is sequentid observations. 
Check if two samples x and Y 
have the same median. 
Detennine whether or not the distri- 

same. Can also be used tocheck if 
a time series possesses seasonality. 

butions across k samples are the 

TEST 
STATISTIC 

EQUATIONS 
(23.3.11 and 
(23.3.43 
(23.3.71, i23.3.81 
and [23.3.11] 

(23.3231 

[23.3.331 and 
(23.3.341 

(23.3.351 and 
(23.3.361 

(23.3.381 and 
(23.3.441 

(~23.1. I] 

[A23.2.2] and 
(A23.2.31 
(A23.3.21 and 
(A23.3.31 

SOURCES 

Mann (1945) 

Hirsch et al. (1982). 
Hirsch and Slack (1984). 
Van Belle and Hughes 
(1984) and Lettenrnaier 
(1988) 
Sen (1968). Faml (1980) 
and Van Belle and Hughes 
(1984) 
speyman (1904) 

Hirsch and G i h y  (1985) 
and Hirsch (1988) 

Kendall(l975) 

Wilcoxon (1945) 

Knrskal and Wallis (1952) 

As summarized in Table 1.6.4, three general approaches for carrying out trend analysis stu- 
dies are presented in Sections 22.4, 23.5 and 24.3. Within each of these methodologies, 
appropriate exploratory and confmatory data analysis tools can be employed, including the 
nonparmemc techniques of Table 23.1.1. In fact, for the overall trend assessment procedures 
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explained using environmental applications in Section 23.5 of this chapter and also Section 24.3, 
nonparametric trend tests have a key role to play. Besides the general approaches given in this 
book, other methodologies for trend assessment have been devised by researchers. For example, 
Montgomery and Reckhow (1984) suggest an overall systematic procedure for determining the 
presence or absence of trends in environmental data Depending upon the characteristics of the 
data being analyzed, they suggest various nonparametric and parametric tests which can be used. 
Berryman et al. (1988) and Harcum et al. (1992) present systematic procedures for deciding 
upon which nonparametric tests to employ for detecting trends in water quality time series. 
Hipel and McLeod (1989) explain how both parametric and nonparamcmc models can be 
employed in trend assessment within the overall framework of exploratory and confirmatory data 
analyses. Hirsch et al. (1991) put forward procedures for selecting statistical methods to detect 
and estimate trends in water quality time series. 

23.2 STATISTICAL TESTS 

23.2.1 Introduction 

Statistical testing can be carried out using nonparametric or parametric tests. However, a 
given statistical test, either nonparametric or parametric, can be designed for the purpose of 
hypothesis testing or significance testing. Cox and Hinkley (1974) present detailed descriptions 
of various kinds of hypothesis and significance tests which are briefly described in this section. 
The theory of tests of hypotheses was originally developed by Neyman and Pearson (1928, 1933) 
while significance testing is due largely to Fisher (1973). 

23.2.2 Hypothesis Tests 

Suppose one would like to determine whether or not a data set possesses a certain property. 
For example, one may wish to ascertain the existence or nonexistence of a certain kind of trend 
in a water quality time series. Typically, the null hypothesis, Ho. which is sometimes called the 
hypothesis under test, is that the population from which the sample data set is drawn, does not 
possess a specified property like a trend. The alternative hypothesis, H I ,  which specifies a direc- 
tion of departure from Ho, is that the data set does exhibit the property. In order to choose 
between HO and H I  a tesr statistic, T ,  which is a function of the data set X = (xIjZ, . . . ,x,,), is 
defined. When the hypothesis HO is me ,  the distribution of T must be known, at least approxi- 
mately, so that the hypothesis test can be executed. By knowing the probability distribution of 
T. the probability of the sample statistic falling within or outside a given interval can be deter- 
mined. As shown in Figure 23.2.1, for one sided and two sided tests, let t, and t I  stand for the 
right and left values of 7’. respectively, for the two possible one sided tests, and let t’, and t’, 

define the right and left ends, respectively, of an interval in a two sided test. A chosen sign$- 
cunce level, a, is the probability that the sample falls outside a specified range of values, given 
that Ho is true. In practice, a is selected to have a value of 0.10, 0.05, or 0.01, although any 
appropriate value can be selected. For the one tailed or one sided tests, a represents the area in 
one of the tails of the distribution. In Figure 23.2.1a, Pr(t 2 I , )  = a, and, consequently, if one 
were checking for the absence of an increasing trend, the hypothesis Ho would be rejected if 
I ,  2 I ,  and hence H ,  would be accepted, when t, is the sample or estimated value of T calculated 
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using the sample X. Alternatively. Ho would be accepted if t, < t,. The one tailed test in Figure 
23.2.1b works in a similar manner. Suppose that Ho indicates the absence of a decreasing trend. 
If r, 5 t l ,  then Ho would be rejected and HI thereby accepted, whereas, when t, > 4, HO would be 
considered to be correct. A two sided test would be used in trend detection when one wishes to 
test for the presence of a trend which could be increasing or decreasing. For the case of the two 
sided test in Figure 23.2.1~. HO is accepted when t’, < t, c t’, and is rejected when t, 2 t’, or 
tx 5 t;. 

Notice from Figurc 23.2.1, that the probability of selecting Ho when Ho is true is 1 -a, 
which is referred to as the conjZknce level. When executing a hypothesis test, two types of 
errors can arise. The probability of rejecting Ho when HO is me is called a rype I error or error 
of the first kind. From Figure 23.2.1, the probability of committing a type 1 error is a for both 
one sided and two sided tests. If, as a result of the same test statistic and a chosen sigruficance 
level a, the hypothesis Ho is accepted when it should be rejected, this is called a rype 2 error or 
error of the second kind. Letting p represent the probability of committing a type 2 error, the 
probability of not making a ty-pe 2 error is 1 - p. The probability of rejecting Ho when H, is 
true. or equivalently, the probability of not making a type 2 error, is called the power of the 
hypothesis test. If, for example, one were testing for the presence of a trend, the power, given by 
1 - p, can be interpreted as the probability of detecting a trend when a trend is actually present in 
the data. In Section 23.4, the powers of two tests for detecting trends are compared using simu- 
lation studies for a number of different data generating models. When performing a hypothesis 
test, one of the four situations given in Table 23.2.1 can arise. Notice that two of the four out- 
comes to a hypothesis test result in either a type 1 or type 2 error. In Section 23.5, a variety of 
practical applications are presented using nonparamemc statistics for hypothesis testing when 
checking for the presence of trends in water quality data. 

In general, the power, 1 - f3, and the confidence level, 1 - a, are inversely related. Conse- 
quently, increasing the confidence level decreases the power and vice versa. For a specified sig- 
nificance level, a, the power of a test may be made greater by increasing the sample size. 

23.23 Significance Tests 

The type of significance test described here is what Cox and Hinkley (1974, Ch. 3) refer to 
as a pure significance test. As is also the case for hypothesis testing. when designing a signifi- 
cance test the null hypothesis, He must be precisely formulated in terms of a probability distri- 
bution for the test statistic T. On the other hand, the major difference between the two tests is 
that a possible departure from Ho in the form of an alternative hypothesis, H , ,  is not rigorously 
defined for a significance test whereas it is assumed to be exactly known for a hypothesis test 
Nonetheless, for a significance test it is necessary to have some general idea about the type of 
departure from Ho. 

When performing a significance test, the acceptance or rejection of Ho is decided upon in 
the same way as it is for a hypothesis test Hence, as shown in Figure 23.2.1, one can perform 
either a one sided or two sided significance test. However, when HO is rejected only the general 
kind of departure from Ho is known because there is no precise statement about an alternative 
hypothesis. 
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Figure 23.2.1a. One sided hypothesis test on the right. 

Figure 23.2.1 b. One sided hypothesis test on the left. 

Figure 23.2. lc. Two sided hypothesis test. 

Figure 23.2.1. Hypothesis tests. 

Most of the diagnostic tests given in Chapter 7 constitute significance tests. For example, 
when one is checking whether or not the residuals of a stochastic model fitted to a time series are 
white, the null hypothesis may be that the residuals are white. Based upon an appropriate statist- 
ical test such as the Pormanteau statistic in [7.3.6], one can decide if Ho should be accepted or 
rejected. When Ho is rejected because the residuals arc not white, the precise type of departure 
from Ho is not explicitly defined. The residuals may be correlated for instance, because an 
ARMA( 1,l) model should be fitted to the data instead of a an AR( 1) model. 
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TRUE SITUATION 
H, is true 

HI is true 

861 

Accept Ho 

No error 
( R = l - a )  

Confidence Level 
Typc 2 error 
m= B) 

Table 23.2.1 Possible results of an hypothesis test 
ON 

Reject Ho 

Type 1 error 
@ = a )  

No error 

Power 
( P r = l - B )  

To avoid using too much statistical jargon and to enhance understanding by practitioners, 
hypothesis and significance tests arc often not stated in a very formal manner when applying 
them to real data. As a matter of fact, statistical tests can be of assistance in the design of infor- 
mal statistical tools for use in exploratory data analysis (see problem 22.5 in the previous 
chapter). 

23.3 NONPARAMETRIC TESTS 

23.3.1 Introduction 

As noted in Section 23.1, a nonparametric test is also commonly referred to as a distribu- 
tion free or distribution independent method. This is because no assumptions are made about the 
specific kind of distribution that the samples follow. The only restriction is that the samples 
come from the same basic population. Furthermore, a nonparametric test tends to be quite sim- 
ple in design and easy to understand. In terms of time series analysis, most nonparamemc tests 
can be used with both evenly and unevenly spaced observations. 

Different types of data are available for use with statistical tests. The kinds of measure- 
ments are usually referred to as meusurement scoles or systems of meusurernent. From weakest 
to strongest, the four types of measurement scales recognized by Stevens (1946) are the nominal, 
rank (also called ordinal). interval, and ratio scales. In the nominal scole of measurement, 
numbers or other appropriate symbols arc used for classifying objects, properties or elements 
into categories or sets. For example, when classifying objects according to colour, any number 
can be selected as a name for a given colour. 

In the rank or ordinal scofe, objects are ranked or ordered on the basis of the relative sizt 
of their measurements, A wine taster, for instance, may rank his wines from most to least desir- 
able where a wine having a larger number assigned to it is more preferred than one with a 
smaller number. However, the amount by which one wine is preferred or not preferred over 
another is not specified. When analyzing a real world dispute using the conflict analysis 
approach referred to in Section 1.5.3, only ordinal preference information is assumed and hence 
each decision maker must rank the possible states or scenarios in the conflict from most to least 
p r e f e d .  
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Besides the relative ordering of measurements used in the ordinal scale, the interval scale 
of measurement takes into account the size of the interval between measurements. An informa- 
tive example of an interval scale is the common scales by which temperatures arc usually meas- 
ured. When using either the Fahrtnheit or Celsius scale, a zero point and a unit distance (ix.. 
one degree of temperatun) must be specified. Besides the Fahrenheit or Celsius scales, one 
could easily define any other temperature scale by stipulating the zero point and the degree unit. 
In other words, the principle of interval measurement is not violated by a change in scale or loca- 
tion or both. 

To convert x degrees Celsius to y degrces Fahrenheit one uses the equation 
9 
5 

y = -X + 32 

When employing the interval scale, ratios have no meaning and one cannot, for instance, state 
that 10°C ( 5 O O E )  is twice as warm as 5°C (41OF). Although the ratio of the two temperatures is 
- = 2 when using the Celsius scale, in the Fahrenheit scale the ratio is - = 1.22. Because 

there is a true or natural zero point in the Celsius scale, the concept of a ratio makes sense in this 
scale. When wansforming from one ratio scale to another, it is only necessary to multiply one of 
the scales by a constant. Thus, for example, to transform x kilometres to y miles one uses the 
equation 

10 50 
5 41 

y = 0.62~ 

One can say, for instance, that 10 km (6.2 miles) is twice as far as 5 km (3.1 miles) because 
_--- lo - 6*2 -2. Other examples of ratio scales include temperature in degrees Kelvin, weight 

5 3.1 
measured in kg or pounds, and time expressed in hours, minutes and seconds. 

Most nonparamemc methods are designed for use with data expressed in a nominal or ordi- 
nal scale. Because each scale of measurement possesses all of the properties of a weaker meas- 
urement scale, statistical methods quir ing a weaker scale can be used with stronger scales. 
Consequently, time series observations which arc always expressed using either an interval or a 
ratio scale, can be subjected to n o n p m t r i c  testing. Most parametric methods can only be 
used with values given in an interval or ratio scale and cannot be utilized to analyzc data belong- 
ing to a nominal or ordinal scale. Due to the foregoing and other reasons, Conover (1980, p. 92) 
defines a statistical method as being nonparumenic if it satisfies at least one of the following cri- 
teria: 
1. 

2. 

3. 

The method can be used with data possessing a nominal scale of measurement. 
The method can be employed with data having an ordinal scale of measurement. 
The method may be used with data having an interval or ratio scale of measurement where 
the probability distribution function of the random variable generating the data is either 
unspecified or specified except for an infinite number of unknown parameters. 
In an environmental impact assessment study, usually the investigators have a fairly clear 

idea, at least in a general sense, of what they want to accomplish. For example, they may wish 
to ascertain if increased industrialization has significantly lowered the water quality of a large 
lake in the industrialized region. If data are not already available, a major task would be to 
design a suitable data collection scheme (see Sections 1.2.3 and 19.7). Assuming that 
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observations are available for a range of water quality variables at different locations in the lake, 
a challenging problem is to select the most appropriate set of statistical methods that can be used 
in an optimal fashion for detecting and modelling trends in the data. Besides uncovering and 
modelling trends in water quality variables at a single site, statistical methods could be used to 
model the nlationships among variables and trends across sites in the lake. In a large scale 
environmental impact assessment study, it is often necessary to use a variety of both non- 
parametric and parametric methods (see the applications in Sections 23.5.22.3.22.4 and 24.3). 

As discussed in the introduction to Part X and also Sections 22.1, 22.3, as well as 1.2.4, 
when executing a data analysis study it is recommended to carry out erploratory data anulysis 
followed by confirmatory data analysis. Usually simple graphical methods are employed at the 
exploratory data analysis stage for visually detecting characteristics in the data such as trends 
and missing values (see Section 22.3). Both nonparametric and parametric tests can be 
employed for hypothesis and significance testing during confirmatory data analyses. Because of 
the preponderance and proliferation of statistical methods, it is not surprising that a great number 
of statistical textbooks have been published and a significant number of papers have been printed 
in journals regarding the development and application of statistical methods (see Section 1.6.3). 
In fact, at least two major encyclomae on statistics are now available (Kruskal and Tanner, 
1978; Kotz et al., 1988) and a number of informative handbooks (see, for instance, Sachs (1984)) 
and dictionaries (Kendall and Buckland, 1971) on statistics have been written. 

To assist in choosing the best statistical methods to use in a given study, the techniques can 
be classified according to different criteria. In an introductory paper to an edited monograph on 
time series analysis in water resources, Hipel (1985). for example, classifies time series models 
according to specified criteria. For the case of nonparametric tests. Conover (1980) presents a 
useful chart at the start of his book for categorizing nonparametric tests according to the kind of 
sample, hypothesis being tested, and type of measurement involved (nominal, ordinal and inter- 
val). Keep in mind that a test designed for a weaker type of measurement can also be used with 
stronger measurements. Consequently, all  of the tests listed under nominal measurements can be 
used with both ordinal and interval data. Furthermore, the tests given below ordinal measure- 
ments can also be used to analyze interval measurements. 

In the remainder of Section 23.3, nonparametric tests which are especially useful for detect- 
ing trends in water quality time series are described in detail. More specifically, the first six non- 
parametric trend tests listed in Table 23.1.1 are defined in Section 23.3 and other useful non- 
parametric procedures an also discussed. Fortunately, these tests can be modified for handling 
data sets having tied values as well as censored observations. Other topics in Section 23.3 
include grouping Seasons in a meaningful way in a trend detection study, procedures for combin- 
ing trend tests across groups of Seasons and adjusting water quality for riverflows. 

The reader should keep in mind that in a trend assessment study, it is often necessary to 
employ a wide range of statistical methods. Although this text describes many useful parametric 
and nonparametric methods that are frequently used by environmental and water resources 
engineers, sometimes it may be necessary to refer to other texts and papers for a description of 
other methods. Besides the book of Conover (1980). other texts on nonparametric testing include 
contributions by Siege1 (1956), Fraser (1957). Bradley (1968). Gibbons (1971, 1976). Hollander 
and Wolfe (1973). F'uri and Sen (1971), Kendall (1975). and Lehman (1975). Gilbert (1987) 
describes a range of both nonparametric and parametric methods for use in environmental pollu- 
tion monitoring. Because of the great importance of nonparametric methods in water resources 
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and environmental engineering, the American Water Resources Association published a special 
monograph on this topic (Hipel, 1988). In the water quality applications in Section 23.5, ways in 
which a variety of nonparametric and parametric tests can be used for trend detection in a com- 
plex water quality study arc explained. Other general methodologies for a n d  assessment are 
listed in Table 1.6.1 and also referenced at the end of Section 23.1. 

23.33 Nonparametric Testa for Trend Detection 

Introduction 

In their paper, Van Belle and Hughes (1984) categorize nonparametric tests for detecting 
trends into two main classes. The one class is referred to as intrablock methods which arc pm- 
cedures that compute a statistic such as Kendall’s tau for each block or season and then sum 
these to produce a single overall statistic (Hirsch et al., 1982; Hirsch and Slack, 1984). The 
second set of nonparametric tests are called aligned rank methods. These techniques remove the 
block effect from each datum, sum the data over the blocks and then create a statistic from these 
blocks (Van Belle and Hughes, 1984). The foregoing two classes of techniques are designed for 
detecting monotonic trends or changes (gradual or sudden) during some specified time interval 
but unlike the paramemc technique of intervention analysis in Chapter 19 and Section 22.4 they 
are not intended for exploring the hypothesis that a certain type of change has occurred at some 
prespecified time due to a known external intervention. 

Intrablock Methods 

Because the tests of Hirsch et al. (1982) and Hirsch and Slack (1984) are based upon earlier 
work of Mann (1945) and Kendall(1975), the initial research is described first. 
Mann-Kendall Test: Mann (1945) presented a nonparametric test for randomness against time 
which constitutes a particular application of Kendall’s test for correlation (Kendall, 1975) com- 
monly known as the Mann-Kendall or the Kendall t test. Letting x,.r2, . . . , x n .  be a sequence of 
measurements over time, Mann (1945) proposed to test the null hypothesis, H,, that the data 
come from a population where the random variables are independent and identically distributed. 
The alternative hypothesis, H l ,  is that the data follow a monotonic trend over time. Under Ho, 

the Mann-Kendall test statistic is 
n-1 n 

k=lj=k+l 
S =  C sgn(x, - x k )  [23.3.1] 

where 

+1, x > o  
sgn(x) = 0, x = O  

-1, x < o  I 
Kendall (1975) showed that S is asymptotically normally distributed and gave the mean and 
variance of S ,  for the situation where there may be ties in the x values, as 
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[23.3.2] 

where p is the number of tied groups in the data set and f j  is the number of data points in the fi 

When using [23.3.1], a positive value of S indicates that there is an upward trend in which 
the observations increase with time. On the other hand, a negative value of S means that there is 
a downward trend Because it is known that S is asymptotically normally distributed and has a 
mean of zero and variance given by [23.3.2]. one can check whether or not an upward or down- 
ward a n d  is signrficantly different from zero. If the S is significantly different from zero, based 
upon the available information Ho can be rejected at a chosen significance level and the presence 
of a monotonic trend, H , ,  can be accepted. For a general review of how to execute a hypothesis 
test, the reader can refer to Section 23.2.2. 

The exact distribution of S for n 5 10 was derived by both Mann (1945) and Kendall 
(1975). They showed that even for small values of n ,  the normality approximation is good pro- 
vided one employs the standard normal variate 2 given by 

tied group. 

, ifs>o 
z = {  0 , i fS=O [23.3.3] 

The statistic S in [23.3.1] is a count of the number of times xi exceeds x k ,  for j > k ,  more 
than xk exceeds xi. The maximum possible value of S occurs when x 1 a 2 <  . 1 * a,,. Let this 
number be called D. A statistic which is closely related to S in [23.3.1] is Kendall's fuu defined 
by 

S 
D 

z = -  [23.3.4] 

where 
1/2 - 1)  - - x t j ( t j  1 p  - l)]''* [ in(n-l)]  

2 j = l  

When there arc no ties in the data, [23.3.4] collapses to 

r23.3.51 

Due to the relationship between z and S in [23.3.4], the distribution of z can be easily obtained 
from the distribution of S. If there are no ties in the data, the algorithm of Best and Gipps (1974) 
can be employed to obtain the exact upper tail probabilities of Kendall's tau, or equivalently s, 
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X I 1  1 1 2  * * .  X l m  

1 2 1  x 2 2  * . .  x2m 

. .  

. .  

. .  I n l  x n 2  * ' *  xm : :  
X =  

R l l  R 1 2  . . . R I m  

R 2 l  R 2 2  * ' .  R, 
. .  

R =  . .  
. .  

R n 1  R n 2  * * *  R n m A  

n 

i=l  
Rig = [n + 1 + C sgn(xjg -xig)]/2 [ 23.3.61 

and each column of R is a permutation of (1.2, . . . , n).  The Mann-Kendall test statistic for the 
g f h  season is (Hirsch et al., 1982) 

n-1 n 

i=l j=i+l  
Sg = C C sgn<xjg - x i s ) ,  g = 1,2,. . . ,rn [23.3.7] 

Similar to the situation of S in r23.3.11, Sg is asymptotically normally distributed where 

E[Sg] = 0 
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Vur[Sg] = 0; = n(n - 1)(2n + 5)/18 

Kendall’s tau stutistic for the g th  seuson is defined as 

867 

[23.3.8] 

[ 23.3.91 

Because rg is simply a multiple of Sg, the distribution of f8 can be obtained from the distribution 
of Sg. In particular, K~ is asymptotically normally distributed where 

EITII]  = 0 

1 Vur[K,] = 1 [ n(n - 1;r + 5)  

- 1)12 
[23.3.10] 

L J 

Since it is arithmetically more convenient to deal with Sg rather than zg and also Hirsch et al. 
(1982) use mainly Sg rather than zg in their research, the statistic Sg is utilized in the rest of this 
section. 

Following Hirsch et al. (1982), the seasonal Mann-Kendall lest statistic is 
m 

S’= CS, 
g=l 

which is asymptotically normally distributed where 

E [ S 7  = 0 
m 

var[SI] = c .,‘ + cog/, 
g=l g.h 

8+h 

[23.3.11] 

[23.3.12] 

Using [23.3.81, 0; = vur[sg] can tx calculated as well as ash = cov(sgsh). For the situation 
where each season is independent of each of the other seasons, the second summation in 
(23.3.121 is zero and 

(23.3.131 
g=l 

As is done in [23.3.3] for the Mann-Kendall test, for nS10 the standard normal deviate Z’ should 
be calculated as 
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"va;(;;lla ' if s"o 
z t={  0 , ifS'=O [ 23.3.1 41 

When utilizing r23.3.141, Hirsch et al. (1982) demonstrate that the n o d  approximation is quite 
accurate even for data as small as n = 2 and m = 12. 

To handle missing values, sgn(xjg -xis) is defined to be zero if either xjg or xig is missing. 
Letting ng be the number of nonmissing observations for Season g, equation [23.3.6] is modified 
as 

n 

Rig = [n, + 1 + Csgn(xjg -xig)]/2 
i= I 

[23.3.15] 

Consequently, the ranks of the known obsewations remain unchanged and each missing observa- 
tion is assigned the average or midrank (ng + 1)/2. As is the case when there are no missing 
observations, equation [23.3.7] is used to calculate S, and following [23.3.8] the variance of Sg 

is determined using 

08' = ng(ng - 1)(2n8 + 5)/18 [ 23.3.161 

S' and its variance are determined using [23.3.11] and [23.3.12]. respectively, where each ogh is 

For a censored time series, in which some data are reported to be less than a detection limit, 
arbitrarily fix the affected data at some constant value which is less than the limit of detection. 
Because nonparametric tests are based upon ranks instead of magnitudes, all censored values are 
interpreted as sharing the same rank which is less than the rank of all uncensored observations. 
Additionally, this means that handling censored data is equivalent to dealing with ties. Assum- 
ing, for the moment, that there are no missing values, the ranked data containing ties can be cal- 
culated using [23.3.6], which automatically assigns to each of t tied values the average of the 
next t ranks. Following this, Sg can be determined utilizing [23.3.7] where, similar to the situa- 
tion in [23.3.2], the variance is 

zero. 

P 

j=l 
VU~[S,] = 08' = [n(n - 1)(2n + 5 )  - ztj(tj - 1)(2tj + 5)1/18 [23.3.17] 

where n is the number of years of data, p is the number of tied groups for the data xis, 

i = 1.2,. . . , n .  in Season g. and rj is the size of the@ tied group. The seasonal Mann-Kendall 
statistic is calculated using [23.3.7] while its variance is determined by utilizing [23.3.12] wherc 
all the bSh are zero. When there arc both tied data (due to "tied" censored data and ties of actual 
observations) and missing values, the modifications described in this and the previous paragraph 
must be combined. Finally, a general description of censored data is presented in Section 23.3.8. 

Another problem which can arise when using any of the nonparametric tests in this section, 
is how to summarize information when there arc several valuesfor a specified seuson in a given 
year. Van Belle and Hughes (1984, p. 135) suggest four possible approaches for accomplishing 
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this. One method is to adjust the seasonal length so that there is not more than one observation 
per season. This, of course, would m a n  having a smaller seasonal length, such as biweekly 
instead of monthly. A second approach is to take a single value which is closest to the centcr of 
the season in a given year and to ignore the other information. In many applications, a third, and 
more reasonable method to follow, is to simply replace the set of values by the median or mean 
before calculating the test statistic. As a matter of fact, many water quantity and quality records 
which are collected on a daily basis are often released in reports as average monthly values. 
Fourthly, an alternative to calculating a mean or median within a given season and year, is to 
consider these values as tied in the time index and then to compute the test statistic along with a 
modified variance. Van Belle and Hughes (1984. p. 135) present the formulae for carrying this 
out 

Recall that for the intervention analysis applications of seasonal data in Chapter 19 and 
Section 22.4, it is suggested that an intervention may affect each season or groups of seasons in 
different manners. For example, when modelling the impacts of reservoir operation upon the 
average monthly flows of the South Saskatchewan River in Section 19.2.5, it is suspected that 
the seasonal mean levels would increase during certain months and decrease at other times. To 
accurately model an upward or downward step trend as well as the change in magnitude of the 
mean for each season, a separate intervention term is incorporated into the intervention model 
for each month. In a similar manner, one should examine carefully how Sg in [23.3.7] behaves 
for each season. Only if the same type of trend, such as an upward trend, is detected in each sea- 
son, will the overall seasonal Mann-Kendall test statistic in [23.3.1 l ]  have my meaning. In 
other words, S’ should only be calculated for a group of seasons which are expected to behave in 
a certain manner where hypothesis testing is done separately for this group. A more detailed dis- 
cussion of this problem is presented in Section 23.3.3 where approaches are presented for com- 
bining tests of hypotheses across seasons. 

Correlated Seasonal Mann-Kendall Test: In practice, environmental data are usually corre- 
lated and not independently distributed as is assumed in the previous section. For instance, when 
dealing with average monthly phosphorous levels, the phosphorous observations in one month 
may be significantly correlated with values in the preceding one or more months. This means 
that in order to employ the seasonal Mann-Kendall tests in [23.3.7] and [23.3.11], one must be 
able to estimate 1111 the bgh in [23.3.12]. 

Based upon research by Dietz and Killeen (1981), Hirsch and Slack (1984) explain how 
ugh can be estimated. Assuming, for the moment, that there are no ties or missing values, a con- 
sistent estimation for bgh is 

where 

[23.3.18] 

[23.3.19] 

[ 23.3.201 

For the situation where there are no ties and no missing values, the statistic rgh is Spearman’s 

3 
rgh = - 3 z S g n [ ( x j g  -x ig) (x jg  - x ~ ) l  

n - n iJ,k 
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correlation coefficient for seasons g and h (Conover. 1980; Lehman, 1975). If them arc no 
missing observations, equation [23.3.18] can be written as 

[23.3.21] 

where each Rig is determined using [23.3.6]. 

To employ the correlated seasonal Mann-Kendall test when there are no ties or missing 
data, S,. g = 1.2, * - m, and S' are determined using [23.3.7] and [23.3.11], respectively. Fol- 
lowing the estimation of the variance of each S8 and cf8h using [23.3.8] and [23.3.18]. respec- 
tively, the variance of S' can be calculated using [23.3.12]. As can be done for the seasonal 
Mann-Kendall test, a separate hypothesis can be formulated for each season or each group of 
seasons, and, when appropriate, based upon S' an overall hypothesis can be made. For a given 
season or group of seasons, seasonal data are thought to be independently distributed since it is 
assumed that a particular data point is not correlated with data occurring one or more years 
before during the same season. Consequently, the null hypothesis, Ho. for a given season is the 
data are independent and identically distributed while Hi is the existence of a monotonic trend in 
that season. For the overall correlated seasonal Mann-Kendall statistic, S', the null hypothesis is 
that the data are correlated and identically distributed while HI is the presence of a monotonic 
trend. Because the mean, variance and distribution of each SB and also S' are known, hypothesis 
testing can be executed. As is the case for the seasonal Mann-Kendall test, when employing the 
correlated seasonal Mann-Kendall test, the standard normal deviate in [23.3.14] should be calcu- 
lated for n 5 10. 

To use the correlated seasonal Mann-Kendall test with missing volues, the procedure 
described for the seasonal Mann-Kendall test is used. The ranks of the data for season g arc 
determined using [23.3.15]. and then S, and its variance are calculated using [23.3.7] and 
[23.3.8], respectively. The correlated seasonal Mann-Kendall statistic is determined using 
[23.3.11]. To estimate the variance for S' using [23.3.12], equation [23.3.18] or equivalently 
[23.3.21] must be appropriately modified in order to estimate 0 8 h  for substitution into [23.3.12]. 
The Ksh term is determined as before by using [23.3.19]. However, in the presence of missing 
values, r,h takes a new form which causes the revised version of [23.3.21] to be 

[ 23.3.221 

where n, is the number of observations for season g and nh stands for the number of measured 
values for season h. 

As in the previous section, censored data arc handled as ties where data reported as being 
less than a limit of detection are assigned a constant value which is less than the limit of detec- 
tion. Assuming that there are no missing values, the ranks containing ties can be calculated 
using [23.3.6], which automatically assigns to each o f t  tied values the average of the next t 

ranks. Nexf S, can be determined by utilizing [23.3.7]. while the variance of S, can be calcu- 
lated using [23.3.17]. The correlated seasonal Mann-Kendall statistic, S', is determined using 
[23.3.11]. To employ [23.3.18] or [23.3.21] for estimating b g h .  midranks are used in assigning 
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the values of Rig. Hence, if there were rj censored values, they would all have a rank of 
tj(rj - 1)/2. Following this, the variance of the cornlated seasonal Mann-Kendall statistic can be 
determined using [23.3.12]. When there are both tied data, which may be due to censored data 
and ties of actual observations. and missing values, the alterations outlined in this and the previ- 
ous paragraph must be combined. Lettenmaier (1988) proposes a technique called the covari- 
ance eigenvalue method to handle cornlation among seasons. He uses simulation experiments to 
compare the power of his seasonal trend test to those of Hirsch and Slack (1984) as well as Dietz 
and m e e n  (1981). Utilizing simulation experiments. Loftis et al. (1991a.b) find that 
Lcttenmaia’s (1988) technique works well with serially correlated data. Zettcrqvist (1988) also 
proposed a seasonal Mann-Kendall trend test to take can  of autocornlation among data in dif- 
ferent seasons, where the observations within each season are assumed to be independent 

El-Shaarawi and Niculescu (1992) extend the Kendall Tau test for handling cornlation in 
nonseasonal data when the underlying process is MA(1) or MA(2). Morcover, they develop a 
test for use with seasonal data having non-zero correlations between successive seasons and 
years. 
Seasonal Kendall Slope Estimator: The intrablock statistics discussed thus far. are designed 
for detecting the presence but not the location or magnitude of a trend in a time series. To esti- 
mate the magnitude of a trend. Hirsch et al. (1982) suggest an extension to the seasonal case of 
the method proposed by Theil (1950) and Sen (1968). In particular. the seasonal Kendall slope 
estimator of Hirsch et al. (1982) expresses the magnitude of a trend as a slope which means 
change of the series per unit time. When sufficient data are available, the technique of interven- 
tion analysis discussed in Chapter 19 and Section 22.4, constitutes a much more powerful pro- 
cedure for accurately estimating the magnitude of trends caused by one or more known interven- 
tions. As shown in Figures 19.2.3 and 19.2.4 and explained in Section 19.2.2. the intervention 
component contained within the overall intervention model for modelling a trend can be 
designed so that the geometric shape of the trend is correctly modelled. Other trend detection 
techniques include the exploratory data analysis graphs of Section 22.3, the change-detection 
statistics referred to in Sections 19.2.3 and 24.2.1, and the robust locally weighted regression 
smooth of Section 24.2.2. 

The seasonal Kendall slope estimator is defined to be the median of the differences, 
expressed as slopes, of the ordered pairs of data points that are compared in the seasonal Mann- 
Kendall test. The computational algorithm for defining the seasonal Kendall slope estimator, Sf, 
is as follows. Calculate 

djjk = (XU - ~ik)/k)/o’ - k )  

for all (xU,xik) pairs i = 12, * * * m,  where 1 5 k < j 5 ni and ni is the number of known values in 
the ith season. The slope estimator Sf is the median of the dik values. As noted by Hirsch et al. 
(1982), the slope estimator Sf is closely related to S‘ in [23.3.11]. If S’ > 0 then Sf 2 0 (Sf > 0 if 
one or no dik = 0) and if S’ < 0, then Sf S 0 (Sf < 0 if one or no dik = 0). The reason for these 
relationships between S’ and Sl is that S’ is equivalent to the number of positive dik values 
minus the number of negative dik values and Sl is the median of the dik values. 
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As pointed out by Hirsch et al. (1982). because the mcdian of the dbk values is used to 
define S l ,  the estimator is quite resistant to the presence of e x a m  observations in the data. 
Further, since the slopes arc always computed between values that arc integer multiples of the 
seasonal length m,  the slope estimator is unaffected by seasonality. Lf, for example, the magni- 
tude of the slope were thought to be different for each scason, the slope could be estimated 
separately for each season. In situations when groups of Seasons arc suspected of having the 
same magnitude for the slope estimator, the slope estimator could be separately applied to each 
group of seasons. A computer program for calculating the seasonal Mann-Kendall statistic and 
the seasonal Kendall slope is Listed by Smith et al. (1982) and also Crawford et al. (1983). 

Aligned Rank Methods 

In addition to the intrablock methods, the aligned rank techniques constitute nonparametric 
approaches for checking for the presence of trends in a data set However, unlike the intrablock 
methods which can be used with incomplete records, the aligned rank techniques are designed 
for use with evenly spaced observations for which there are no missing values. One particular 
kind of aligned rank method is described in this section. 

Suppose that a time series, X, consists of a complete record sampled over n years where 
there are m seasons per year. Hence, following the notation suggested by Van Belle and Hughes 
(1984). the data can be displayed in the following fashion: 

1 
2 

Year , 

n 

Season 
1 1  2 . . . m  

When a dot is used to replace a subscript, this indicates the mean taken over that subscript. 
Therefore, 

n 

i= 1 
x . ~  = x x i i l n  

is the mean of thefi season and 
m 

j =  I 
xi. = xxiilm 

is the mean for the ith year. 
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1 

2 

Year . 

n 

mean 

Bared upon the work of Sen (1968).  F a m l l ( 1 9 8 0 )  proposed the following procedure to test 

The data are deseasonalid by subtracting the seasonal average from each data point as in 
[13.2.2] in Section 13.2.2. However, because each Season is suspected of containing a 
trend, one may question the validity of deseasonalization which assumes a constant mean 
for each season. 
The nm descasonalized data points are ranked from 1 to nm. When t values an tied, sim- 
ply assign the average of the next t ranks to each of the t tied values. The matrix of ranks 
for the deseasonalized data can be written as: 

for the presence of trends which is also described by Van Belle and Hughes (1984).  

1. 

2. 

1 2  . . .  m 

RI1 R12 . . . RIm 

R2I R22 . . . R2m 

R, ,  Rn2 . . . R ,  

R,l R,2 . . . RJn 

I 

n(n + 1 ) x ~ ( ~ , j - R , j ) ~  
;&=I 

mean 

R1. 
R2. 

- 

Rn. 

R..  
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m n  xx(~ij  -R. j )2/[m(n - 111 
j= l i= l  

The null hypothesis, Ho, is that the data are identically independently distributed and, 
hence, possess no trends. The alternative hypothesis, HI, is that the data have trends. For large 
samples, T approaches normality with a mean of zcro under Ho and a variance of unity. Conse- 
quently, the test statistic T is approximately a standardized normal variable and, as explained in 
Section 23.2.2. either a one sided or two sided statistical test can be executed. 

If a data set is incomplete, the missing observations must be estimated before the aligned 
rank method can be employed. Depending upon how many data points are missing, a suitable 
data filling procedure from Sections 22.2, 19.3 or 18.5.2, can be selected for obtaining an 
estimated evenly spaced time series. Farrcll(l980) suggests estimating missing data using a least 
squares approach. Subsequent to the data filling, the aligned rank test statistic in [23.3.23] can 
be calculated in order to carry out an hypothesis test. 

An alternative approach to estimating missing data, is to adjust the seasonal length until 
there is at least one observation per season for each year (Van Belle and Hughes, 1984). For 
example, suppose that one were examining weekly data for which there are quite a few weeks 
containing no data points. However, when a monthly series is considered for the Same data set, 
there is at least one observation per month of every year. By calculating the mean value for each 
month within a given year, a time series of evenly spaced monthly values can be created. The 
aligned rank method can then be applied to this monthly series. 

As noted earlier, ties of the deseasonalized values can easily be handled using the aligned 
rank method. If there are censored values where some data are reported to be below a limit of 
detection. the affected data can be arbitrarily futed at some constant value which is less than the 
limit of detection. A drawback of this approach is that the estimates of the yearly and seasonal 
means will be biased. Therefore, it should be used only if the relative number of censored values 
is not too great. Nevertheless, subsequent to determining the ranks of the deseasonalized data, 
the statistic in [23.3.23] can be calculated. 
Comparison of Intrablock and Aligned Rank Methods 

sonal Mann-Kendall test are based upon the same model given by 
As pointed out by Van Belle and Hughes (1984). both the aligned rank method and the sea- 

x - = p + a ;  'J + b j  + e l .  i = 1,2,. . . , n  ,and j = 1.2,. . . , m  r23.3.241 

where p is the overall mean, a = {ul,a2, . . . , a  J ,  is the yearly component, b = (b1,b2, . . . , b J .  
is the seasonal component and 

n m 
z a i = z b j = O .  
i=l  j = l  

The el is the noise term which is independently dismbuted. For both nonparamemc tests, the 
null hypothesis is that the yearly component is zero and hence 

HG a = o  

The alternative hypothesis is 
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with at least one strict inequality. Accordingly, both approaches a~ testing for a monotonic 
a n d  ova  the years where the a n d  is not necessarily linear. A a n d  within each year could be 
considered as part of the seasonal mnd b. 

Using the results of Puri and Sen (1971). Van Belle and Hughes (1984) show that the 
aligned rank test is always more powerful than the seasonal Mann-Kendall test and that the 
difference is greater for smaller numbers of years of data. As mentioned before. when then are 
missing data, the intrablock tests can be used without having to estimate the missing observa- 
tions. However, in order to use the aligned rank method with an unevenly spaced time series. the 
missing observations must be estimated prior to applying the technique. Finally, using simula- 
tion experiments, Taylor and Loftis (1989) find that the correlated seasonal Mann-Kendall test is 
more powerful than its competitors, including an aligned rank method, for detecting trends. 

23.3.3 Grouping Seasons for Trend Detection 

As was pointed out in the discussion included with the seasonal Mann-Kendall test, an 
intervention may affect each season or groups of seasons in different ways. Based upon a physi- 
cal understanding of the problem and using exploratory data analysis procedures such as the time 
series plots described in Section 22.3.2 and the box-and-whisker graphs of Section 22.3.3, one 
can decide how Seasons should be grouped together. For instance, as explained in Section 
19.5.4, a physical comprehension of the problem and exploratory data analyses make one suspect 
that a forest fire caused the spring flows of the Pipers Hole River in Newfoundland, Canada, to 
increase immediately after the fire and to gradually attenuate over the years back to their former 
levels as the forest recovered. However, during other seasons of the year the fire did not cause 
any trends in the time series after the fire. By employing the technique of intervention analysis, 
this behaviour is rigorously c o n f i i d  and accurately modelled in Section 19.5.4. 

Nonparametric testing can be executed in a fashion similar to the general approach used in 
intervention analysis studies. In order to classify seasons into groups where seasons within each 
group possess the same kind of trend, one procedure is to rely upon a physical understanding of 
the problem and the output from exploratory data analyses. The Kmkal-Wallis test (Kruskal 
and Wallis, 1952) can also be used to test for the presence of seasonality and decide upon which 
seasons arc similar (set Appendix A23.3). The statistic defined for the nonparametric test being 
used to detect trends can be calculated separately for each group of seasons to ascertain if a cer- 
tain kind of trend is present within the group. Output from the nonparametric tests may suggest 
other ways in which the Seasons should be grouped and then the statistics can be calculated for 
the new grouping of the seasons. 

Consider, for example, how the seasonal Mann-Kendall test can be used when seasons are 
grouped according to common patterns recognized in trends. The Mann-Kendall statistic, S,, for 
each season can be calculated using [23.3.7] and the variance, 0:. of S, can be determined using 
[23.3.81. Suppose that one of the groups of seasons consists of seasons in the set represented by 
G. Then the seasonal Munn-Kendall sfatistic for the seasons in group G is calculated as 
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[23.3.25] 

The variance of SG is then determined as 

Vur[SG]= c 0; [23.3.26] 

where the expected value of each St and also SG is zero. Because SG is asymptotically normally 
distributed, hypothesis testing can be done to see if the seasons in group G possess a common 
trend. Recall that a significantly large positive value of S, would indicate an inmasing a n d ,  
while a sigruficantly large negative value of SG would man there is a decrtasing trcnd Further, 
for small samples one should employ [23.3.14] to calculate the standard normal deviate where 
S, replaces S’ in [23.3.14]. In a similar fashion, groups of seasons could be considered when 
employing the correlated seasonal Mann-Kendall statistic and also the aligned rank method. 

For deciding upon how c o m n  or homogeneous trends should be grouped, Van Belle and 
Hughes (1984) suggest employing a homogeneity rest (Fleiss, 1981, Ch. 10) which is commonly 
used in the study of crossclassified data. This test is closely related to the seasonal Mann- 
Kendall test of Section 23.3.2. Van Belle and Hughes (1984) propose that the grouping or 
homogeneity test should be used as a preliminary test for checking for the homogeneity of trends 
and, thereby, classifying the seasons into groups where each group possesses a common trend. 
Subsequent to this, an intrablock statistic such as the seasonal Mann-Kendall statistic or the 
aligned rank statistic can be calculated for each group to ascertain if there is a significantly large 
common trend in the group. 

For use in the homogeneity test of Van Belle and Hughes (1984), the statistic 2; is defined 

X e G  

as 

[23.3.27] 

where the Mann-Kendall statistic, Sg, for the gth season is given in i23.3.71 and its variance, 
Vur[Sg] is presented in [23.3.8]. Because Zg is asymptotically normally distributed. 2; approxi- 
mately follows a chi-squared distribution with one degree of freedom. As in [23.3.9], Kendall’s 
tau for the gth season is related to S, by the expression 

Z, = 2Sg/ n (n - 1) 1 [23.3.28] 

where n, is the number of data points in the gth season. The null hypothesis, Ho. is there is no 
trend in the gth season and it can be written as Ho: r, = 0 or, equivalently, Ho: Sz = 0. 

Notice that because the square of Sg is used in [23.3.27], the sign of S, is eliminated in the 
calculation of 2;. Because a positive or negative sign for S, indicates an increasing or decreas- 
ing trend, respectively, one should make sure that different kinds of trends are not being com- 
bined when Z; is summed across seasons. Suppose that a physical appreciation of the problem 
in conjunction with output from preliminary data analyses indicate that seasons in a set labelled 
G should be included within one group. This group, for example, may stand for the group of 
summer seasons where there is an increasing trend in each summer season and, therefore, an 
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increasing trend for the entire group G. For the group G, the overall homogeneity rest statistic is 

[23.3.29] 

which is approximately x2 distributed with IG I degrees of freedom where IG I is the number of 
seasons in group G. The null hypothesis, H,,, is that there is no trend across the seasons in G 
and. therefore, the Kendall z or the Mann-Kendall statistic for each season in G is zero. If, at a 
selected level of significance, the statistic calculated using [23.3.29] is sigmfkantly different 
from zero, one can reject Ho and conclude that there is an overall trend across the seasons in the 
group G. The statistic in r23.3.291 is, of course, separately calculated for each grouping of sea- 
sons where every season is a member of one of the groups. 

The foregoing approach is one way of deciding upon how seasons should be grouped. 
Other approaches are given by Van Belle and Hughes (1984). Fleiss (1981) and Zar (1974). 

In the general situation, one may wish to examine trends in various water quality variables 
across an entire river basin or other appropriate geographical entities for which there is a set of 
locations where data are collected. Consequently, for a given variable one must not only ascer- 
tain how seasons should be grouped at a single station but also how data can be grouped across 
stations. For each water quality variable, one procedure is to employ a physical understanding of 
the problem and exploratory data analyses executed for data collected at each site to decide upon 
which seasons and site locations should be included in G used for calculating a group statistic 
such as the Mann-Kendall statistic in r23.3.251 and the homogeneity statistic in r23.3.291. Based 
upon the x2 statistic in [23.3.29], Van Belle and Hughes (1984) propose a method for grouping 
data for a given variable across seasons and sites. 

As noted earlier, one can use a statistical test such as the nonparametric Kruskal-Wallis test 
(see Appendix ,423.3) to determine whether or not a given time series contains seasonality. If 
the data are not seasonal, then, of course, all of the observations fall under one group. One can 
then employ the nonseasonal Mann-Kendall test in [23.3.1] or r23.3.51 to check for trends. 
However, one should not employ the seasonal Mann-Kendall trend test when seasonality is not 
present. This would certainly result in a loss of power in the trend test. 

23.3.4 Combining Tests of Hypotheses 

One may calculate a test statistic such as the Mann-Kendall statistic Sg in r23.3.71 for each 
season of the year when examining a seasonal time series. Alternatively, by following one of the 
procedures described in Section 23.3.3, one may join seasons together and calculate a separate 
statistic, such as S, in [23.3.25], for each group of seasons. Whatever the case, following the 
determination of the test statistic and associated significance level for each s e w n  or each group 
of seasons, one may wish to then combine tests of hypotheses across seasons or groups of sea- 
sons. For explanation purposes, suppose that one wants to calculate a separate Mann-Kendall 
statistic for each of the seasons and then combine tests of hypotheses across seasons in order to 
arrive at an overall hypothesis test. As noted by Littell and Folks (1971). several authors have 
considered the problem of combining independent tests of hypotheses. Using the exact Bahadur 
relative efficiency (Bahadur, 1%7), Littell and Folks (1971) compare four methods of combining 
independent tests of hypotheses. The methods they compare are Fisher's (1970) method, the 
mean of the normal transforms of the significance levels, the maximum significance level, and 
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the minimum significance level. Although none of the tests is uniformly more powerful than the 
others, according to the Bahadur relative efficiency, Fisher’s method is the most efficient of the 
four. 

Let the observed significance level of a test of hypothesis be denoted by SLi. For example, 
because the distribution of S, in [23.3.7] is known for a given data set, one can calculate SLg for 
S, where g = 13, . . . ,m.  Because of the relationship between Kendall’s zg and S, in [23.3.9], 
SLg would be the same for both tg and S, in season g. When there arc rn independent tests, 
Fisher (1970. p. 99) shows that 

[23.3.30] 

For the situation where SL, is the observed significance level for Sg or, equivalently, rg in the 
gth season, the null hypothesis would be that the data for all of the seasons considered in the test 
come from a population where the random variables are independent and identically distributed. 
The alternative hypothesis is that the data across the seasons follow a monotonic trend over time. 
If, for example, the magnitude of the observed chi-squared variable calculated using [23.3.30] 
were larger than the tabulated x& value at a chosen significance level, one would reject the null 
hypothesis. In r10.6.71 within Section 10.6.4, Fisher’s combination method is used to demon- 
strate that ARMA models fitted to geophysical time series statistically preserve the Hurst coeffi- 
cient and hence provide an explanation for the Hurst phenomenon. 

23.35 Flow Adjustment of Water Quality Data 
In [22.4.5] of Section 22.4.2, an intervention model is presented for describing the effects 

of cutting down a forest upon a seasonal water quality time series. Notice in [22.4.5] that the 
response variable, which represents the water quality variable under consideration, is dependent 
upon a number of different components written on the right hand side of [22.4.5]. Of particular 
interest is the fact that the rivefflows are included as a covariate series in the intervention model 
and the manner in which the flows stochastically affect the output is modelled by the specific 
design of the transfer function for the riverflows. Accordingly, the influence of water quantity 
upon a given water quality variable is realistically and rigorously accounted for by including the 
flows as an input series to a water quality intervention model. 

When employing a nonparamelric test for checking for the presence of trends, a more accu- 
rate study can be executed if the impacts of water quantity upon water quality are properly 
accounted for. For a long time, scientists have known that many water quality variables are 
correlated with river discharge (Hirsch et al.. 1982; Langbein and Dawdy. 1964; Johnson et al., 
1969; Smith et al., 1982). Consider, for example, the case of total phosphorous which can have a 
rather complex dependence upon riverflows (Reckhow, 1978; Hobbie and Likens, 1973; Borman 
et al., 1974). As mentioned by Smith et al. (1982). at base flow conditions in certain watersheds, 
much of the phosphorous may be due to point-source loadings and, hence, a decrease in flow 
would cause an increase in phosphorous concentrations. Alternatively, in some river basins the 
Occurrence of a massive rainstorm over a basin may cause the erosion and transport of organic 
and inorganic materials which carry large amounts of phosphorous and, therefore, the resulting 
increases in rivefflows may be combined with increased phosphorous levels. Consequently, for 
a given river it is important to have a physical understanding of the type of relationship which 
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exists between a given water quality variable and runoff. In some river basins, more than one 
physical process may take place where each process is a function of the quantity of rivefflow. 
As noted by Hamed et al. (1981). strcamflow is the single largest source of variability in water 

Hirsch et al. (1982) and Smith et al. (1982) suggest a general procedure by which the dif- 
ferent effects of water quantity upon a water quality variable can be modelled. The purpose of 
their procedures is to develop a time series of frow adjusted concentrations (FAC) for the water 
quality variable under consideration which can then be tested for trends using appropriate non- 
parametric tests described in Section 23.3 and elsewhere. Depending upon the physical charac- 
teristics of the problem being studied, an appropriate filter can be designed to obtain the FAC 
series. In general, an equation for determining concentrations may have the form 

X =f(Q) + E [23.3.31] 

where Q is the flow, f(Q) gives the functional relationship of the flows upon the water quality 
variable under consideration and also contains the model parameters, E is the noise, and X 
represents the concentration. For the situation where increased flows causes dilution of the 
water quality variable, f(Q) may have one of the following forms (Hirsch et al., 1982): 

quality data. 

where 1; is the ith parameter. If increased precipitation and hence runoff increase the concentra- 
tion of a water quality variable, it may be reasonable to model f(Q) as 

f@) = XI + kQ + X3Q2 

As explained by Hirsch et al. (1982) and Smith et al. (1982). regression analysis can be 
employed to determine which form of fa) is most appropriate to use. Given that a significant 
relationship can be found using regression analysis, the FAC for year i and season j is calcu- 
lated as 

w..  =I.. -3.. 
'I 1J 'I 

where w+ is the estimated FAC, xu is the observed concentration and *j is the estimated concen- 
tration which is determined using linear regression with the best form of f(Q) in [23.3.31]. The 
FAC series can then be subjected to nonparametric tests in order to check for trends. 

When obtaining the FAC series, one is in fact using a parametric procedure to properly 
filter the original observations for use with a nonparamemc test. An advantage of this approach 
is that it can be used with unevenly spaced time series. A drawback is that in regression analysis 
the noise term is assumed to be white. If sufficient data are available so that an estimated evenly 
spaced series can be obtained, the technique of intervention analysis constitutes a single 
parametric approach which is a much more flexible and powerful procedure for modelling water 
quality series. Note only does the intervention model account for the stochastic effects of flows 
upon the water quality variable but it also rigorously models the forms and magnitudes of trends 
caused by known interventions. Indeed, if it is suspected that the manner in which flows affect 
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the water quality variable depends upon the season of the year, appropriate dynamic components 
can be designed to model this behaviour. Further, as explained for the intervention model in 
[22.4.5] and elsewhere in Chapter 19. any number of input series and trends can be modelled and 
the noise can be described by a comlated process such as an ARMA model. 

In Section 24.3.2 a general methodology is prcscntcd for analyzing trends in water quality 
series measured in rivers. To remove the effects of riverflow upon a given water quality vari- 
able, the robust locally weighted regression smooth described in Section 24.2.2 is employed as 
one of the steps in the overall procedure. Subsequently, the Spearman partial rank correlation 
trend test described in Section 23.3.6 and other appropriate trend tests are employed for formally 
testing for the presence of mnds in the water quality series. Other approaches for compensating 
for discharge when evaluating trends in water quality one provided by Harned et al. (1981). 
Bodo and Unny (1983) explain how stratified sampling can improve the estimation of load- 
discharge relationships. 

23.3.6 Partial Rank Correlation Tests 

Introduction 
The previous subsection deals with the problem of adjusting water quality data in a river 

for the impacts of flow before checking for the presence of a trend in the water quality data. To 
eliminate, hopefully, the effects of flow, various regression models can be used, as described in 
Section 23.3.5 and also Section 24.3.2 in the next chapter. 

The removal of flow effects from a water quality time series when testing for a trend, is 
part of a more general statistical problem. More specifically, when studying the dependence 
between two variables X and Y, one may wish to know if the correlation between X and Y is 
caused by the correlation of both X and Y with a third variable Z. For instance, one may want to 
find out if a possible trend in a water quality variable, as manifested by the correlation of the 
water quality variable over time, is independent of riverflows. Hence, one would like to remove 
or porn’al out the influence of water quantity when testing for a trend in the water quality vari- 
able over time. Another example for which eliminating certain effects is desirable, is when one 
wishes to check for trend in a seasonal water quality variable against time when the seasonality 
has been partialled out. 

The objective of this section is to present a nonparametric trend test in which undesirable 
effects can be removed. In particular, the Spearman partial rank correlation test (McLeod et al... 
1991) is suggested as a useful trend test for employment in environmental engineering. Because. 
this test utilizes some definitions used in the Spearman’s rho test, this latter test is first 
described. Additionally, the Spearman partial rank correlation test is compared to the seasonal 
Mann-Kendall test of Section 23.3.2 as well as the Kendall partial rank correlation coefficient 
(Kendall, 1975). Applications of the Spearman partial rank correlation test to a seasonal water 
quality time series are given in Section 24.3.2. 

Spearman’s Rho Test 

In 1904. Spearman introduced a nonparamemc coefficient of rank correlation denoted a!; 
pm which is based upon the squared differences of ranks between two variables. Speman’: i  

rho can be employed as a nonparametric test to check whether or not there is significant 
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correlation between two variables X and Y. 
Let the sample consist of a bivariate sample (xiyi) for i = 1.2, . . . , n ,  where n is the sample 

size. Suppose that the values of the X variable are ranked from smallest to largest such that the 
rank of the smallest value is one and that of the largest value is n. Let Ri"y) represent the rank of 
the X variable measured at time i .  Likewise, the values of the Y variable can be ranked and Ri(') 

can represent the value of the rank for the Y variable at time i .  The sum of the 4uand  differ- 
ences of the ranks is 

S(d2) = D 2  = i ( R j x )  - RjY$2 
i= 1 

Speurmun's rho is then defined for the case where there art no ties in X and Y as 

[23.3.32] 

[23.3.33] 

When the two rankings for X and Y are identical, then p ~ y  = 1 whereas pm = -1 when the rank- 
ings of X and Y are in reverse order. 

If some values of X or Y are tied, these values arc simply assigned the average of the ranks 
to which they would have been assigned. Let p be the number of tied groups in the X data set 
where rj  is the number of data points in the jth tied group. Likewise, let q be the number of tied 
groups in the Y sequence where uj is the number of observations in the jth tied group. Then the 
formula for calculating pq when there are ties in either or both time series is (Kendall, 1975, p. 
38, Equation 3.8) 

#en using pm in a statistical test to check for the absence or presence of correlation, the 
null hypothesis, H,, is that there is no correlation, For large samples, p ~ y  is distributed as 

N 0,- - 1 where n is the sample size. The alternative hypothesis, HI. is that there is correla- 

tion between the X and Y variables. 
By letting one of the variables represent time, Spearman's rho test can be interpreted as a 

trend resr. In particular, replace (xi ,yi)  by ( r j , )  for which r = 1.2, . . . ,n .  and x, consists of 
x1.x2,. . . ,xn. Equations [23.3.32] to [23.3.34] can then be employed to calculate a statistic for 
use in a trend test. If, for example, the estimated value of pw is significantly different from 
zero, then one can argue that time and the X variable are significantly correlated, which in turn 
means there is a trend. 

[ :  1 
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Spearman Partial Rank Correlation Test 

When examining dependence between two variables X and Y. the question arises as to 
whether or not the correlation between X and Y is due to the correlation of each variable with a 
third variable 2. For example, one may wish to ascertain if an apparent trend in a water quality 
variable, as reflected by the correlation of the water quality variable over t he ,  is independent of 
seasonality. Therefore, one would like to eliminate or purfiul out the effects of seasonality when 
testing for a a n d  in the water quality variable over time. 

The purpose of the Spearman partial rank correlation test presented in this section is to 
determine the correlation between variables X and Y after the effects of 2 upon X and Y 
separately are taken into account and are. therefore, removed. The notation used to represent this 
type of partial correlation is corr(XY/Z) or pnz. 

Let the sample consist of a trivariate sample (xiyi,zi) for i = 1.2,. . . , n ,  where n is the 
sample size. As is also done for the Spearman’s rho test, suppose that the values of the X vari- 
able are ranked from smallest to largest such that the rank of the smallest value is one and that of 
the largest value is n .  Let R/’) represent the rank of the X variable at time i .  Likewise, the 
values of the Y and 2 variables can be ranked separately to produce R!n and R,(‘), respectively. 

The test statistic for the Spearman partial rank correlation test is calculated using 

Pxr - PxzPn 
Pxrz = 2 1R 2 1 0  (1 - Pxz) (1 - Pn) 

[23.3.35] 

Each rho term on the right hand side of the above equation is calculated using [23.3.33] when 
there are no ties in any variable or r23.3.341 where there are ties. 

Under the null hypothesis, there is no correlation between X and Y when the effects of Z 
are partialled out To test the null hypothesis that E(pxrz) = 0, one calculates 

[23.3.36] 

where p~yz is defined in [23.3.35]. Under Ho, f follows a student t distribution on (n -2) 
degrees of freedom (Pitman’s approximation), which is the same as pxu in [23.3.33] and 
[23.3.34]. The alternative hypothesis, HI, is there is correlation between X and Y, after account- 
ing for the influence of Z separately upon X and Y. If, for example, the SL for the test statistic 
were calculated to be very small and less than 0.05, one could reject the null hypothesis that X 
and Y are not correlated when Z is partialled out. When the X, Y and 2 variables represent a 
given water quality time series, time and seasonality, respectively, then a significantly large 
value of the Spearman partial rank correlation coefficient means that there is a frend in the series 
over time when seasonality is removed. Besides checking for trend after removing seasonality. 
the Spearman partial rank correlation test can be used for other purposes. For example, it can be 
extended to take into account correlation when testing for the presence of a trend. 

The partial Spearman correlation test can be used with data for which there are missing 
values, ties and one level of censoring, either on the left or right. If the data are multiply cen- 
s o d ,  one can use the expected rank vector approach of Hughes and Millard (1988) before 
applying the test, which is discussed in Section 23.3.8. Some theoretical developments and 
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simulation experiments for the partial Spearman correlation test arc reported by Valz (1990). 

Comparison to the Seasonal Mann-Kendall Test 

Besides the Spearman partial rank correlation test of this section, recall that the seasonal 
Mann-Kendall test of Section 23.3.2 can also be used to check for trend in a seasonal time series. 
However, the Spearman partial rank correlation test has advantages over the seasonal Mann- 
Kendall test including: 
1. 
2. 
3. 

simulation experiments demonstrate that it has more power. 

it is mote flexible and can be extended, for example, to take into account correlation, 
and it provides an estimate of the magnitude of the trend through the coefficient in 
[23.3.35]. For example, when one is using the Spearman partial rank correlation coeffi- 
cient, to check for a trend in a variable X over time when seasonality is partialled out (see 
explanation in last subsection), larger positive and negative values indicate bigger upward 
and downward trends over time, respectively. 

Kendall Partial Rank Correlation Coefficient 

Another coefficient for determining the correlation between two variables X and Y when 
the effects of Z upon each of these variables is taken into account is the Kendall partial rank 
correlation coefficient (Kendall. 1975, Ch. 8). However, because of the way the statistic is 
defined, it possesses some serious theoretical drawbacks. The end result is the distribution of the 
statistic is not known so that it cannot be used in hypothesis testing (Valz, 1990). 

Before describing in more detail specific disadvantages, some notation is required. Let 
z ~ y ,  z ~ y  and zm represent the Kendall rank correlation coefficient between X and Y, Z and Y 
and X and Z, respectively. Also, let znz be the Kendall partial rank correlation statistic to 
determine the rank correlation between X and Y, taking into account the effects of Z upon these 
variables. Finally, let p’flz be the Pearson partial rank correlation coefficient. For equations 
defining these statistics, the reader can refer to Kendall(l975). 

The disadvantages of using the Kendall partial rank correlation coefficient include: 
If the X. Y and Z variables are multivariate normally distributed and the Pearson partial 
rank correlation coefficient p’nz = 0, it can be shown using simulation and also from the 
relationship 

1. 

[23.3.37] 

that zflz is different from zero. This does not occur with the Spearman partial rank corre- 
lation coefficient. 
The variance of the estimate for zXvz depends on zn, tZy and tm. The analogous undesir- 
able property does not hold for the Pearson or Spearman partial rank correlation coefficient. 
On intuitive grounds, it appears that the Kendall partial rank correlation coefficient does 
not eliminate in a linear way the effects of 2. 

2. 

3. 
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Because of the foregoing disadvantages, the Kendall partial rank cornlation coefficient is not 
used in applications by the authors. 

23.3.7 Nonparametric Test for Step Trends 

The statistical tests described in Sections 23.3.2 to 23.3.4 as well as 23.3.6 are designed 
solely for discovering trends in a data set These techniques do not take into account when 
trends may have started due to external interventions. In this section, the nonparametric test of 
Hirsch and G h y  (1985) and Crawford et al. (1983) is described for ascertaining if a known 
intervention causes a significantly large step trend for series measured at multiple stations. This 
test is closely related to the Mann-Whitney rank-sum test As noted by Hirsch and Gilroy 
(1985). their test does not depend on parametric model assumptions, does not require complete 
data sets and is resistant to the effects of outliers. Nevertheless, if an evenly spaced data set can 
be estimated from incomplete records, the technique of intervention analysis could be used for 
accurately modelling aends. Recall from Chapter 19 and Section 22.4 that intervention analysis 
can be employed to estimate the exact magnitude of a step trend or, for that matter, many other 
types of rrend created by known interventions. 

In their paper, Hirsch and Gilroy (1985) examine the detectability of step trends in the 
monthly rate of atmospheric deposition of sulphate. A downward step trend in the sulphate lev- 
els would be due to a sulphatc emission control program which came into effect at a known date. 
Prior to employing the statistical test, it is recommended that the original data set be appropri- 
ately filtered to remove unwanted sources of variation. When dealing with a water quality vari- 
able such as phosphorous, the technique described in Section 23.3.4 is a procedure for filtering 
the phosphorous data so the effects of water quantity upon water quality are taken into account. 
For the case of removing unwanted variation from a time series describing the rate of atmos- 
pheric deposition of sulphate, Hirsch and Gilroy (1985) present a specific type of filtering to 
remove the portion of the variance in sulphate loading rates which is due to the variance in pre- 
cipitation rates and also to the variance in the seasonally varying mean values. In particular, the 
filtered sulphate loading series consists of the residuals obtained from the regression of loga- 
rithmic sulphate loadings on the logarithmic precipitation series. 

Hirsch and G i h y  (1985) apply the nonparamemc test for step trends to filtered sulphate 
loading series available at ns measuring stations. The nonparametric test is the Mann-Whitney 
rank-sum test on grouped data which is described by Bradley (1968, p. 105). To apply the test to 
the same physical variable measured across seasons at ns sites. the following steps are adhered 

If it is not advisable to test the original series, obtain a filtered series by utilizing an 
appropriate filter. As just noted, for the case of sulphate loading series, one may wish to 
employ the filter presented by Hirsch and Gilroy (1985) while one may wish to use one of 
the filters described in Section 23.3.5 when dealing with certain kinds of water quality data 
Calculate the Mann-Whitney rank-sum statistic and other related statistics for data which 
are grouped according to s e w n  and station. In particular, by letting the subscripts i, j ,  and 
k represent the year, season and station, respectively. for group j k  (season j and station k ) ,  
the Mann-Whitney rank-sum statistic is 

to: 
1. 

2. 
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[23.3.38] 

where n1 and n2 are the number of years before and after the known intervention. respec- 
tively, for which data arc collected, and Riir is the rank over the entire n years of the fil- 
tered data, x i j k .  i = 1.2, - e e p = nl + n2. which arc ranked for thejth Season and kth station. 
The statistic in [23.3.38] is determined for every season at each of the stations. If one 
assumcs the null hypothesis that there is no trend in group jk, the statistic w j k  has the 
expectation of 

p = nl(nl + n2 + 1)/2 r23.3.391 

and variance of 

[23.3.40] 

where m is the number of seasons. Note that the previous three equations assume that al l  
groups have the samc record length. However, the test described in this section can be used 
with data sets where the numbers of data points are different across groups. Although extra 
notation could be used to allow for varying record lengths across the groups, for simplicity 
of explanation the foregoing and upcoming equations are explained for the situation where 
each group has the same record length. 

If the data are independent, the mean and variance of the sum of the Mann-Whimey 
&-sum statistics across all the groups can be easily determined. In particular, the mean 

~~ 

m a. 
and variance of z z w j k  are given by m.n;p and m.n;$, respectively. 

j = l k = l  

The variance in [23.3.40] is based upon the assumption that the data and, hence, the 
w,k are independently distributed. Hirsch and Gilroy (1985) describe the following 
approach for estimating a; when the data are correlated. The covariance between w,k and 
wgh is given by 

r23.3.411 

where P ( x i j k X i g h )  is the rank correlation between data in season j station k and data in sea- 
son g station h.  The variance of the sum of the W$'s is determined using 

r23.3.421 

By assuming that the serial correlation of the ranks is lag one autoregressive and the same 
correlation coefficient can be used at all the stations, the estimation of the covariances can 
be greatly simplified. Based upon these assumptions, the estimated correlation coefficient, 
rl, can be easily calculated. All of the ranks, Rqk, except the last one, R,. for each station 
k = 1.2,. . . ,n,, are paired with the rank. Ri, j+l ,k ,  of the succeeding filtered observations 
except when j = m it is Ri+ l , lk .  The product moment correlation coefficient of all of the 
pairs determines rl.  The covariances c(Wjk,w,k) between different seasons at the same 
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station arc estimated using 

c*(wik,wgk) = d r l  Ig - i I 
The covariances c(wjk,wjh) ,  k f h ,  for different stations and the same season arc estimated 
as 

e(Wjk.Wjh) = drO(k$r) 

where r&h) is the product moment cornlation coefficient of the concurrent mnks 

( R i & , ) ,  i = 13,. . . , n;  j = 1.2, . . . ,m 

for stations k and h. For different stations and different seasons, the covariances 
C(W,krWgh). j f g, k f h ,  arc estimated using 

When considering the same season and station, the covariance c(w,k.w,k) is simply the 
variance given in [23.3.40]. Based upon the foregoing, to estimate the variance of the 
sum of the w,k statistics in r23.3.421, the following expression is utilized 

[23.3.43] - -  
b = l k = 1  . I j= lg=Ik= lh=l  

3. Perform a hypothesis test to ascertain if there is a significantly large step trend in the time 
series due to a known intervention. The null hypothesis, Ho, is that there is no step trend 
while the alternative hypothesis is that there is a step trend. This test could be restricted to 
a certain group of seasons of the year if it were expected that the intervention only affected 
the seasons within that group. For example, a pollution spill may only influence certain 
physical variables when the temperature is above a certain level and, therefore, the data 
from the winter months may be excluded from the group. For the purpose of the test 
described here, it is assumed that a step trend may be formed for data in each season across 
all of the stations due to a single known intervention. 

The test statistic for checking the validity of the null hypothesis is 

where p j k  and (7; are the mean and variance, respective~y, of 

[23.3.44] 

m n. c c wjk 
j = l k = l  

For the situation where the filtered series and hence the w , k  are independent, the mean and 
variance are given by rn.n,y and rn.n;$, respectively, wherc p and d are presented in 
[23.3.39] and [23.3.40], respectively. When the data are correlated, the mean is still given 
as m.n;p but the variance is calculated using [23.3.43]. Because 2’ is asymptotically nor- 
mally distributed one can compare the estimated value of 2’ to the value of a standard 
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normal distribution at a selected significance level. If. for example, the estimated value of 
2’ were significantly different from zero, based upon the available evidence one could 
reject Ho and thereby conclude that there is a significant step trend in the data. Because the 
Wilt in [23.3.38] are calculated for the ranks before the intervention, a negative value of 2’ 
would indicate an upward step trend after the intervention whereas a positive value of 2’ 
would indicate a downward step a n d  after the intervention. To demonstrate the efficacy 
of the aforesaid test for detecting a step trend caused by a known intervention, Hirsch and 
Gilroy (1985) perform simulation studies. For the situation w h m  the data are indepen- 
dently distributed, Crawford et al. (1983) present a computer program to calculate the test 
statistic. Research on comparing statistical methods for estimating step trends and their use 
in sampling design is presented by Hirsch (1988). 

23.3.8 Multiple Censored Data 

Introduction 

As noted in Section 23.3.2, often water quality data are reported as being less than a defec- 
tion level. These observations are referred to as censored data If a single limit of detection is 
used for a specified time series, the data is said to be singly censored. When there is more than 
one detection limit, the observations are multiple censored. 

To apply a nonparametric test to singly censored data, the version of the test modified for 
use with ties can be employed. In Section 23.3.2, for instance, it is explained how the seasonal 
Mann-Kendall trend test can be applied to a time series with one detection limit by simply treat- 
ing the censored observations as being tied. If, however, the detection limits vary within a time 
series and, therefore, the data are multiple censored, then one should follow other approaches in 
order to employ nonparametric tests. 

Because multiple detection levels occur frequently in practice, the purpose of this section is 
to put this problem into perspective and point out procedures for handling multiple censored 
observations so that one can apply a given nonparametric test to the data set. In this way, practi- 
tioners will be able to make the most efficient use of the data available to them for estimating 
test statistics or parameters, even though the observations may possess the undesirable property 
of being multiple censored. 

There are a variety of reasons as to why water quality and other kinds of data have multiple 
detection levels. As noted by authors such as Millard and Deverel(l988) and Helsel and Cohn 
(1988). these include: 
1. The detection level changes because different methods are used to measure water quality 

samples at various time periods, either in the field or in the laboratory. For example, over 
time analytical methods may improve so that the detection levels are lowered. 
To reduce costs, management may at different points in time request the use of cheaper 
measurement techniques which have higher detection levels. 
A range of methods may be available for measuring a given water quality variable at any 
given time. However, each technique may have a range of the concentration of the variable 
for which it can provide the optimal measurement. Hence, each method has a different 
detection level. 

2. 

3. 
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4. Multiple detection levels can be caused by the process of dilution. For example, because of 
time constraints, a laboratory technician may adhere to a procedun whereby he can only 
have a specified maximum number of dilutions for any single sample. Since the detection 
limit is dependent upon the amount of dilution, this procedure may create multiple dettc- 
tion Limits. 
When data arc sent to sevcral agencies or laboratories for analyses, these organizations may 
have different reporting levels. Oftcn environmental bodies such as the Environmental 
Protection Agency in the United States and Environment Canada are obligated to send their 
samples to many different private and government laboratories for analyses in order to treat 
everyone fairly. However, this may result in having multiple censored data. 
As mentioned by Millard and Devml(1988) as well as other authors in the field of water 

resources, an impressive array of techniques for handling censored data was originally developed 
within the mas of survival onulysis ond life testing (see, for example, Kalbfleisch and Prcntict 
(1980)). Consequently, the basic censoring definitions and methods developed in these areas are 
outlined and then the censoring techniques that are suitable for use with water quality and other 
types of environmental data are pointed out in the next section. An attractive procedure to use 
with multiple censored data is the expected rank vector method first suggested for use in 
environmental engineering by Hughes and Millard (1988). 

5. 

Censoring Definitions in Survival Analysis 

Before defining censoring, fmt  consider the meaning of truncation. A sample of data is 
said to be lrwtcared on the lefr if only observations above a specified truncation point are 
reported. Likewise, a data set is truncated on the right when only measurements below a given 
truncation level are used. If, for example, a phosphorous sample is left truncated at 5 mgll, then 
only the measurements that arc greater than 5 mgll would be reported. 

A sample consisting of n observations is singly censored on the l@ if n, of these measure- 
ments, where nc21, are known only to fall below a censoring level c .  The remaining (n-n,) 

uncensored observations would thus lie above the censoring or detection level and would bc 
fully reported. A sample of n measurements is multiple censored on fhe It$ with m censoring 
levels if ncl, n c 2 ,  , , , , and n,, Observations are censored on the left at levels cI.c2, . . . , and c,, 
respectively. 

In a similar fashion, one can also define singly or multiple censored observations on the 
right. For instance, a sample of n observations is singly censored on the right if n,' of these 
observations are known only to fall above a specified censoring level c' while the remaining 
(n-n,.) observations are reported exactly. 

One can further characterize censoring according to type I and type Il censoring. A singly 
censored sample of n measurements constitutes type I censoring on the left if a given censoring 
level cI is specified in advance and values below cl arc only reported as less than cl. Likewise, a 
singly censored sample of n observations arises from type I censoring on the righf when a speci- 
fied censoring level is fixed in advance and observations lying above c1 arc simply reported as 
being greater than cI.  
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When there is type 11 censoring on the l@, only the r largest observations of a sample of 
size n ,  where 1 5 r < n ,  arc reported, and the remaining (n - r )  measurements are known to lie 
below the rth largest values. 

For type 11 censoring on the right, only the r smallest measurements of a sample of size n ,  
where l e a ,  are reported, while the remaining (n-r) observations are known to lie above the 
rth smallest value. As an example of type II censoring, consider a situation where one is deter- 
mining the failure t ims  of n electronic components which art started at the same time. This 
experiment is stopped under type II censoring aftcr r of the components have failed. 

When dealing with environmental data, only some of the defhtions developed in swival  
analysis and life testing are required for practical purposes. In particular, environmenral time 
series having detection limits almost always fall under the category of type I l@ censoring for 
either single or multiple censoring. Within the field of survival analysis, usually right censored 
data arc encountered. Fortunately, many statistical techniques developed for use with right cen- 
sored data can be converted for use with data censored on the left The reader may wish to refer 
to texts by authors such as Kalbfleisch and Prentice (1980). Let (1980) and Miller (1981) for a 
description of statistical censoring techniques used in swival analysis and life testing. 

Multiple Censoring in Environmental Engineering 

In the area of environmental research, work has been canied out for estimating parameters 
when the data sets are singly censored (Kushner, 1976; Owen and DeRouen, 1980; Gilbert and 
Kennison, 1981; Gilliom et al., 1984; Gleit, 1985; Gilliom and Helsel. 1986; Gilliom and Helsel, 
1986; El Shaarawi, 1989; Porter and Ward, 1991). For the case of the seasonal Mann-Kendall 
trend test of Section 23.3.2, Gilliom et al. (1984) demonstrate the effects of censoring with one 
detection limit upon the power of the test 

Although less research has been carried out in the environmental area for handling multiple 
censored data, some valuable conmbutions have been made. Helsel and Cohn (1988) use Monte 
Carlo methods to compare eight procedures for estimating descriptive statistics when the data are 
multiple censored. They show that the adjusted maximum likelihood technique (Cohn. 1988) 
and the plotting position method (Hirsch and Stedinger. 1987) perform substantially better then 
what are called simple substitution methods. Millard and Deverel(l988) discuss nonparamemc 
tests for comparing medians from two samples, explain how multiple censored data can be han- 
ded when using these tests, and then employ Monte Carlo studies to compare the tests. 

An innovative approach to extend the nonseasonal and seasonal Mann-Kendall trend tests 
of Section 23.3.2 for use with multiple censored data is the method proposed by Hughes and 
Millard (1988) which is referred to as a tau-like test for trend in the presence of multiple censor- 
ing points. The first step is to assign an average rank for each observation and thereby obtain a 
rank vector, by taking into account all permissible combinations of ranks in the presence of mul- 
tiple censoring. Second, after the expected ranks are obtained for each observation in order to 
get the overall expected rank vector, a standard linear rank test can be applied to the expected 
rank vector. Hughes and Millard (1988) show in detail how this approach is carried out with the 
Mann-Kendall trend test. 

To explain how the procedure of Hughes and Millard (1988) works in practice, consider the 
situation presented below in Table 23.3.2 where measurements are available at four points in 
time. The symbol X -  indicates a left censored observation at detection level X .  For this simple 
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example, notice that then am the two detection levels: 10 and 4. Below the vector of observa- 
tions arc the possible threc rank vectors that could occur for the data set In each rank vector, the 
observations am ranked from 1 to 4, where the smallest value is assigned a 1 and the largest 
observation a 4. Notice that the observation at time 4 is always the largest value and, therefoe, 
is assigned a rank of 4 in each of the thrrx rank vectors. However, depending upon how far 
below a detection level the unknown actual observation may fall, one can obtain the possible 
rankings as shown in the table. The expected rank vector listed in the last row of Table 23.3.1 
simply gives the average rank across the time possible rank vectors at each point in timc. 

Table 23.3.1. Hypothetical example for calculating the expec :ted rank vector. 

I Time t I I 

Observation X,  

Possible 
Rank 
Vectors 
Expected 
Rank Vector 

1 2 3  4 

10- 9 4- 18 

3 2 1  4 
2 3  1 4 
1 3 2  4 

2 2.7 1.3 4 

To apply a n o n p m m c  test to data having multiple censoring levels, one simply calcu- 
lates the test statistic or parameters using the expected rank vector. As pointed out by Hughes 
and Millard (1988). the expected rank vector method furnishes the justification for employing 
the commonly accepted technique of splitting ranks when there are tied data (see Section 23.3.2). 
However, the conditional test statistic calculated using expected ranks does not have the same 
null distribution as in the case where there arc no ties. In particular, the variance of the test 
statistic is smaller when ties arc present (Lehmann. 1975). Consequently, a variance correction is 
usually required for test statistics when dealing with multiple censored data and data having ties. 

Hughes and Millard (1988) present formulae for calculating expected rank vectors when 
there arc two or more censoring levels. Additionally, they explain how to calculate the statistic 
required in the Mann-Kendall trend test of Section 23.3.2 and how to determine the expected 
value and variance of the test statistic. More specifically, for the case of nonseasonal data, one 
can usc [23.3.1] or j23.3.41 to calculate the Mann-Kendall test statistic S or z, respectively, using 
the expected rank vector. As would be expected, the Mann-Kendall test statistic is asymptoti- 
cally normally distributed. Assuming that the method of censoring is independent of time, one 
can calculate the expected value and variance of S or r. The expected value of S when there is 
multiple censoring is a function of the m e  value off ,  the sample size n and panem of censoring. 
This expected value is determined as 

P 

j=1  
E ( S )  = r [n (n  - 1)/2 - r j ( r j  - 1)/2] [23.3.45] 

where p is the number of tied groups in the data set and ti is the number of data points in the j th 

tied group. Usually, p is the same as the number of censoring levels while the number of 
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observations ti in the jth tied group is the same as the corresponding number of censored obser- 
vations. One can employ [23.3.2] to determine the variance of S. By computing expected ranks  
separately within each season, one can utilize the expected rank vector method with the seasonal 
Mann-Kendall test  

In some applications, the censoring levels may not be independent of time. For example, 
censoring levels may decrcase over time due to better laboratory methods. Hughes and Millard 
(1988) explain how simulation can be used to detamine the approximate distribution of the test 
statistic for this situation. Further research is stil l  quired in order to obtain theoretical results. 

23.4 POWER COMPARISONS OF PARAMETRIC AND NONPARAMETRIC TREND 
TESTS 

23.4.1 Introduction 

The objective of this section is to employ Monte Carlo experiments to comparc the powers 
of a specific paramebic and nonparametric test for detecting trends. In particular, the ACF at lag 
one given in [2.5.4] and Kendall’s tau in [23.3.5] constitute the parametric and nonparametric 
tests, respectively, which arc utilized in the simulation studies. Following a brief review of these 
two statistics in the next two subsections, the six models that arc used for generating data con- 
taining mnds arc described. In Section 23.4.5. the abilities in terms of power of the ACF at lag 
one and KendaU’s tau for detecting a n d s  arc rigorously compared. Simulation experiments 
demonstrate that the ACF at lag one is more powerful than Kendall’s tau for discovering purely 
stochastic trends. On the other hand, Kendall’s tau is more powerful when deterministic mnds 
arc present The results of these experiments were originally presented by Hipel et al. (1986). 

23.43 Autocorrelation Function at Lag One 

Although the ACF test at lag one could perhaps be considered to be a nonparametric test, it 
could also be thought of as a parametric test since according to the Yule-Walker equations in 
[3.2.12] the ACF at lag one is the same as the AR parameter in an AR(1) process. Nevertheless, 
it is presented here, because, like the nonparametric tests described in Section 23.3, it is only 
used for discovering the presence of trends. Unlike the intervention model. for example, the 
ACF test is not designed for modelling the shapes and magnitudes of trends caused by known 
interventions. 

The theoretical definition for the ACF at lag k is given in [2.5.4] while the formula. rk, for 
estimating the ACF at lag k is presented in (2.5.91. In Section 22.3.6, the ACF at lag k is sug- 
gested as an exploratory data analysis tool and the statistical propemes of rk arc discussed. Of 

particular interest in this section is the ACF at fag one, denoted by rlr which can be used for sig- 
nificance testing in a n d  detection at the confirmatory data analysis stage. The ACF at lag one 
is often referred to as the serial correlation coefficient at lag one or thefirst serial correlation 
coflcient. 

The estimate for the ACF at lag k for an evenly spaced annual series, x,, t = 12, . . . , n. can 
be calculated using [2.5.9] (Jenkins and Watts, 1968) as 
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[23.4.1] 

where x’ is the estimated mean of the x, series. When k = 1 in [23.4.1], one obtains the value of 
rl. For samples as small as 10, Cox (1966) observed that rI has an approximate normal null dis- 
tribution for both normal and some nonnorrnal parent distributions. h o k e  (1977) found empiri- 
cally that the normal distribution provides an adequate approximation for determining the critical 
regions (the subset of the sample space for which the null hypothesis is rejected if the data fall 
there). The asymptotic distribution of rI was established by Wald and WoLfowitz (1943) and 
Noether (1950). In this section, critical regions for t, an determined by the normal approxima- 
tions with the following moments (Kendall et al., 1983; Dufour and Roy, 1985) 

mean = -1ln 

and 

(n - 2)* 
n2(n - I )  

variance = [23.4.2] 

Knoke (1975) noted that r1 is a powerful test for detecting nonrandomness for first order autore- 
gression alternatives and that it performs reasonably well for a wider class of alternatives includ- 
ing the first order moving average model. 

When dealing with seasonal data, a separate ACF can be estimated for each season. In Sec- 
tion 14.3.2, this is referred to as the periodic ACF. Let xij be a time series value for the ith year 
andjth season where there are n years of data for each of the m seasons. As in [14.3.41, for the 
jth season, the ACF is estimated using 

n-k 

- x . j ) ( x i j ~  - x . j ~ )  

[23.4.3 j 

where x., is the mean of the jth season. 

The ACF for Season j is asymptotically normally distributed with a mean of zero and a 
variance of lln. To be more accurate, the formula in [23.4.2] could be used for calculating the 
mean and variance of r p )  for each season. To check if there is a trcnd in the jth season. one can 
calculate r y )  using [23.4.3] and then perform a significance test to ascertain if r y )  is signifi- 
cantly different from zero at the chosen level of significance. If r v )  were significantly large, this 
may indicate the presence of a trend. This kind of test can be done separately for each of the sea- 
sons in order to check for a trcnd in each season of the year. Note that when rj(l) is determined 
using [23.4.3], only the data within seasons j and j-1 are employed in the calculation. To pro- 
duce an overall test for trends across seasons, Fisher’s formula in [23.3.30] can be utilized. 
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23.43 #endall’s Tau 

For the case of nonseasonal data, Kendall’s tau, denoted by t, is defined in [23.3.5] in 
terms of the Mann-Kendall statistic S given in [23.3.1]. When dealing with seasonal time series, 
one can use Kendall’s tau for the gth season which is presented in [23.3.9]. However, for the 
purpose of this discussion, the nonseasonal version of Kendall’s tau is entertained. Rather than 
defining t in terms of a test statistic as in [23.3.5], an interesting interpretation is to express t 
using probabilities Specifically, for any two pairs of random variables (Xj,Yj) and (Xj,Yj), 
Kendoll’s tau is defined as the difference (Gibbons, 197 1) 

t=%,-zd [23.4.4] 

where 

x, = < xj>n(Yj < Yj)] + Pr[(Xi  > xj)n(Yi > Yj)] 

and 

x d  = P r [ ( X i  c Xj)n(Yj  > Yj)] + P r [ ( X j  > X j ) n ( Y j  c Yj)] 

In the case of no possibility of ties in either the X’s or the Y’s. the z can be further 
expressed as 

r =  2Rc - 1 = 1 -2xd 

As in Section 23.4.2, let an evenly spaced yearly time series be denoted as x,. 
t = 1,2, . . . . n .  For this sequence of observations, Kendall’s t is estimated by (Gibbons, 1971, 
1976; Conovcr. 1980 Kendall. 1975; Hollander and Wolfe. 1973) 

where N,, Nd and S arc given by 
n 

i < j  
N, = x0’i 

for which 

1. ifxi c x j  

0, otherwise 1 8’; = 

[23.4.5] 

and 

for which 
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1, ifxi >Xj 

0, otherwise I ri = 

and 

for which 

1, ifxi <Xj 

I$ii = 0, ifxi =xj I -1, othcnvisc. 

The statistic S can also be expressed as 

s =  b ] - w d = N , - N d =  b ] z  

Under the assumption that the xi’s arc IID (identically independently distributed), the 
means and variances for S and z, rcspcctively. an given in [23.3.2] and [23.3.10], respectively. 
Kendall(l975) and Mann (1945) derive the exact distribution of S for n 5 10, and, for samples 
as small as 10, show that the normal assumption is adequate. However, for use with the normal 
approximation, Kendall (1975) suggests a continuity correction which is the standard normal 
variate given in [23.3.3]. 

23.4.4 Alternative Generating Models 

The six models defined in this section an used for simulating the nonseasonal data 
employed for comparing the powers of the ACF at lag 1 which is rl in [23.4.1] and Kendall’s tau 
in [23.4.5]. The first three models contain only &reministic nendr while the last three have 
purely srocharn’c nends. Funhermore, under the null hypothesis it is assumed that the time series 
x,, r = 13, .  . . , n. consists of IID random variables. As noted in Section 23.3.2. the Mann- 
Kendall statistic S,  equivalently defined in both Section 23.4.3 and [23.3.1], is often used in 
place of z which is defined in [23.4.4], [23.4.5] and [23.3.5] (Kendall. 1975; Hirsch et al., 1982; 
Hirsch and Slack, 1984; Van Belle and Hughes, 1984). In fact, z and S am statistically 
equivalent. 

For the case of a purely dereminisn’c nend componenr, the time series, x,, may be written 
as 

XI = f ( r )  + Of [23.4.6] 

when f ( r )  is a function of time only and hence is a purely deterministic trend, while a, is an TID 
sequence. On the other hand, a time series having a p w l y  stochastic a n d  may be defined as 
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x, = f(Xf-lJl-2, - * * 1 + a, [23.4.7] 

whcre f(.q-l~f-2,...) is a function of the past data and a, is an innovation series assumed to be 
IlD and with the property 

E[u, * X,-J = 0, k = 1.2, * - * . [23.4.8] 

In actual practice, it may be difficult to distinguish between deterministic and stochastic 

[23.4.9] 

where B is the backward shift operator, u, = NID(O.1) and the starting values are x1 = 100, 
x2 = 101 and x3 = 102, The model in [23.4.9] is an ARIMA(03.0) model and the procedure for 
simulating with any type of ARlMA model is described in detail in Chapter 9. Based upon the 
shape of the graph in Figure 23.4.1, the series could probably be adequately described using a 
purely deterministic trend even though the correct model is purely stochastic. The same com- 
ments are also valid for the simulated sequences in Figures 4.2.1, 4.2.2, 4.3.4, and 4.3.5 of 
Chapter 4. Momver, a discussion rtgarding deterministic and stochastic trends is provided in 
Section 4.6. 

trends. For exampk, the series plotted in Figrule 23.4.1 was simulated from the modcl 

(1 - B>’X, = 4, 

SEQUENCE NUMBER 

Figure 23.4.1. Simulated sequence from an ARIMA(03.0) model. 
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Box and Jenkins (1976) suggest that for forecasting purposes it is usually better to use a 
purely stochastic mend model provided that such a model appears to be reasonable a priori for 
fitting to a given time series and also provides an adequate fit. However, in water quality studies 
it is often of interest to test if the level of the series has changed in some way and in this case a 
model with a possible deterministic trend component may seem more suitable beforehand 
k e  deterministic models, followed by three purely stochastic models an now defined. 

Linear Model 

In the water resources literature, using linear regression models as alternative hypotheses is 
quite common (Ltttenmaier. 1976; Hirsch et al., 1982; Hirsch and Slack, 1984; van Belle and 
Hughes, 1984). Assume x, is given by the linear model which is also written in [4.5.2] as 

x, = c  + br + a , ,  r = 1.2,. . . , n  [23.4.10] 

where a, = NID(0.o;). and c and b are constants. Without loss of generality, let c = 0.0. 

Logistic Model 

Because it is possible for a series to change rapidly at the start and then gradually approach 
a limit, a logistic model constitutes a reasonable choice for an alternative model. This model is 
defined as (Cleary and Levenbach. 1982) 

x ,=M/[ l -c  exp(-bt) ] + a , ,  r=1,2 ,..., n I 1  [23.4.11] 

where a, = NfD(O.1). M is the limit of x, as r tends to infinity, and b and c are constants. 

Step Function Model 

Following [4.5.1], the stepfiction model is defined as 

if 0 < t < nt2 

[23.4.12] 

where a, 2: NfD(0.u:) and c is the average change in the level of the series after time t = n/2 .  

The step function model is a special type of intervention model. The unit step function is 
defined in [19.2.3] while an intervention model that can handle step interventions is given in 
[19.2.9]. Besides Chapter 19, applications of intervention models to water quality and quantity 
timc series an presented in Section 22.4. 

Barnard's Model 

The Barnard model is defined as (Barnard, 1959) 

x, = x,-l + x6i +a, , t = 1,2, . . . , n 
*I 

i= I 
[23.4.13] 

where n, follows a Poisson distribution with parameter A, Si =NfD(O,a') and a, =N/D(O,l). 
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Without loss of generality, let x1 = ul. Barnard (1959) developed this model for the use in qual- 
ity control where there may be a series of nr correctional jumps between measurements. 

Second Order Autoregressive Model 

From [3.2.4] or [3.2.5], an AR(2) model may be written as 

x, = $lxf-l  + +g,4 + u, , t = 12, . . . , n [23.4.14] 

where u, = NID(0.a;). For the simulation studies executed in Section 23.4.5, 0; = 1.0 and 
E b , )  = 0.0. In Section 3.2.2, the general expression for the theoretical ACF of an AR@) process 
is given in [3.2.10] and the approach for solving for the theoretical ACF using the Yule-Walker 
equations in [3.2.12] is explained. Because of the cornlation structure present in an AR@) 
model or the AR(2) model in [23.4.14], simulated data from an AR model will contain stochastic 
trends. In the graph of a series simulated using an AR model such as the one in [23.4.14], a 
sequence of high values will often be grouped together and low values will often follow other 
small data points. 

Threshdd Autoregressive Model 

The development of the threshold uutoregressive (TAR) model is due to Tong (1977, 1978, 
1983), Tong and Lim (1980) and Tong et al. (1985). Tong (1983). Tong and Lim (1980), and 
Tong et al. (1985) found TAR models to be suitable for modelling and forecasting riverflows. 

The particular model considered here (Tong, 1983; Tong et al., 1985) is given by 

1.79 + 0.76r,-l - o.o5x,-2 + u,('), ifJf < - 1  

0.87 + 1.3xf-, - o . ~ I x , - ~  + 0 . 3 4 ~ , - ~  + 0j2), otherwise 
.-( (23.4.151 

where x, is the volume of rivefflow in cubic metres per second per day, J, is the temperature in 
degrees centigrade, and u j l )  = NID(0.0.69) and 0;') = NID(0.7.18). The above model was 
estimated for the Vamsdalsa River in Iceland for the period from 1972 to 1974. 

23.45 Simulation Experiments 

The procedures and algorithms for simulating with ARMA and ARIMA models are 
described in detail in Chapter 9. When a trend component is present, which is the case for the 
fmt three models of Section 23.4.4, the noise component is simulated separately and the deter- 
ministic component at each point in time is added to this. Note that for the first three models of 
Section 23.4.4, the noise component is white (i.e., it is independently distributed). Because of 
the white noise component, the first three models are deemed to have purely deterministic 
trends. However, if the noise component were correlated and were, for example, an ARMA 
model, a model containing a deterministic trend component plus the correlated or stochastic 
noise component would no longer possess purely deterministic trends. This is because the AR 
and MA components of the ARMA model would create a stochastic trend component and when 
this is added to the deterministic a n d  part of the model, the overall result would be a mixed- 
deterministic-stochtic trend. In fact, as alnady pointed out in Section 23.1, the general 
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intervention model in [19.5.8] contains both deterministic trend components (i.e., the intervcn- 
tion terms) and a stochastic trend component (ix., the comlatcd noise term). In order to be able 
to clearly discriminate between the powers of rl and Kendall's tau for detecting trends, only 
purely deterministic trcnds (the first three models in Section 23.4.4) and purely stochastic trends 
(the last three models in Section 23.4.4) arc entertained in the simulation experiments of this stc- 
tion. 

For each of the six generating models of the previous section. sample sizes of length 10.20, 
50 and 100 an considered. For each sample size or length of series, lo00 sequences of the same 
length are simulated. The null hypothesis is that each replication of a given length is ID while 
the alternative hypothesis is the replication contains a deterministic or stochastic trend com- 
ponent. For both the ACF at lag one, rlr in [23.4.1] and Kendall's tau, z, in [23.3.41 or [23.4.5] 
and a specified sample size, power functions an estimated for a significance level of 5% by the 
proportions of rejection of the null hypothesis from lo00 replications. As explained in Section 
23.2.2 and Table 23.2.1, the proportion of rejections can be interpreted as the probability of 
accepting the alternative hypothesis which is the power. 

For the estimated significance level, the test is said to be conservative if the estimated level 
is clearly less than the nominal level (in this case 0.05). On the other hand, if the estimated level 
is clearly greater than the 0.05, the test is said to be optimistic. Otherwise, the test is said to be 
adequately approximated. 

Empirical Significance levels and powers art given in Tables 23.4.1 to 23.4.6 for the six 
models defined in Section 23.4.4, respectively. Notice that except for the TAR model, for each 
model a range of values is used for each of the parameters and the estimated powers are given 
for z and rl for sample sizes or series having lengths of 10, 20,50 and 100. The standard error 
of any entry in the tables is (Cochran, 1977), where N is the number of replications 
and IC is the true rejection rate. For example, for the estimated significance level of 5% the stan- 

dard error is [ 0'05~''05) ] =0.0069. The enmes in the tables suggest that the critical 
1R 

regions an adequately determined by the null approximate distribution. The results of the simu- 
lation experiments arc discussed separately for each model. 

Linear Model 

The findings of the simulation study for the linear model in [23.4.10] are presented in Table 
23.4.1. Notice that the two tests, consisting of Kendall's tau and rl perform better when the 
standard deviation. a,, for the white noise term, a,, is smaller. This implies that the better the fit 
of a linear regression to a time series. the greater the chance of detection of nonrandomness. For 
instance, for samples as small as 10, the tests are very powerful for small standard deviations. 
An encouraging aspect of this model is that both tests attain asymptotic efficiency quite rapidly. 
For example, there is considerable improvement in the power functions from n = 10 to n = 20. 
A noteworthy point is that s is generally more powerful compared to rl, even though the differ- 
ence is almost negligible for n = 50 and n = 100 when both tests approach asymptotic efficiency. 
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Table 23.4.1. Power comparisons for the hear models with an empirical 
rejection rate at the 5 percent level of significance. 

Parameter 
values 

b 

0.00 
0.01 
0.01 
0.01 
0.01 
0.05 
0.05 
0.05 
0.05 
0.10 
0.10 
0.10 
0.10 

- 

- 

- 
=a 

0.05 
0.05 
0.50 
1 .00 
2.00 
0.05 
0.50 
1 .00 
2.00 
0.05 
0.50 
1 .00 
2.00 

- 

- 

r 

0.052 
0.335 
0.057 
0.053 
0.050 
1 .Ooo 
0.121 
0.066 
0.050 
1 .Ooo 
0.335 
0.121 
0.066 

10 

rl 
0.041 
0.138 
0.039 
0.040 
0.041 
0.990 
0.063 
0.049 
0.040 
1 .Ooo 
0.138 
0.063 
0.049 

20 
T 

0.035 
0.995 
0.072 
0.050 
0.036 
1 .Ooo 
0.632 
0.208 
0.084 
1 .Ooo 
0.995 
0.632 
0.208 

rl 

0.044 
0.749 
0.043 
0.043 
0.047 
1 .Ooo 
0.194 
0.064 
0.043 
1 .OOo 
0.749 
0.194 
0.064 

- 

n 

50 
r 

0.040 
1 .Ooo 
0.487 
0.146 
0.073 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.669 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 

rl 

0.045 
1 .Ooo 
0.080 
0.042 
0.042 
1 .Ooo 
1 .Ooo 
0.655 
0.121 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.655 

- 
100 

r 

0.048 
1 .Ooo 
1.Ooo 
0.769 
0.268 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 

- 
rl 

0.05 1 
1 .Ooo 
0.690 
0.131 
0.065 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.927 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 

- 

Logistic Model 

The results for the logistic model in [23.4.11] are given in Table 23.4.2. As is the case for 
the linear model, the tests perform better for the logistic model when there is a good fit, indicat- 
ing nonrandomness. When M < 1.0. obviously the standard deviation of 1.0 used in the simula- 
tion studies tends to have a water  impact on the simulated data than the other parameters of the 
model. Hence, a substantial component of x, is determined by a,, which is random. For 
M 2 1.0, the two tests (especially r) prove effective for detecting the presence of trends. Finally, 
it can be seen that 7 is more powerful than rl. especially for cases where the logistic model 
describes the data fairly well (M 2 1.0). There is, however, not much difference between the two 
tests when n = 100. 

Step Function Model 

As can be Seen in Table 23.4.3, the output for the step function model in [23.4.12] indicates 
greater power for relatively small standard deviations (and hence fairly good fits). What is 
remarkable about this model is the great power of both tests even for samples as small as 10. 
For example, for c = 5. the power is at least 50% for all sample sizes. The power functions also 
improve as c increases. Both tests are very effective in detecting trends for even a slight shift of 
0.5 in the mean level of the series. For a change of 5 in the m a n  level, both tests are very 
powerful. Even though r is more powerful than rlr both tests arc almost equally powerful for 
n 250. 
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Parameter 
values 

Table 23.4.2. Power comparisons for the logistic models. 

- 
b 

0.01 
0.01 
0.0 1 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.0 1 
0.01 
0.01 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 

- 

- 

- 
C - 

0.01 
0.01 
0.0 1 
0.01 
0.50 
0.50 
0.50 
0.50 
0.90 
0.90 
0.90 
0.90 
0.01 
0.0 1 
0.0 1 
0.0 1 
0.50 
0.50 
0.50 
0.50 
0.90 
0.90 
0.90 
0.90 - 

M 

0.0 
0.1 
1 .o 
5.0 
0.0 
0.1 
1 .o 
5.0 
0.0 
0.1 
1 .o 
5.0 
0.0 
0.1 
1 .o 
5.0 
0.0 
0.1 
1 .o 
5.0 
0.0 
0.1 
1 .o 
5.0 

- 

- 

10 - 
r 

0.052 
0.052 
0.052 
0.052 
0.052 
0.053 
0.051 
0.096 
0.052 
0.057 

1 .Ooo 
0.052 
0.052 
0.053 
0.053 
0.052 
0.054 
0.076 
0.622 
0.052 
0.052 
0.603 
1 .Ooo 

0.825 

- 

- 
rl 

0.041 
0.041 
0.041 
0.041 
0.041 
0.042 
0.042 
0.046 
0.041 
0.045 
0.431 
1 .Ooo 
0.041 
0.041 
0.041 
0.041 
0.041 
0.046 
0.044 
0.272 
0.041 
0.045 
0.239 
0.976 

20 
T 

0.035 
0.035 
0.035 
0.037 
0.035 
0.037 
0.049 
0.375 
0.035 
0.072 
1 .Ooo 
1 .Ooo 
0.035 
0.035 
0.037 
0.037 
0.035 
0.040 
0.092 
0.934 
0.035 
0.047 
0.745 
1 .Ooo 

- 
rl 

0.044 
0.044 
0.044 
0.045 
0.044 
0.047 
0.040 
0.078 
0.044 
0.045 
0.950 
1 .Ooo 
0.044 
0.044 
0.047 
0.047 
0.044 
0.047 
0.045 
0.579 
0.044 
0.045 
0.366 
1 .Ooo 

n 

50 

T 

0.040 
0.040 
0.041 
0.041 
0.040 
0.043 
0.166 
1 .Ooo 
0.040 
0.174 
1 .Ooo 
1 .Ooo 
0.040 
0.040 
0.040 
0.043 
0.040 
0.045 
0.155 

0.040 

0.133 
1 .Ooo 

0.983 

0.058 

rl 

0.045 
0.045 
0.045 
0.045 
0.045 
0.047 
0.057 
0.77 1 
0.045 
0.060 
1 .Ooo 
1 .Ooo 
0.045 
0.045 
0.044 
0.045 
0.045 

0.063 

0.045 
0.047 
0.490 
1 .Ooo 

0.048 

0.893 

100 - 
T 

0.048 

0.047 
0.047 

0.050 
0.514 
1 .Ooo 

0.279 
1 .Ooo 
1 .Ooo 

0.048 

0.048 

0.048 

0.048 
0.048 

0.048 

0.047 
0.046 

0.047 
0.153 
0.95 1 

0.053 
0.583 
0.999 

0.048 

- 
rl 

0.05 1 
0.051 
0.050 
0.050 
0.051 

0.075 
0.999 
0.05 1 
0.057 
1 .Ooo 
1 .Ooo 
0.05 1 
0.05 1 
0.050 
0.050 
0.05 1 
0.049 
0.053 
0.905 
0.05 1 
0.045 
0.464 
1 .Ooo 

0.048 

Barnard’s Model 

The results in Table 23.4.4 for the model in [23.4.13], arc very consistent and easily 
comprehensible. For all sample sizes and all combinations of lambda (A) and standard deviation 
(ua), rl has greater power than T. For n as small as 50, rl attains asymptotic efficiency, while r 
is only about 80% efficient The power of the two tests can be well appreciated by considering 
the results for n = 10. While the power of T is about 50% that of rl is always greater than 50%. 

Second Order Autoregressive Model 

From Table 23.4.5. one can see that the findings for the AR(2) model in [23.4.14] parallel 
fairly closely those of Barnard’s model. The main difference between the two models is that the 
results here arc not as dramatic as in Table 23.4.4. Here too. rl is more powerful than r. As n 

increases, the power of rl increases faster than that of z. For n = 100, rl attains almost 100% of 
efficiency while T performs fairly poorly in some cases. For example, for $1 = -0.2 and = 0.5 
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all 

0.05 
0.05 
0.50 
1.00 
2.00 
0.05 
0.50 
1.00 
2.00 
0.05 
0.50 
1.00 
2.00 
0.05 
0.50 
1.00 
2.00 

Table 23.4.3. Power comparisons for the step function models. 

K 

0.052 
0.199 
0.058 
0.053 
0.053 
0.711 
0.199 
0.090 
0.055 
0.711 
0.490 
0.199 
0.090 
0.711 
0.711 
0.711 
0.5% 

Parameter Values I T  - 
C - 

0.00 
0.05 
0.05 
0.05 
0.05 
0.50 
0.50 
0.50 
0.50 
1 .00 
1 .OO 
1 .00 
1 .00 
5.00 
5.00 
5.00 
5.00 

rl 

0.041 
0.121 
0.040 
0.040 
0.040 
1 .Ooo 
0.121 
0.057 
0.048 
1 .Ooo 
0.352 
0.121 
0.057 
1 .Ooo 
1 .Ooo 
0.943 
0.507 

20 
K 

0.035 
0.382 
0.038 
0.036 
0.035 
0.994 
0.382 
0.131 
0.060 
0.994 
0.887 
0.382 
0.131 
0.994 
0.994 
0.944 
0.960 

rl 

0.044 
0.152 
0.048 
0.047 
0.045 
1 .Ooo 
0.152 
0.064 
0.042 
1 .Ooo 
0.594 
0.152 
0.064 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.821 

n 

- 
z 

0.040 
0.803 
0.05 1 
0.046 
0.045 
1 .ooo 
0.803 
0.283 
0.103 
1 .Ooo 
1 .Ooo 
0.803 
0.283 
1 .Ooo 
I .Ooo 
1 .Ooo 
1 .Ooo 

50 

rl 

0.045 
0.281 
0.039 
0.044 
0.045 
1 .Ooo 
0.28 1 
0.070 
0.043 
1 .Ooo 
0.958 
0.281 
0.070 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.998 

100 
K 

0.048 
0.983 
0.069 
0.055 
0.052 
1 .Ooo 
0.983 
0.525 
0.160 
1 .Ooo 
1 .Ooo 
0.983 
0.525 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 

rl 

0.05 1 
0.520 
0.05 1 
0.049 
0.050 
1 .Ooo 
0.520 
0.113 
0.059 
1 .Ooo 
1 .Ooo 
0.520 
0.1 13 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 

the power of rl is 0.881 while that of K is only 0.061 for n = 100. 

Threshold Autoregressive Model 

The specific TAR model used in the simulation experiments is given in [23.4.15]. From 
Table 23.4.6, one can see that the results for this TAR model are very similar to those for 
Barnard’s model and the AR(2) model in Tables 23.4.4 and 23.4.5, respectively. The rI test is 
obviously more powerful than K. Moreover, while the power of rl increases very rapidly with 
increasing n ,  the power of K only makes a slow progression. Finally, the rl test is about 90% 
efficient for n = 20 and it attains 100% efficiency at n = 50. On the other hand, the power of K is 
less than 50% even for n = 100. 

23.4.6 Conclusions 

The general deductions from the simulation experiments presented in Section 23.4.5 are 
that the nonparamemc test. using r. is more powerful for detecting trends for data generated 
from the first three models while the parametric test, utilizing rl. is more powerful for discover- 
ing trends in synthetic sequences from the last three models. As noted in Section 23.4.4, the frst 
three models contain deterministic trends and the last three have stochastic trends. Therefore, it 
is reasonable to conclude that K is more powerful for detecting deterministic trends while rl is 
more powerful for discovering stochastic trends. 
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Table 23.4.4. Power comparisons for Barnad’s models 

Chapter 23 

ParamCter 
values 

x 
1 .o 
1 .o 
1 .o 
1 .o 
2.0 
2.0 
2.0 
2.0 
5.0 
5 .O 
5.0 
5.0 

10.0 
10.0 
10.0 
10.0 
20.0 
20.0 
20.0 
20.0 

=* 
0.05 
0.50 
1 .OO 
2.00 
0.05 
0.50 
1 .00 
2.00 
0.05 
0.50 
1 .oo 
2.00 
0.05 
0.50 
1 .OO 
2.00 
0.05 
0.50 
1 .OO 
2.00 

- t 

0.484 
0.459 
0.482 
0.486 
0.477 
0.575 
0.467 
0.460 
0.485 
0.469 
0.491 
0.478 
0.488 
0.501 
0.472 
0.480 
0.473 
0.501 
0.498 
0.506 

10 

rl 

0.579 
0.579 
0.571 
0.579 
0.573 
0.586 
0.586 
0.57 1 
0.560 
0.562 
0.577 
0.591 
0.56s 
0.628 
0.603 
0.586 
0.569 
0.612 
0.593 
0.607 

n 

20 

,I 

0.68 1 
0.667 
0.680 
0.655 
0.688 
0.690 
0.683 
0.669 
0.689 
0.670 
0.680 
0.674 
0.690 
0.677 
0.665 
0.665 
0.689 
0.658 
0.654 
0.666 

rl 

0.933 
0.944 
0.944 
0.955 
0.937 
0.946 
0.954 
0.958 
0.935 
0.937 
0.948 
0.952 
0.938 
0.961 
0.946 
0.960 
0.941 
0.949 
0.950 
0.946 

50 

f 

0.809 
0.819 
0.817 
0.800 
0.802 
0.789 
0.798 
0.784 
0.812 
0.802 
0.802 
0.783 
0.7% 
0.802 
0.790 
0.7% 
0.801 
0.804 
0.811 
0.819 

rl 

1 .Ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .Ooo 
1 .ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .OOo 
1 .Ooo 

In practice, it is advantageous to have both a sound physical and statistical understanding of 
the time series being analyzed. This will allow one to decide whether one should employ models 
possessing deterministic trends or whether one should use models having stochastic trends. For 
example, it may be better to describe certain kinds of water quality measurements using models 
having deterministic trends. On the other hand for modelling seasonal riverflows. models hav- 
ing stochastic trends, such as a TAR model, may work well (Tong, 1983; Tong et al., 1985). In 
other cases, one may wish to use a model which possesses both deterministic and stochastic 
trends. As a matter of fact. most of the intervention models uscd in the water quality and quan- 
tity applications of Chapter 19 and Section 22.4 have components to model both deterministic 
and stochastic trends. 

23.5 WATER QUALlTY APPLICATIONS 

23.5.1 Introduction 

variety of statistical tests are requircd in order to check a range of hypotheses regarding the sta- 
tistical properties of the data. The main objective of this section is to clearly explain how both 
nonparametric and parametric tests can be employed in an optimal fashion to extract 

When executing a complex environmental impact assessment study, usually a wide 
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Parameter 
Values - 

$1 - 
-1.40 
-0.70 
0.70 
1.40 

-1.20 
-0.60 
0.60 
1.20 

-0.80 
-0.40 
0.40 
0.80 

-0.40 
0.40 
0.80 

-0.50 
-0.30 
0.30 
0.50 

-0.40 
-0.20 
0.20 
0.40 

- 
h 

-0.80 
-0.80 
-0.80 
4.80 
4.50 
-0.50 
-0.50 
-0.50 
-0.20 
-0.20 
-0.20 
-0.20 
0.10 
0.10 
0.10 
0.30 
0.30 
0.30 
0.30 
0.50 
0.50 
0.50 
0.50 

- 

- 

Table 23.4.5. Power comparisons for the AR(2) models. 

7 

0.Ooo 
0.002 
0.03 1 
0.247 
0.Ooo 
0.007 
0.072 
0.305 
0.00 1 
0.009 
0.082 
0.260 
0.010 
0.180 
0.390 
0.013 
0.024 
0.193 
0.309 
0.017 
0.046 
0.175 
0.288 

10 

rl 

0.73 1 
0.009 
0.170 
0.881 
0.660 
0.064 
0.223 
0.745 
0.422 
0.082 
0.137 
0.456 
0.207 
0.180 
0.452 
0.500 
0.239 
0.138 
0.243 
0.615 
0.319 
0.143 
0.21 1 

20 
f 

0.Ooo 
0.Ooo 
0.009 
0.132 
0.Ooo 
0.002 
0.050 
0.264 
0.00 1 
0.004 
0.091 
0.290 
0.010 
0.187 
0.536 
0.005 
0.023 
0.297 
0.40 1 
0.013 
0.059 
0.302 
0.470 

rl 

LOO0 
0.154 
0.485 
0.998 
0.989 
0.279 
0.470 
0.985 
0.866 
0.210 
0.267 
0.850 
0.470 
0.386 
0.872 
0.788 
0.466 
0.306 
0.585 
0.824 
0.470 
0.250 
0.513 

n 

50 
'5 

O.OO0 
O.OO0 
0.002 
0.067 
O.OO0 
0.Ooo 
0.036 
0.285 
0.Ooo 
0.002 
0.089 
0.264 
0.008 
0.248 
0.633 
0.002 
0.023 
0.335 
0.524 
0.005 
0.088 
0.377 
0.610 

rl 

1 .Ooo 
0.975 
0.991 
1 .Ooo 
1 .Ooo 
0.900 
0.932 
1 .Ooo 
1 .Ooo 
0.645 
0.684 
1 .Ooo 
0.840 
0.814 
1 .Ooo 
0.990 
0.776 
0.701 
0.975 
0.984 
0.682 
0.578 
0.933 

Table 23.4.6. Power comparisons for the TAR model. 

f 

0.Ooo 
O.OO0 
O.OO0 
0.045 
0.Ooo 
0.Ooo 
0.03 1 
0.230 
0.Ooo 
0.002 
0.103 
0.268 
0.007 
0.245 
0.625 
0.005 
0.028 
0.348 
0.527 
0.008 
0.06 1 
0.42 1 
0.686 

100 

11 
0.320 0.499 0.435 0.904 0.320 1.Ooo 0.338 1.Ooo 

- 
rl 

1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.998 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.939 
0.95 1 
1 .Ooo 
0.991 
0.985 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.934 
0.999 
1 .Ooo 
0.881 
0.831 
0.999 - 

systematically relevant information from a set of water quality time series. In particular, the 
effects of industrial development at Nanticoke, Ontario, upon the nearshore Lake Erie water 
chemistry are examined in a comprehensive statistical study. This undertaking was originally 
carried out by the authors in conjunction with Acres International Limited of Niagara Falls, 
Ontario, for the Ministry of the Environment in the Canadian province of Ontario. Some of the 
statistical findings for the Lake Erie study given in Section 23.5.2 are also presented by Hipel et 
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al. (1988). 

Chapter 23 

LONO POINT BAY 

Figure 23.5.1. Location of the Lake Erie water quality smdy. 

A map of the Long Point Bay region of Lake Erie which contains the Nanticoke study area 
is displayed in Figure 23.5.1. Notice that Nanticoke is situated on the north shore of Long Point 
Bay in Lake Erie. From the late 1960’s and onwards, major industrial development took place at 
the town of Nanticoke. In January, 1972, Ontario Hydro’s (the provincial company that gen- 
erates almost all of the electrical power in Ontario) 4OOO M W  fossil-fueled thermal generating 
station commenced operations. Texaco Canada Znc. constructed an oil refinery which came into 
operation in November, 1978. Finally, the Steel Company of Canada (Stelco) built a steel mill 
that started to produce steel in May, 1980. Because the foregoing industrial projects could 
adversely affect the water quality of Lake Erie, the goal of the Nanticoke study was to detect 
trends in various water quality variables. 

Water quality monitoring began in 1969 at eight (stations 112, 501, 648, 518. 810. 1008, 
1016, and 994) of the fifteen sampling stations shown in Figure 23.5.2. Since 1969, the remain- 
ing Seven of the fifteen stations were added to the network. Many of the stations were sampled 
at more than one depth, such as near the surface and near the bottom. Unfortunately, as is also 
the cast for the water quality data examined in Chapter 22 and Section 24.3.2, the water quality 
series measured in Lake Erie contain observations separated by unequal time intervals, many of 
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Figure 23.5.2. Sampling stations at Nanticoke in Long Point Bay, Lake Erie. 

which are relatively long. Although not all of the water quality variables were assessed for 
trends, about 50 different water quality variables were sampled across all of the stations and the 
more important variables were collected at each of the stations. Detailed statistical testing for 
the presence of trends and other statistical characteristics were carried out for 14 water quality 
variables (see Table 23.5.6 for a list of these 14 variables) measured at Stations 501, 810, 994, 
1085 and 1086. In the next section, the statistical procedures used in the study are outlined and 
some representative results are given. Finally, the Rend onolysis methodology put forward in the 
upcoming section constitutes one of the three overall trend procedures described in the book and 
summarized in Table 1.6.1. 

23.53 Trend Analysis of the Lake Erie Water Quality Series 

Selecting Appropriate Statistical Tests 

To detect trends and uncover other statistical properties of the Lake Erie water quality time 
series, appropriate statistical tests must be employed. In order to have the highest probability of 
discovering suspected statistical characteristics which may be present in the time series, one 
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must select the set of tests that possess the best capabilities for uncovering the specified statisti- 
cal properties. To accomplish this, one must be cognizant of borh rhe general statistical proper- 
ties ofthe dara and rhe main amibures of rhe statistical rests. For example, with respcct to the 
characteristics of the data, one should be awan of properties such as the quantity of data, large 
time gaps where no measurements were taken, outliers and data which fall below the detection 
limits (see Section 23.3.2 for discussions about detection limits in water quality time series). As 
discussed in Sections 19.2.3 and 22.3, often these properties of the data are known in advance or 
else arc revealed using qlorarory dara analysis tools. From the point of view of a statistical 
test that can bc used, one should know key facts which include the specific null and alternative 
hypotheses that the given statistical test is designed to check. the major distributional assump 
tions underlying the test, the types of samples with which the test can be used, and the kinds of 
measurements that can be utiliztd with the test. By being cognizant of the properties of the data 
and the main capabilities of a wide range of both parmetric and nonparametric rests, one can 
choose the most appropriate statistical tests for testing specified hypotheses such as the presence 
of trends. As mentioned in Section 23.3.1, summaries and charts regarding the capabilities of 
both nonparametric and parametric tests arc available in many well known statistical texts. The 
handbook of Sachs (1982), for instance, is very helpful for locating the most appropriate 
parametric and nonparamemc tests to employ in a given study. Table 23.1.1 provides a list of the 
nonparametric tests described in Chapter 23. The tests that are eventually selected can then be 
used at the confirmatory data analysis stage for hypothesis testing (see Section 23.2 for a general 
discussion of statistical tests). 

The particular statistical methods used in the Lake Erie study are listed in Table 23.5.1. 
Notice that for each statistical method, the general purpose of the technique is described and the 
specific reason for using it in the Lake Erie study is explained. Furthemore, if the method is 
described in the text, the location is cited. Otherwise, an appropriate reference is given. The 
first four statistical methods in Table 23.5.1 constitute exploratory data analysis tools while the 
remaining methods are usually employed at the confmatory data analysis stage. The non- 
parametric tests given in the table are marked with asterisks. Notice that the last statistical 
method, regression analysis, is discussed in detail in Section 24.2.3. All of the statistical 
methods listed in Table 23.5.1 were applied to each of the 14 specified water quality variables at 
each of the 5 stations, consisting of Stations 501, 810,994, 1085 and 1086. To clearly explain 
how an environmental impact assessment project is carried out, some of the informative results 
of the Lake Erie study are now presented for the methods marked with a cross in Table 23.5.1. 
For explaining how the techniques arc used in practice, the chloride water quality (mgll) and 
total phosphorous (mgll) variables arc used the most. Finally, for a description of water quality 
processes, the reader can refer to the book of Waite (1984), as well as other authors. 

Data Lifting 

available in 
mgll from July 13, 1970. to November 19, 1979. The first 25 of these measurements are listed 
in Table 23.5.2. To calculate the day number, the start of January 1, 1969, is taken as day 
number 0.0. The component to the right of the decimal for a day number refers to the fraction of 
a 24 hour period at which the measurement was taken. Consequently. from Table 23.5.2, the 
first observation was taken on July 13, 1970, at 16 hours and 40 minutes, which has the day 
number 558.61 1. The gap, expressed in number of days between adjacent observations, is given 

For the chloride variable at Station 501 in Figurc 23.5.2, 173 observations 
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Table 23.5.1 Statistical methods used in the Lake Erie water quality study. 

Wilmxm ii+ rank 
k U ' t  

C d i d c n a  m t e ~ d  
forthe medianot 

K c d  nnk awela- 
tion' 

Cmaa carrlaim 
f u n a i m t  

P I ~ ~ M ' I  k i t  fa 
ecf~.lity d cwrrlatrd 
n r i n a  
One way andyiia of 
v a r i n a  

K ~ a t . l . W d l ~ i l n t * t  

R c g m i i m  n d y a i i t  

M N O D  GENERAL P L W E  

Determine whether the m e d i w  of two m p l e i  uc the 
umc ( A p d u  A23.2). 

GICULY a m n f i d c n a  interval for the di f fcmna in the 
m u l i n i  ktWm two m p l e a  (Awndir A23.2). 

Determine whether a M two aerier arc m- of 
me anaher(Appmdix ,423.1). 

Determine whether or M two xriea am mdcpcndenr of 
m r n a b c r  (aa Scaim 223.4 and ILO KendaU (1975. 

Asaxtam vhethu or n u  two comhkd v a r u n a i  arc 
the urn (pitman 1939). 

Dekrminc if the muni  ~ c m a  k unplea am a~gnfi- 
o n l l y  diffcccnt fmn m e  anaher ( S d i .  1984. pp. 
501 -509). It i i  .raumed thu the k p o p l L u m a  am na- 
nully indepndenrly d i i u i h d  n d  haw qy.l nri- 

Nmpanmdnc lcit  u) duJ: whether a nu the diamtw- 
timi or rma k mpla are the m e  ( A m -  
d u  A23.3). 'Ibe d n e ~ ~ i m a  arc uiuned to k 
indCpendcnC d M an&r and follow the umr dialri- 
h i m .  
P a m e l r i u l l y  modcl r e h i m a h i p  within a uriei d 
Man8 V r i u  

a. 2)). 

ana l .  

I &Itt I 

907 

Ten for a u u d  .crol~ d t b c  mmtba IU a uwa by can- 
hrun( ik a i f l i r m a  kvcL fmn the -d 
KeodS tel(l f a  ach w t b  mto a X2 ~IAIIIW: (ae 

And OU whether or n u  m c u u m n e n u  taken u IWO dd-  
f e w  dcpcha u c x d y  the m e  ume p a u i a  thc umc 
m e d m  
o l c u b l c  95% d i d c n a  m k d  for the dt f fcmna LII 

m&.ni bawoco m u a u r r m e n u  taka u two ddfcrmt 
&@a II a d y  the m e  uam If zcm II n u  coou~acd 
m the d i d m a  m k ~ d  the IWO med~ana arc a~gnui- 
a l l y  dtffcmnt fmn me another 

A r c a m  d muo~remenca  Men u thc umc m e  u 
Illcrnuc &@a arc carclued with me M&.S 

And ou d m e u u m n e n u  d e n  Y the m e  h e  at 
dkmue &phi are oarrlaed w ~ t h  me n & e r  

Determme d the vananai d umpla M e n  u two d d -  

123 3 MI). 

fem:nt dephr am the m e .  

And ou whether or n u  Be meUY mmg rcpluted 
umpkl are the IMlL 

Detcrmme d the m u n i  unmg mplrcYed m p l e a  am 
the m e  

Deknnme the ka l  dua traniformum u a a m  tbr 
ampmnu rrplirrd LII a r e g r r i a ~ m  model d eau- 
mate both the avenge m N y  MIJ mud n l u e a  for a 
u l y a  (rec Sccum 24 23) 

in the third column. Each measured value in mgll along with the depth in meters at which the 
sample was taken arc presented in the fourth and fifth columns, respectively. Notice that the 
extreme values consisting of the outside and far-out values defined in Section 22.3.3 are marked. 

Table 23.5.3 shows the number of available chloride measurements by month and year for 
Station 501. Notice, for example, that no measurements were taken during January, February 
and March across all of the years. Additionally, no observations are available for the years 1%9, 
and 1980 to 1983. 
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Table 23.5.2. Data listing of chloride measurements (rng//) 
at Station 501, Long Point Bay, Lake Erie. 

Day 
Number 
558.61 1 
588.604 
859.726 
887.632 
9 15.736 
944.635 
97 1.6 1 5 
999.625 
1028.604 
1197.628 
1223.802 
1253.660 
1280.708 
1308.618 
1338.646 
1365.503 
1419.635 
1622.521 
1622.521 
1650.635 
1650.635 
1679.545 
1679.545 
1707.597 
1707.597 

Date 

July 13.1970 
Aug. 12,1970 
May 10.1971 
June 7,1971 
July 5, 1971 
Aug. 3,1971 
Aug. 30,1971 
Sep. 27,1971 
Oct. 26,1971 
Apr. 12, 1972 
May 8,1972 
June 7, 1972 
July 4, 1972 
Aug. 1. 1972 
Aug. 3 1,1972 
Sep. 27.1972 
Nov. 20, 1972 
June 11,1973 
June 11,1973 
July 9, 1973 
July 9, 1973 
Aug. 7,1973 
Aug. 7, 1973 
Sep. 4,1973 
Sept. 4, 1973 

- 
Gap 
- 

30 
27 1 
28 
28 
29 
27 
28 
29 
169 
26 
30 
27 
28 
30 
27 
54 
203 
0 
28 
0 
29 
0 
28 
0 

- 

Measurcd 
Value 
27.0* 
26.0* 
35.0** 
25.0 
24.0 
24.0 
23.0 
25.0 
25.0 
25.0 
25.0 
24.0 
24.0 
24.0 
25.0 
24.0 
23.0 
23.0 
24.0 
23.0 
23.0 
23.0 
24.0 
24.0 
25.0 

Depth 
(m) 
4.80 
6.20 
6.10 
6.20 
6.70 
6.40 
6.20 
6.40 
6.00 
6.00 
6.50 
6.20 
6.50 
6.30 
6.00 
6.50 
5.50 
1 .00 
10.60 
1 .00 
10.60 
1 .00 
10.60 
1 .00 
11.00 

Remarks: 
1. 

2. 

3. 

4. 

January 1, 1969 at 0:00 AM is taken as Day Number 0.0. 
Outside values are indicated by *. 
Far-outside values are indicated by **. 
For independent and identically distributed normal variables, the expected percentages of 
outside and far-outside values are 0.76% and O.ooOo13%, respectively. 

The Tukey 5-number summary defined in Section 22.3.3 is also listed in Table 23.5.3. In 
addition, the numbers of observed and expected outside and far-out values are given. The 
expected number of outside and far-out values are calculated by assuming that the data follow a 
normal distribution (see Section 22.3.3). To calculate the expected number of outside values, 
one multiplies 173 (the total number of observations in Table 23.5.3) times 0.0076 (the probabil- 
ity of having outside values if the data are NID) to obtain the expected figure of 1.3148 shown in 
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Table 23.5.3. Number of chloride measurements (mg/l) at 
Station 501 according to the month and year. 

69 70 71 

1 
1 

1 1  
1 2  

1 
1 

0 2 7  

Numbu of me;rJluements availabk by month and year 
72 73 74 75 76 77 78 79 80 81 82 83 

1 2 2 2 2 2 3  
1 4 2 5 4 8 6  
1 2 2  2 2 4 3  
1 2 4 2 2 4 2 3  
2 2 2 4 7 2 7  
1 2 2 2 2 4 2 3  

2 2 2 2  4 3  
1 2  2 3 4 6 3  

2 2 
8 I2 20 16 25 22 37 24 0 0 0 0 

WAL 
0 
0 
0 
14 
31 
17 
22 
29 
19 
16 
21 
4 

173 

Tukey five-number summary: 19.0 20.4 21.0 22.5 35.0 

Observed Expected 
Number of Outside values 2 1.3 14800 
Number of Far-outside values I 0.000225 

Table 23.5.3. Likewise, to determine the expected number of far-outside values one multiplies 
1 3 ~ 1 0 ~  times 173 to get 0.000225. 

Graphs of the Dab  

Graphs of time series are presented throughout the text for a wide range of series while a 
discussion regarding the usefulness of graphs as exploratory data analysis tools is given in Sec- 
tions 5.3.3 and 22.3.2. Figures 1.1.1 and 19.1.1, for example, displays a plot of 72 average 
monthly phosphorous data points (mgll) from January. 1972, until December, 1977, for meas- 
urements taken downstream from the Guelph sewage treatment plant located on the Speed River 
in Ontario, Canada. In the figure, it can be seen that conventional phosphorous treatment has 
dramatically decreased the mean level of the series after the intervention date when the tertiary 
treatment was implemented. The black dots indicate locations where data are missing and hence 
had to be estimated. In Section 19.4.5, intervention analysis is used to model the effects of the 
phosphorous matment and estimate the missing observations. 

A simple approach to display effectively the statistical characteristics of a data set using 
ordinary output paper from a computer is to employ ajittered one dhenrionul plot. The data axe 
plotted horizontally between the smallest observation on the left and the largest value on the 
right The exact magnitudes of the smallest and largest values arc given as part of the 5 number 
summary shown in Table 23.5.3. In the plot, the letters a,b ,c , .  . . , denote 1,2,3,. . . , data 
points, respectively. 

Figure 23.5.3a displays the jittered plot for all of the chloride data at Station 501. When 
the chloride data arc plotted according to each month across all years as in Figure 23.5.3b. the 
manner in which the data arc distributed according to each Season can be observed. Notice from 
the jittered plot of chloride according to each year in Figure 23.5.3c, that the chloride level is 
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b e e d  
b e e d  

a b  e e e  
a b  e e e  

b e e e  
b e e d  
a e d d  

Note:  

a a  a 
b a a  b 
b b a  b 
b b a a b a  
b a a  b 
a a  b 
a a  a 

a , b , c ,  ... 

c a  
c a  

a c  a 
a c b  a a 

c a  
c a  
c a  

e t c .  Genote 1 , 2 , 3 , . .  . 

a 

d a t a  p o i n t s ,  r e s p e c t i v e l y .  

(a) Jittered one-dimensional data dot  of measured vdues. 
Jan 
Feb 
Mar 
A p r  d a  d a  a b a 
May c e  e a b  b aab  a 
J u n  f d c  a b a  
Jul b e d b b aba  b a 
Au g e g c c b  d c a a 
Sep b b g b  b b b  
Oct b a h b b a  
N o v b  a e e d a  a a a 
Dec b b  

(b) Jiuered one-dimensional data plot of measured value by month. 

1968 
1969 
1970 a a  
1971 a b c  
1972 a d c  
1973 d f b  
1974 b b b b b b abaaab  
1975 a d e b  d 
1976 a e l e b 
1977 m g b  
1978 d C C i 
1979b g m b 
1980 
1 9 8 1  
1982 
1983 

(c )  Jittered one-dimensional data plot of measured value by year. 

a 

a 

Figure 23.5.3. Jittered one-dimensiond plots of the chloride observations 
(mgll) at Station 501, Long Point Bay, Lake Erie. 
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decreasing over the years. A jittered plot of depths at which the chloride observations an taken 
is presented in Figurc 23.5.4. 

Tukey five-number summary of a l l  the depths (m) used 

1.00 1.00 1.50 11.00 13.00 

Jittered one-dimensional data p lot  of depths 

i e  
i e  
i e  
i e  
i e  
i e  
i d  

aa a 
a aa a 

aa a 
aa a 

a a aaaa a 

a d b  
a a a  d b  

a a a b a d  b 
a a a a b a d a c  a 
a a a a a d  b 

a a d b  
a d b  

Note: a , b , c ,  ... e tc .  denote 1,2,3, ... data points respectively 

Figure 23.5.4. Jittemd one-dimensional plot of depths at which the chloride 
observations at Station 501 in Long Point Bay, Lake Erie, arc taken. 

Box-and-Whisker Graphs 

The box-and-whisker graph, which is based upon the 5-number summary (Tukey, 1977) is 
described in Section 22.3.3 where illustrative plots arc also given. When entertaining seasonal 
data such as monthly or quarterly data, it is instructive to calculate a 5-number summary plus 
outside and far-outside values for each season. For the given total phosphorous data (mgll) at 
Station 501, Figure 23.5.5 depicts box-and-whisker graphs that are commonly referred to as box 
plots. In this figure, the data have not been transformed using a Box-Cox transformation from 
[3.4.30]. The far-out values arc indicated by a circle in Figure 23.5.5, where far-out values are 
not marked if there are four or less data points for a given month. Below each month is a 
number which gives the number of data points used to calculate the box-and-whisker graph for 
that. When there are not many data points used to determine a box-and-whisker plot for a given 
month, any peculiarities in the plot should be cautiously considered. The total number of obser- 
vations across all the months is listed on the right below the x axis. 

For a given month in a box-and-whisker diagram, symmetric data would cause the median 
to lie in the middle of the box or rectangle and the lengths of the upper and lower whiskers 
would be about the same. Notice in Figure 23.5.5, for the total phosphorous data at Station 501, 
that the whiskers are almost entirely above the rtctangles for almost all of the months and there 
are 8 far-out values above the boxes. This lack of symmetry can at least be partially rectified by 
transforming the given data using the Box-Cox transformation of 1 = 0 in [3.4.30]. By compar- 
ing Figure 23.5.5 to Figure 23.5.6, where natural logarithms are taken of the total phosphorous 
data the improvement in symmetq can be clearly seen. Furthermore, the Box-Cox transforma- 
tion has rtduccd the number of far-out entries from 8 in Figure 23.5.5 to 5 in Figure 23.5.6. 
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Figure 23.5.5. Box-and-whisker plots of the total phosphorous (mgll) data at Station 
501, Long Point Bay, Lake Erie, from April 22,1%9, to Dccembtr 13.1983. 

As is also explained in Section 23.3.3, Box-and-whisker plots can be employed as 
important exploratory tool in inrentention srudes. If the date of the intervention is known, box- 
and-whisker diagrams can be constructed for each season for the data before and after the timc of 
the intervention. These two graphs can be compared to ascertain for which seasons the interven- 
tion has caused noticeable changes. When them are sufficient data, this typc of information is 
crucial for designing a proper intervention model to fit to the data at the confirmatory data 
analysis stage (see Section 19.2.3). 

For the Nanticoke data, there are two major interventions. First, Ontario Hydro built a 
fossil-fuelled electrical generating plant which began operating in January. 1972. and came into 
full operation by about January 1,1976. Because not much data am available before 1972, Janu- 
ary 1, 1976. is taken as the intervention data at which water quality measurtmnts near the 
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Figure 23.5.6. Box-and-whisker plots of the logarithmic total phosphorous (mgll) data at 
Station 501, Long Point Bay, Lake Erie, from April 22,1%9, to December 13,1983. 

Ontario Hydro plant may be affected. Of the 5 stations analyzed, only Station 810 is close to the 
plant For each of the water quality variables measured at Station 810, box-and-whisker plots 
arc made before and after the intervention date in order to qualitatively discover any possible sta- 
tistical impacts of the intervention. 

Second, the Steel Company of Canada (Stelco) plant c a m  into operation about April 1, 
1980. Because sites 501. 994, 1085, and 1086 arc relatively close to the Stelco factory, box- 
and-whisker graphs arc madc before and after the intervention for each water quality timc series 
at each station. Figures 23.5.7 and 23.5.8 display the box-and-whisker graphs for the natural 
logarithms of the total phosphorous data at Station 501 before and after the Stelco intcrvention, 
respectively. The dates in brackets in the titles for Figures 23.5.7 and 23.5.8 indicate the intcr- 
vals of time for which measurements were taken before and afttr the intervention, respectively. 
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When thcsc two graphs arc compared, it appears that for most of the months there is a slight drop 
in the median level aftcr the intervention. Using an intervention model based upon a regression 
analysis design (see Chapter 24 and references therein), a confirmatory data analysis could be 
executed to ascertain the magnitudes of the changes in the monthly means and if they are sigruf- 
cant Furthermore, one should also take into account overall changes in Lake Erie by consider- 
ing measurements at locations outside of the Nanticoke region. 

- 

I 
I' 
- 

' I  I 

Figure 23.5.7. Box and whisker plots of the logarithmic total phosphorous data 
(mgll) at Station 501, Long Point Bay, Lake Erie, before April 1,1980 (data 

available from April 22,1%9, to November 19.1979). 
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Figure 23.5.8. Box and whisker plots of the logarithmic total phosphorous 
(mg//) data at Station 501, Long Point Bay, Lake Erie, after April 1.1980 

(data available from April 13,1981 to December 13,1983). 

A third intervention in the Nanticoke region is due to the Texaco oil refinery which began 
production in November, 1978. Because the discharge from this plant is relatively quite small, 
the possible effects of the Texaco intervention arc not considered in this study. 

Seasonal Mann-Kendall Tests 

For a given water quality variable at a specified station, the seasonal Mann-Kendall test can 
be used to detect trends in each month of the year. A detailed description of this test is given in 
Section 23.3.2. For the case of the chloride measurements taken at Station 501, Table 23.5.4 
presents results of the seasonal Mann-Kendall and other related tests. Each entry in the table of 
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Year 
1970 
I971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 

Table 23.5.4. Trend analysis of monthly median values 
using the seasonal Mann-Kendall test for the chloride series (mgll) 

at Station 501, Long Point Bay, Lake Erie. 
Monthly Median Values times 10 

Jan Feb Mar Apr May Jm Jul Aug Sep Oct Nov Dec 
no 260 

350 250 2AO 235 250 250 
2so 250 240 2.40 245 240 230 

235 230 235 245 240 245 
230 238 200 211 225 205 210 220 
215 230 225 225 w )  215 215 
205 205 207 210 210 210 210 215 
205 205 210 205 215 205 210 
197 200 200 200 205 202 210 205 210 
195 200 205 2CQ 195 195 190 

-0.98 4% -0.62 -0.93 4.86 -0.82 -0.82 -0.88 
0.39 0.17 4.61 0.03 0.22 0.33 1.87 0.98 

Combination of Scores and their Variances 
SUm Variance SL 

-196.0 5 . 5 9 0 0 0 ~ 1 0 ~  1.13324~10-’~ 

Fisherian Combination of (hc Significance Levels 
CHI-SQ DF SL 
87.01 16 0.00000 

years versus months is the median value for a given month and year. By utilizing [23.3.4] or 
[23.3.9] for the data in a specific month across all of the years for which data are available, 
Kendall’s tau can be determined. The observed value of S, for each month which is calculated 
using [23.3.7] is not displayed in the table. Because the observed t value for each month is 
negative, this indicates that there may be a decreasing trend in each month. Consider, for 
instance, the month of April for which the calculated T value is -0.98. Since the SL (sigruficance 
level) for this month is 0.39%. this strongly suggests that the null hypothesis of having identi- 
cally independently distributed data should be rejected in favour of accepting the alternative 
hypothesis of there being a monotonic decreasing trend. Notice that for each month the SL is not 
greater than 5% and usually less than 1%. Consequently, one would expect that across all of the 
seasons, a combination test would confmn the presence of an overall decreasing trend. The sea- 
sonal Mann-Kendall test statistic in (23.3.111 has a magnitude of -196.0 and a very small signifi- 
cance level. In addition, Table 23.5.4 shows that the significance level of Fisher’s combination 
test in [23.3.30] is also very small. Hence, both,of the combination tests indicate that there is an 
overall trend which is decreasing due to the negative sign of Sg or t in each season and also S’ in 
[23.3.11] across all of the seasons. As noted earlier, this decrcasing trend over the years is also 
readily apparent in the jittered plot of chloride according to each year in Figure 23.5.3~. 

For each of the fourteen water quality variables at each of the five stations where there am 
sufficient data, the seasonal Mann-Kcndall test in (23.3.71 or I23.3.91 is applied. Consider Table 
23.5.5 which summarizes the results for chloride. Notice that at Stations 501, 810 and 994. there 
are obvious decreasing trends (indicated by the negative signs) for all the months for which data 
are available at all three sites. Except for two cases where the significance level is a = 1046, all 
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Table 23.5.5. Seasonal Mann-Kendall tests for m n d  in the 
chloride series (mgll) for stations at Long Point Bay, Lake Erie. 

MONTHS STATIONS 

January 
February 
March 

501 810 994 1085 1086 

April -C -C -b 
May -C -C d 
June -b -a -a 
July d - c - c  

September c -c -c 

November -c -d -d 
December 

August -c -c -c 

October -b -C -C 

Note: 
1. 

2. 

3. 

4. 

a, b, c, d denote significance levels of 10. 5, l,O.l percent, respectively. 
#denotes result not significant at 10 percent. 
Otherwise, a blank indicates insufficient data. 

A positive or negative value of tau is indicated by + or -. 

of the significance levels are 5% or less. Consequently, these trends are signifcant. For a given 
month and station, one should certainly reject the null hypothesis that the chloride data arc 
independently and identically distributed. Table 23.5.5 shows that sufficient data for executing a 
seasonal Mann-Kendall test are not available for the months of January, February and March at 
Stations 501,810 and 994. Also, there are not enough observations for all of the months at Sta- 
tions 1085 and 1086. 

Another water quality variable for which there may be decreasing monthly trends is 
specific conductance for Stations 501, 810 and 994. However, as is the case for chlorophyll u,  
for most of the water quality variables across most of the months and stations, significant trends 
are not detected by the seasonal Mann-Kendall test. 

As explained earlier, along with the seasonal Mann-Kendall test, for a specified water qual- 
ity variable and station one can combine the monthly results using the combined score method in 
r23.3.111 and the Fisherian combination in [23.3.30]. Table 23.5.6 summarizes these two types 
of combination results for the fourteen water quality variables across all of the stations. When 
interpreting these results one should keep in mind the limitations of the combination approaches 
described in Sections 23.3.2 to 23.3.4. Notice in Table 23.5.6 for the chloride variable that the 
results art highly significant for Stations 501. 810 and 994 for both combination tests (all the 
significance levels are d = 0.1%). Consequently, there are obvious trends in chloride across the 
months at all three sites. Due to the negative signs in Table 23.5.5, the trends are decreasing. 
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Table 23.5.6. Combined score tests from [23.3.11] and Fisher’s combination results 
using [23.3.30] for the 14 water quality variables at Long Point Bay, Lake Erie. 

STATIONS 

turbidity 0 
specific conductance @s/cm) 
lab pH 
chloride (mgll) 
ammonia - N (mgll) 
morganic -N (mgll) 
filtered total Kjeldahi N 
Kjeldahl organic N (mgll) 
chlorophyll a 
chlorophyll b 
phytoplankton density 
filtcrd rcactivce phosphate 
total phosphorous (mgll) 
iron (mgll) 

Note: 

810 994 
#,# c,b 
d.d d d  
#,# #,# 
4 d  bd 
c,b b,# 
#,# #,# 
#,c a,# 
#,a #,# 
b,# a,# 
4 a  #,# 

b,# d,c 
a,b d,c 
#,a c,b 

1. 

2. 

3. 

4. 

a, b, c, d denote significance levels of 10.5, 1,O. 1 percent, respectively. 
# denotes result not significant at the 10 percent level. 
Otherwise, a blank indicates insufficient data. 
The combined Kendall test for trcnd in t23.3.111 is the first entry in each cell while the 
second entry is the Fisherian combination calculated using [23.3.30]. 

Wilcoxon Signed Rank Tests 

Detailed descriptions of the Wilcoxon signed rank test along with the related confidence 
interval for the median an given in Appendix A23.2. The purpose of using these tests is to 
ascertain whether or not paired measurements taken at the same time and alternate depths a~ 
significantly different from one another. 

Table 23.5.7 displays the statistical analyses of paired measurements for chloride at Station 
501. At the top of the table, the availability of paired measurements by month and year is 
shown. T h e y  5-number summaries for both the depths and measured values at the shallow 
depths explain how both the depth and measured values arc distributed. Likewise. for the deep 
samples, T h e y  5-number summaries arc given for the depths of the deep measurements and the 
measurements themselves. Notice that the distributions of the measurements appear to be the 
same at the shallow and deep depths according to the Tukey 5-number summaries. When the 
paired measurements. denoted by X and Y for the shallow and deep depths, respectively, are sub  
tracted from one another, the T h y  5-number summary of X - Y shows that the subtracted 
values arc symmetrically distributed about m o .  Hence, the depth of the measurement does not 
appear to affect the distribution of chloride. 
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Table 23.5.7. Analyses of paired m e a s d  chloride (mg/l) values at the same 
timC and alternate depths at Station 501, Long Point Bay, Lake Erie. 

N u m b  d paired (shalbw. deep) mcBSLlItments available by month and year 

Jan 0 
Feb 0 
Mar 0 
Apr 1 1 1 1 1 1  6 
b Y  2 1 1 2 4 2  12 
JUn 1 1  1 1 2  6 
JUl 1 2 1 1 2 1  8 
Aug 1 1 2 2 1 2  9 
SeP 1 1 1 1 2 1  7 
oct 1 1 1 1  2 6 
NOV 1 1 2 3  7 
Dec 1 1 2 

W A L  0 0 0 0 6 1 0  8 8 1 1 1 7  3 0 0 0 0 63 

69 70 71 72 73 14 75 76 n 78 79 80 81 82 83 TQTAL 

Extreme: 
Hinge: 

Median: 
Hinge: 

Extreme: 

Extreme: 
Hinge: 

Median: 

Extreme: 
Hinge: 

x: shallowsamples 
Depths(m) Measured Values 

1 .oo 19.4 
1 .oo 20.5 
1 .oo 21.0 
1 .oo 22.0 
1 SO 25.0 

Y: DeepSamples 
Deplhs(m) Measured Values 
5.50 19.4 
11.00 20.5 
11.50 21.0 
1 1.92 22.0 
13.00 25.0 

Five-number summary of paual X-Y: -1.0 0.0 0.0 0.0 1.0 
Two-sided Wilcoxon signed iank tcst for paired measured values at the same time and at alternate depths: 

Numbex of pairs is 18. Wilcoxon Statistic is 84.0. SL is 0.96526. 
95% confidence interval for the median difference (X-Y) is (O.oooO,O.oooO). 

The Wilcoxon signed rank test can be employed as a nonparametric test to check whether 
or not measurements taken at two different depths at exactly the same tim have the same 
median. As noted in Appendix A23.2, the values in a pair arc not used if they arc equal. As can 
be seen in Table 23.5.7, there arc 18 pairs which do not have equal values. For these 18 pairs of 
chloride measurements, the value of the Wilcoxon statistic in [A23.2.3] is 84 with a SL of 0.97. 
Because of this very large SL, one can conclude that the medians or means of the paired chloride 
measurements taken at alternate depths arc not significantly different from one another. Because 
zero is contained within the 95% confidence interval for X - Y. the fact that the medians arc the 
same is further substantiated. Since the Wilcoxon test is only used when the number of paired 
samples having unequal measurements is greater than 7, results arc not shown for some of the 
water quality variables at different stations. 
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Tabk 23.5.8. Summary of the Wilcoxon tests for the equality of medians of paired 
X and Y. where X is the shallow sample value and Y is the deep sample value. 

turbidity 0 
specific conductance @s/cm) 
lab pH 
chloride (mgll) 
ammonia - N (mgll) 
inorganic -N (mg/l) 
filtered total Kjeldahl N 
Kjeldahl organic N (mgll) 
chlorophyll a 
chlorophyll b 
phytoplankton density 
filtered reactive phosphate 
total phosphorous (mgll) 
iron (mgll) 

Note: 

50 1 

d 
+c 
+# 

d 
-# 
+# 
-b 
-a 

c 

c 

-b 
I 
d 

810 
-# 
i# 
+# 
P 
i# 

P 
+# 
+# 
d 
i# 

-# 

+# 
-c 

Stations 
994 1085 1086 
d -a 
-a 
+u +b 
+b 
-b +# 
-a i# 
-b -# 
-b -# 

-# -# 
c -# 
-# -# 

1. 

2. 
3. 
4. 

a, b, c. d denote significance levels of 10.5, 1,O. 1 percent, respectively. 
# denotes result not significant at the 10 percent level. 
Otherwise, a blank indicates insufficient data. 
+ or - according as the median of X is > or < the median of Y. 

Table 23.5.8 presents all of the results of the Wilcoxon tests for all of the variables and sta- 
tions for which there are sufficient data. Notice that for Stations 501 and 994 the test results for 
most of the water quality variables are significant. For example, for iron at Station 501 the sig- 
nificance level is d = 0.1%. Hence, one should reject the null hypothesis that the means are the 
same at the two depths. The negative sign indicates that the mean or median at the shallow 
depth is less than the mean for samples taken at the deeper depths. At Stations 810 and 1086, the 
means appear to be the same at the shallow and deep depths for most of the water quality vari- 
ables. 

K~~skal-WPllis Tests 

The Kruskal-Wallis test outlined in Appendix A23.3 is a nonparametric test for checking 
whether or not the means among replicated samples arc significantly different from one another. 
Although the results art not shown here, the one way analysis of variance constitutes a 
parametric approach for performing the same test but under smcter assumptions. 

In Table 23.5.9, the studies for the replicated samples for the total phosphorous data (mgll) 
at Station 501 are presented. At the top of the table, the number of replicated samples by month 
and year an given. Below this, the Tukey 5-number summary of all depths is displayed. For a 
given replicated sample, the range is defined as the largest minus the smallest value. The Tukey 
5-number summary for the ranges of all the replicated samples is also given in Table 23.5.9. 
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J U I  

Feb 
Mar 
A F  
h Y  
JUn 

Jul 
Aug 
SeP 
oct 
Nov 
Dec 

TOTAL 

Table 23.5.9. Analyses of replicated samples for total phosphorous 
(mgll) at Station 501, Long Point Bay, Lake Erie. 
N u m b  of repkakd samples available by month and year 

69 I0 I1 12 13 14 15 16 77 I8 19 80 81 82 83 

4 2  
4 2  
4 2  
6 1  
2 
6 2  
2 3  
4 4  
2 1  

0 0 0 0 0 0 0 0 0 0 0 0 34 11 0 

mAL 
0 
0 
0 
6 
6 
6 
I 
2 
8 
5 
8 
3 

51 

Tukey five number summary of all the depths(m) used 
1.50 1.50 1.50 11.00 11.50 

Tukey five number summary of the ranges of the replicates 
o.Oo0 0.002 0.003 0.007 0.110 

KrusLsl-Wallis Nonpammetrk Test 
KW-Statistic SL 
109.31 7 . 1 5 ~  lo-’ 

Note that if all the entries in a given replicated sample were the same and this were hue for all 
the replicated samples, all of the enmes in the Tukey 5-number summary would be zero. 

The results for the Kruskal-Wallis test are given at the bottom of Table 23.5.9. Using 
[A23.3.3], the test statistic is found to be 109.31 with a SL of 7.15x10-’. Because of the very 
small SL, the statistic is significant and hence one could argue that the means for two or more 
replicated samples are significantly different from one another. 

The reader should keep in mind that the differences among the means for the replicated 
samples could be due to causes such as seasonality, trend and depth. Seasonality may be the 
main reason for the mean differences but more data would be required to test this hypothesis. 
The fact that the samples an not independent may also influence the results. 

The overall results for when the Kruskal-Wallis test is applied to all the time series having 
sufficient data across all five sites, are shown in Table 23.5.10. From this table, it can be seen 
that for iron the means among replicated samples are significantly different from one another for 
iron across all stations for which there are enough data. However, these differences could be due 
to causes such as seasonality trend or depth. 
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Table 23.5.10. Kruskal-Wallis tests for comparing mans  among 
replicated samples at Long Point Bay, Lake Erie. 

Stations 
501 810 994 1085 1086 

turbidity 0 a # # 

lab pH # # 

ammonia - N (mgll) # a # # 
inorganic -N (mgll) # # 

f i l t e d  total Kjeldahl N C # a # 

chlorophyll a # 
chlorophyll b # 
phytoplankton density # # #  
filtered reactive phosphate # # 
total phosphorous (mgll) d d d C 

specific conductance OLs/cm) # # d 

chloride (mg/l) 

Kjeldahl organic N (mgll) # a # b 

iron (mgll) d d d d 
Note: 
1. 

2. 

3. 

a, b, c, d denote significance levels of 10,5, l ,O.l percenf respectively. 
# denotes result not significant at the 10 percent level. 
Otherwise. a blank indicates insufficient data. 

23.6 CONCLUSIONS 

Environmntal data, such as water quality time series. are often very messy. For example, 
water quality time series may possess problems which include having missing observations. fol- 
lowing nonnormal distributions, possessing outliers, and being short in length. Because non- 
parametric tests usually have less restrictive assumptions than their parametric counterparts, non- 
paramebic tests arc often ideally suited for detecting characteristics such as trends in environ- 
mental data (Helsel, 1987). Furthermore, bccause of the increasing importance of environmental 
impact assessment studies in modem day society, the import of both nonparametric and 
parametric tests will continue to expand. 

Following a general discussion of statistical testing in Section 23.2, in Section 23.3 a 
number of useful nonparametric tests arc described for detecting mnds in data sets. In particu- 
lar, the seasonal Mann-Kendall test and the correlated seasonal Mann-Kendall test of Section 
23.3.2 constitute important intrablock methods for discovering mnds in time series for which 
there may be missing observations. However, the aligned mnk technique discussed in the latter 
part of Section 23.3.2 must be used with an evenly spaced time series. 

When dealing with seasonal data measured at one or more sites, the procedures described in 
Section 23.3.3 can be used for grouping data together when checking for the presence of trends. 
For instance, if it is suspected that there is an increasing tnnd during the summer seasons and a 
decreasing trend at other times of the year, the data can be subdivided into the summer and non- 
summer groups. A good way to combine tests of hypotheses acmss seasons or groups of seasons 
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is to employ Fisher’s method given in [23.3.30] in Section 23.3.4. Besides grouping the data, 
sometimes it is worthwhile to first filter the given timc series in order to account for the effect of 
water quantity upon water quality. One particular approach for filtering or preprocessing data 
before they are subjected to statistical testing is briefly outlined in Section 23.3.5 while another 
procedure is presented in Section 24.3.2. Momver, the Spearman partial rank cornlation test of 
Section 23.3.6 provides a more flexible approach for filtering out undesirable effects when 
checking for trends over time in a series. 

The only nonparametric test that is used to model a step a n d  due to a known inkwention 
is described in Section 23.3.7. For a given physical variable, this test can be used to confvm the 
presence of a step a n d  across seasons at one or more masuring locations. However, it cannot 
be used to test for the presence of a a n d  which does not take place as a step change in the mean 
level after the date of o c c ~ ~ t n c e  of a known intervention. Recall from Section 22.4 and Chapter 
19 that intervention analysis can be used to model a wide spectrum of a n d  shapes caused by 
one or more interventions and also accurately estimate the magnitudes of the trends. 

The ACF at lag one is a parametric test which can be used for detecting trends in a data set. 
On the other hand, Kendall’s tau in [23.3.5] or. equivalently, the Mann-Kendall statistic in 
[23.3.1] or [23.3.7], constitute statistics that can be used in the nonparametric Mann-Kendall test 
for trend detection. The simulation experiments executed in Section 23.4 demonstrate that the 
ACF at lag one is more powerful than Kendall’s tau for discovering purely stochastic trends 
while Kendall’s tau is more powerful for uncovering purely deterministic trends. 

Often water quality and other types of time series are multiple censored. In order to be able 
to apply nonparametric tests to multiple censored data, one can employ procedures described in 
Section 23.3.8. 

To clearly demonstrate the efficacy of employing nonparametric and also parametric 
methods in a complex environmental impact assessment study, the effects of industrial develop 
ment upon water quality in Long Point Bay in Lake Erie, are systematically examined in Section 
23.5. The specific statistical methods used in the application for exploratory and confirmatory 
data analyses arc listed in Table 23.5.1. Within Section 23.5.2. the method of application and 
representative results are given for each of the techniques marked by a cross in Table 23.5.1. Of 
particular importance is the seasonal Mann-Kendall test that is used to check for the presence of 
trends in a range of water quality variables at different sites (see Tables 23.5.4 to 23.5.6). Other 
nonparametric tests utilized in the study include the Wilcoxon signed rank and Kruskal-Wallis 
tests described in Appendices A23.2 and A23.3. respectively. When deciding upon which tests 
to employ in a given study, it is informative to refer to tables that characterize statistical methods 
according to various criteria. Table 23.1.1 summarizes the purpose of all of the nonparamcmc 
tests described in Chapter 23. 

Beyond applications given in Sections 23.5.2 and 24.3, as well as references already cited 
in this chapter. there is, of course, other published Literature dcaling with nonparamemc model- 
ling in water resources and environmental engineering. For example, Fox et al. (1990). Potter 
(1991), and El-Shaarawi and Niculescu (1993) apply nonparametric trend tests to water quantity 
problems, El-Shaarawi et al. (1983, 1985), Smith et al. (1987). Alexander and Smith (1988). 
Karlsson et al. (1988). Loftis and Taylor (1989), Lettcnmaier et al. (1991). Sanden et al. (1991). 
Walker (1991), Zetterqvist (1991). and Tsirkunov et al. (1992). employ nonparametric tests for 
detecting trends in water quality time series, and Harned and Davenport (1990). Wiseman et al. 
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(1990). Jordan et al. (1991), and Stanley (1993) apply nonparametric a n d  tests to estuarine data. 
In fact, assessment of water quality is of national concern to many countries throughout the 
world, including the United States of America (see, for instance, Cohen et al., 1988). Conse- 
quently, the need for further developing flexible nonparametric a n d  tests, as well as many other 
kinds of statistical procedures, wiU continue to expand. 

In the last row of Table 23.5.1, it is noted that ngression analysis is used to model some 
problems related to the water quality study on Lake Erie reported in Section 23.5. Regression 
analysis is, in fact a very flexible and gened tool that has wide applicability in water resources 
and environmental engineering. Conscquently, in the next chapter various types of regression 
models arc put forward for use as exploratory and confirmatory data analysis tools. Addition- 
ally, an overall mthodology is presented for systematically carrying out a mnd assessment 
study with messy water quality data mcasurtd in a river. When dealing with water quality data 
from a river, the flow levels must be accounted for and regression analysis provides a superb 
means for doing this. As is shown in Chapter 24, regression analysis techniques, along with 
some nonparametric trend tests as well as other statistical methods, play a key role in this metho- 
dology. 

APPENDIX A23.1 

KENDALL RANK CORRELATION TEST 

The Kendall rank correlation test (Kendall, 1975) is a nonparamemc test for checking if 
two series are independent of one another. The null hypothesis, H@ is that the two series arc 
independent of each other while the alternative hypothesis, H , .  is they an not independent. 

Suppose that the data consist of a bivariate random sample if size n ,  (xi.yi).  for 
i = 1.2, . . . , n .  Two observations an concordant if both members of one bivariate observation 
are larger than their respective members of the other observation. For example, the two bivariate 

observations (3.2,9.6) and (4.7.11.2) arc concordant. Out of the total possible pairs, let N ,  

denote the number of concordant pairs of observations. A pair of bivariate observations, such as 
(5.23.6) and (4.3,12.4), is discordant if it is not concordant. Let Nd be the total number of 
discordant pairs. Under HOl the test statistic for the Kendall rank correlation test is 

I;] 

Nc - Nd 
1 

-n(n - 1) 
2 

z =  [ A23.1.11 

If all pairs arc concordant, the two series arc perfectly correlated and r = 1. For the case of total 
discordance, ~ = - 1 .  Consequently, z varies between -1 and +l. Because 1 is asymptotically 
normally distributed and its distribution can be tabulated exactly for small n ,  one can determine 
the SL for a computed value of z. If the calculated T is greater than or less than 0.05, one can 
accept or reject, respectively, the null hypothesis. Theoretical results regarding this test are 
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provided by Valz et al. (1994). 

Notice that the symbol for tau used in [A23.1.1] is identical to that used in [23.3.5] in Sec- 
tion 23.3.2 for the Mann-Kendall mnd t e s t  This is because the test statistic given in [23.3.5] is 
a special case of the test statistic for the Kendall rank cornlation test in [A23.1.1]. To obtain 
[23.3.5] from [A23.1.1], simply replace (xiyi) by ( t j , )  for which time r = 1.2, . . . , n ,  and x, 
consists of x , q ,  . . . ,I". 

APPENDIX A23.2 

WILCOXON SIGNED RANK TEST 

Wilcoxon Test: In water quality modelling, one may wish to know whether or not measun- 
ments taken at two different depths at exactly the same time possess the same median. Moreover, 
as explained and demonstrated in Sections 8.3 and 15.3, the Wilcoxon signed rank test can be 
employed for checking whether one time series models forecasts significantly better than 
another. A test proposed by Wilcoxon (1945) and described in detail by Conover (1980, pp. 
280-288) can be used with paired data. Let the data consist of n' pairs of observations 
(x,,yI).(x2,yz), . . . , (x,,.y,.) generated by their respective bivariate random variables 
(X1,YI),(X2,Yz),. . . , (X,,.,Yn#). For each of the n' pairs, (X;,Y;), the absolute differences can be 
computed using 

lD;l = IY, -Xjl i = 1.2,. . . ,n' [A23.2.1] 

In the test, pairs for which Xi = Y; and hence Di = 0 are omitted. Let n 5 n' denote the number 
of remaining pairs. The n pairs can then be ranked from 1 to n where rank 1 is given to the pair 
with the smallest lDil and rank n is assigned to the pair with the largest ID;I. When there are 
ties among the absolute differences for a set of paired values, each of the pairs in the set is 
assigned the average of the ranks that otherwise would have been assigned. As pointed out by 
Conover (1971, p. 281), the assumptions underlying the Wilcoxon test arc each Di is a continu- 
ous random variable, the distribution of each Di is symmetric, the Di's are mutually indepcn- 
dent, all of the D;'s possess the same median. and the measurement scale of the Di's is at least 
interval. 

Let d50 be the median of the D,'s. For a two-tailed Wilcoxon test, the null hypothesis is 

Ho:d50 = 0 

This implies that the medians of the Xi's  and Y;'s are the same. The alternative hypothesis is 
that the medians of the Xi's and V;'s are different This can be written as 

H I  :d5o f 0 

Because the distribution of each Di is assumed to be symmemc, the median is identical to the 
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mean and one is also testing whether or not the means of the Xi ’s  and Yi’s an the same. 

The test statistic, T ,  used to decide if H, should be accepted or rejected is defined to be the 
sum of the ranks assigned to those pairs (Xi,Yi) whcrc Y; exceeds Xi. Therefore, for each pair 
(Xi J’i 1 

R i =  1 
rank assigned 

and the test statistic is written as 
n 

i=l 
T = C R i  

ifxj > Yi 

to (Xj.Yj) if xi < Yj 
“3.2.21 

[ A23.2.31 

Because the exact distribution of T is known, one can easily calculate the SL for T (Conover, 
1971, pp. 211-215, p. 383). If, for example, the value of T is either sufficiently large or small 
enough to cause the significance level to be less than say 596, one can reject H,-, and thereby 
assume that the medians of the Xi’s and Yi’s arc different. 

Confidence Interval for tbe Median: The Wilcoxon signed rank test is employed to check 
whether or not the median of the Xi’s and Yi’s arc significantly different from one another. In 
the test, one actually checks whether or not the median of Di is Significantly different from zero. 
To obtain an estimate of the magnitude of the unknown median of the Di’s, one can calculate a 
confidence interval for this median using the method given by Tukey (1949) and also described 
by Walker and Lev (1953, p. 445) and Conover (1980, pp. 288-290). Moreover, the confidence 
interval for the median is also a confidence interval for the mean difference 

if w i , Y i )  or Di, i = 12, . . . , n .  is a random sample and if the mean difference exists. 

To calculate a confidence limit for Di first one must select a significance level a which 
means the confidence interval is 1 - a From the tables for the exact distribution of Di (Con- 
over, 1980, p. 460-461) one can obtain the a/2 quantile denoted by wdl. Next, determine the 
n(n + 1)/2 possible averages (0; + Dj)/2 for all i and j .  including i = j .  The upper and lower 
bounds for the 1 - a confidence interval are given by the w&th largest of the averages and the 
wath smallest of the averages, respectively. Because of this, one only has to compute the aver- 
ages near the largest and smallest Di’s and not the entire n(n + 1)/2 averages. 
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APPENDIX A233 

KRUSKAL-WALLIS TEST 

927 

The Kruskal-Wallis test constitutes a nonparamctric approach for checking whether or not 
the distributions or means across k samples arc the same (Kruskal and Wallis, 1952). In contrast 
to the normality assumption for the one way analysis of variance (ANOVA), the k population 
distributions arc only assumed to be identical for the Kruskal-Wallis test. However, as is the 
case for the one way ANOVA, the observations are assumed to be independent of another. 

Suppose that there are k samples of sizes ni ,  i = 1.2, , . . , k, having a combined sample size 
n defined by 

k 
c n k = n  [A23.3.1] 
i=l 

Let xu stand for thejth value in the ith sample so that i = 1.2, . . . ,k, and j = 12, . . . , ni.  Denote 
the ith random sample of size ni by xi1jiZ, . . . ,xi,. Rank the n observations from 1 to n where 
ranks 1 and n an assigned to the smallest and largest observations, respectively. For tied obser- 
vations, assign each observation the average of the ranks that would be assigned to the observa- 
tions. Let R(x;i)  represent the rank assigned to xu. For the ith sample, the sum of the ranks is 
given by 

n, 

j=l 
Ri = X R ( x u )  i = 12, . . . , k [A23.3.2] 

The null hypothesis is that all of the k population distribution functions are identical. This 
implies that the k means are the same. The alternative hypothesis is that at least one of the popu- 
lations yields larger observations than at least one of the other populations. Therefore, the k 
populations do not all have identical means. 

The test statistic for the Kruskal-Wallis test is 

"3.3.31 

where n and Ri  an defmed in [A23.2.1] and [A23.2.2], respectively. The exact distribution of T 
is known (Kruskal and Wallis, 1952) and for small samples (say k = 3 and ni 5 5, i = 1.2.3) one 
can obtain the SL for the observed T from tables. For larger samples, T is approximately xZ dis- 
tributed on k - 1 degrees of freedom 

Compared to the usual parametric F test used in the one way ANOVA, the Kruskal-Wallis 
test is very efficient. For example, when the assumptions of the F test are satisfied, the asymp 
totic relative efficiency of the Kruskal-Wallis test compared to the F test is 0.955. A detailed 
description of the Kruskal-Wallis test is presented by Conover (1980, pp. 229-237). 

The Kruskal-Wallis test can be employed for testing whether or not a time series is sea- 
sonal. To apply the test, the data contained within a given Season is considered as one separate 
sample. For example, when dealing with monthly observations, each of the twelve samples 
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would consist of the monthly data from that month across all of the years. A signrficantly large 
value of the Kruskal-Wallis statistic would mean that the mans  and perhaps other distributional 
parameters vary across the seasons. On the other hand, if the Kruskal-Wallis statistic were not 
sigruficant, this would mean that the data are not seasonal. 

PROBLEMS 

23.1 

23.2 

23.3 

23.4 

23.5 

23.6 

23.7 

23.8 

23.9 

In Section 23.3.2. the comlated seasonal Mann-Kendall statistic is presented as a 
nonparametric approach for use in a n d  detection. Describe some research projects 
that you think would improve this nonparameoic test from both theoretical and 
practical viewpoinu when it is usad to discover trends in seasonal water quality 
data. 
Compare the relative advantages and disadvantages of using parametric and non- 
parametric tests in bend detection and modelling. If you address points that are 
raised in Chapter 23, give more depth to your explanations than those presented in 
this chapter. Also, explain some new points of comparison which art not addressed 
in Chapter 23. Properly reference the sources of your information. 
In Section 23.3.3, procedures arc given for grouping seasons for use in trend detec- 
tion. Compare the relative advantages and disadvantages of the different 
approaches. Outline a method of grouping which is not given in Section 23.3.3. 
Without refemng to the published literature, prove that the Mann-Kendall test statis- 
tic S in (23.3.11 is asymptotically normally distributed with the mean and variance 
given in [23.3.2]. Why is it necessary to know the distribution of S? 

How can one calculate the exact distribution of the Mann-Kendall test statistic, S ,  in 
small samples? 
Select a nonseasonal time series which you suspect may contain a trend. Using the 
Mann-Kendall test, carry out a fonnal hypothesis test to ascertain if your suspicions 
are comct. Comment upon your results. 
Outline how the covariance eigenvalue method of Lencnmaier (1988) works for 
handling correlation among seasons when employing the comlatcd seasonal Mann- 
Kendall test. Describe the advantages and drawbacks of this technique when corn- 
pared to its competitors. 
Choose a seasonal environmental time series that is of interest to you. Employ the 
seasonal Mann-Kendall test to check for the presence of trends. Be sure to deter- 
mine how a trend behaves separately within each S e w n  and only group seasons 
together in a meaningful way when carrying out the a n d  test across seasons. Be 
certain to emphasize the most interesting results when explaining your findings. 
Using equations. outline the four methods of combining independent tests of 
hypothesis which an compand by Littell and Folks (1971). Summarize the advan- 
tages and drawbacks of each of the four approaches. 
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23.10 

23.11 

23.U 

23.13 

23.14 

23.15 

23.16 

23.17 

23.18 

23.19 

23.20 

23.2 1 

23.22 

By referring to the research of Hirsch et al. (1982) and Smith et al. (1982). use equa- 
tions to outline the procedure for determining the flow adjusted concentration PAC) 
for a water quality variable. Appraise their approach for calculating the FAC’s. 
By employing a seasonal environmental timc series, demonstrate how the Spearman 
partial rank correlation test is used for a n d  detection when the effects of seasonal- 
ity are partialled out. Clearly, explain how your calculations an carried out when 
applying this test and comment upon any interesting results. 
Explain how the Spearman partial rank correlation test can take into account the 
effects of correlation when checking for the presence of a trend in a time series. 
Design comprehensive simulation experiments to compare the powers of the sea- 
sonal Mann-Kendall and Spearman partial rank correlation tests for trend detection. 
Carry out a sensible portion of the simulation experiments designed in the previous 
problem. 
Define the Kendall partial rank cornlation statistic for three variables labelled as X. 
Y and Z. Explain how this statistic could be utilized in trend tests. Discuss the 
advantages and disadvantages of using the Kendall partial rank correlation coeffi- 
cient for discovering trends. 
Define the Pearson partial rank correlation coefficient for three variables denoted as 
X, Y and Z. Explain various ways in which this statistic could be used for trend 
tests. Comment upon the advantages and drawbacks of employing the Pearson par- 
tial rank correlation coefficient for trend detection. 
In Section 23.3.7 it is noted that Hirsch and Gilroy (1985) employ a filter for deter- 
mining a filtered sulphate loading series which can then be tested for the presence of 
a step trend which started at a known intervention date. Using equations, outline 
how this filter works and explain its advantages and limitations. 
Using equations. explain how the nonseasonal Mann-Kendall test is applied to a 
multiple censured data set by employing the expected rank vector approach of 
Hughes and Millard (1988). Using either an actual or hypothetical time series hav- 
ing at best three levels of censoring on the lefk demonstrate how the a n d  test is 
carried out. 
Execute the instructions of the previous problem for the case of a seasonal time 
series. 
Define one more deterministic trend model and one more stochastic trend model 
which could have been used in the simulation studies for trend detection in Section 
23.4. Explain the reasons for your choice of models. 
Define a mixed deterministic-stochastic a n d  model which could be employed in 
the simulation studies for trend detection presented in Section 23.4. Justify the rea- 
sons for your choice of a mixed model and explain why the authors did not usc a 
mixed model in their simulation experiments. 
In Section 23.4, simulation experiments are used to ascertain the ability of the ACF 
at lag one, q, in [23.4.1], and Kendall’s tau in [23.3.5] to detect deterministic and 
stochastic trends. Define one other parametric statistic and another nonparametric 
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23.23 

23.24 

23.25 

23.26 

23.27 

23.28 

23.29 

23.30 

statistic which could have k n  used in the simulation studies. Explain why you 
selected these statistics and compare them to those used in Section 23.4. 

1 Prove that the ACF at lag one, rl, in [23.4.1] is asymptotically NID(0,-) where n is 
n 

the sample size. 
A threshold autoregressive model is defined in [23.4.15]. Explain how this model is 
fitted to a given tim series by following the three stages of model construction. 
As noted in Section 23.5.2, both the Kruskal-Wallis test and one way analysis of 
variance can be used for checking whether or not the means among replicated sam- 
ples arc significantly different from one another. After briefly outlining how each 
test is designed, compare the merits and drawbacks of the two methods. 
Outline the approach of Montgomery and Reckhow (1984) for carrying out a trend 
assessment study. Compare their procedure to methodology employed in Section 
23.5. 
Summarize the procedure of Hirsch et al. (1991) for selecting methods to employ for 
detecting and estimating trends in water quality time series. 
Suppose that a government agency gives you a set of environmental time series to 
examine for the presence of trends. Briefly describe how you would decide upon 
what to do. 
Obtain some environmental time series which are suspected of possessing trends. 
List the exploratory and confmatory data analysis tools which you plan to use and 
then execute a comprehensive data analysis study. 
Conover and Iman (1981) describe a valuable procedure for linking paramemc and 
nonparamemc statistics. Outline how this connection is carried out and summarize 
the advantages of the approach. Be sure to explain how their procedure can enhance 
regression analysis, which is the topic of the next chapter. 
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CHAPTER 24 

REGRESSION ANALYSIS 

AND 

TREND ASSESSMENT 

24.1 INTRODUCTION 

Suppose that one would like to analyze trends in water quality time series measured in 
rivers. The underlying conceptual model used in trend analysis of a water quality variable Y can 
be written as 

Y p  = f ( X , )  + s, + c, + El [24.1.1] 

where Y, is the water quality observation at time t that may be transformed using the Box-Cox 
transformation in [3.4.30] to produce the transformed value given as Y,@), fe,) is a function of a 
covariate series X I ,  X I  is a covariate series at time t such as riverflow or temperature measured at 
time I ,  S, is the seasonal component at time I ,  C, is the trend in Y,, and E, is the noise component 
at time t. In trend analysis, one wishes to appropriately account for XI, S, and E, so that C, can 
be easily detected and accurately quantified, even when the trend effects are small. Trends over 
time can be increasing, decreasing or non-existent. Furthermore, trends over time can follow 
linear or nonlinear geometrical patterns. For many water quality series measured in rivers, the 
covariate series used is flow. However, in other situations, different covariate series can be used. 
For example, temperature may be better to use as XI when the Y, series is dissolved oxygen or 
total nitrates. Also, when water quality measurement sites are far removed from flow gauging 
sites, covariates other than flow may have to be used for XI. Finally, the idea of decomposing a 
series into its basic components as in [24.1.1] is a well established procedure and is, for example, 
inherent in the basic designs of the intervention models in [19.5.8] and [22.4.5] as well as the 
seasonal adjustment procedure of Section 22.2. 

The objectives of this chapter are twofold. The first goal is to explain some ways in which 
regression analysis can be used to model various components of the general model in [24.1.1]. 
The second objective is to develop a general trend analysis methodology based on [24.1.1] for 
analyzing trends in water quality time series measured in rivers. As is explained in Section 
24.3.2, regression analysis as well as nonparametric tests play a key role in this methodology. 
To demonstrate the efficacy of the methodology, it is applied to representative water quality time 
series measured in rivers in Southern Ontario, Canada. 

As pointed out in the preface to Part X as well as Section 23.1, water quality and other 
kinds of environmental data are often quite messy. The time series may, for example, be highly 
skewed, have many missing observations, possess multiple censoring levels, and contain sea- 
sonal trends. When examining environmental data for the presence of trends and other statistical 
properties, a systems design approach to data analysis should be followed. More specifically, 
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one may wish to adhere to the two data analysis stages consisting of exploratory data analysis 
and confirmatory data analysis (Tukey, 1977). This comprehensive approach to data analysis is 
described in Sections 1.2.4 and 22.1. Graphical procedures that can be used a. exploratory data 
analysis tools for visually discovering the main statistical properties of a data set are presented in 
Section 22.3 as well as Section 24.2.2 in this chapter. Confirmatory data analysis techniques for 
carrying out hypothesis testing and obtaining rigorous statistical statements about certain statisti- 
cal properties such as trends are presented throughout the book. These confirmatory tools con- 
sist of both parametric models and nonparametric tests. Parametric models, such as the interven- 
tion models of Chapters 19 and Section 22.4, can be used with data that are not too messy. For 
example, if there are a few missing observations in a series, the intervention model can be used 
to estimate these missing values as well as estimate the magnitude of a trend. When the data are 
very messy, one may have to use nonparametric methods. A variety of nonparamemc tests for 
trend detection are given in Section 23.3. 

Regression analysis models have a very flexible design and can be used with data that are 
not evenly spaced over time. In the next section, certain kinds of regression models are 
described for use as exploratory and confirmatory data analysis tools. A particularly informative 
regression analysis approach for employment as an exploratory tool for tracing trends is the 
robust locally weighted regression analysis smooth of Cleveland (1979). This technique is 
described in detail in Section 24.2.2, while applications of the method are given in that section as 
well as in 24.3.2. 

Table 1.6.4 outlines the three trend analysis methodologies presented in the book. Subse- 
quent to carrying out exploratory data analysis studies and filling in missing observations using 
the seasonal adjustment method of Section 22.2, intervention analysis is employed in  Section 
22.4 to describe the impacts of cutting down a forest upon the mean levels of riverflows and 
water quality. In Section 23.5, water quality applications are used for explaining how explora- 
tory and confirmatory data analysis tools can be employed for studying trends in water quality 
variables measured in a lake. The purpose of Section 24.3 in this chapter is to present a general 
trend analysis methodology for use with water qualify time series measured in rivers. As 
explained in that section and outlined in Table 24.3.1, the methodology consists of graphical 
trend studies and trend tests. Different kinds of graphs for observing trends are presented in Sec- 
tions 22.3 and 24.2.2, while nonparamemc trend tests are given in Section 23.3. In Section 24.3, 
procedures are also described for accounting for the effects of flow or another appropriate 
covariate upon a given water quality series and eliminating any trend in the flow before its effect 
upon the water quality series is removed. The Spearman partial rank correlation test of Section 
23.3.6 provides a powerful test for trend detection in a water quality variable over time when the 
effects of seasonality or some other factors are partialled out. Water quality data measured in 
rivers are utilized for illustrating how the trend analysis methodology is applied in practice. 

24.2 REGRESSION ANALYSIS 

24.2.1 Introduction 

Regression analysis constitutes a flexible and highly developed parametric modelling 
approach which has been applied to virtually every field in which data are measured. A host of 
books on regression analysis are available including valuable contributions by Mosteller and 
Tukey (1977), Draper and Smith (1981), Atkinson (1985), and Chambers and Hastie (1992). 
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Regression models can be designed for modelling many situations, including the type of model 
in [24.1.1]. In addition to major developments in linear regression models, good progress has 
been made in nonlinear regression (see, for example, Gallant (1987) and Bates and Watts 
(1988)). 

Consider the case of a linear regression model. When fitting a regression model to a data 
set, it is recommended to follow the identification, estimation and diagnostic check stages of 
model development, as is also done for all of the time series models presented in this book. A 
wide variety of well developed procedures are available for constructing linear regression 
analysis models. Usually, the noise term in a regression model is assumed to be normally 
independently distributed 0). If the residuals of a fitted model are not normal, one may be 
able to rectify the situation by transforming the data using the Box-Cox transformation in 
[3.4.30]. When the residuals are not independent and hence are correlated. one will have to 
design a more complicated regression model to overcome this problem or, perhaps, use a com- 
pletely different type of model such as some kind of stochastic model. 

As is also the case for the transfer function noise (TFN) and intervention models of Parts 
VII and VIII, respectively, a regression model can handle multiple input series. However, recall 
that in TFN and intervention models, the noise term is correlated and modelled using an ARMA 
model. In a regression model, the noise term is assumed to be white. Another advantage of a 
TFN model over a regression model is that the transfer function in a TFN model has an operator 
in both the numerator and denominator as in [17.2.1] and [17.5.3]. This allows one to handle a 
wide range of ways in which an input series can effect the output or the response variable, as is 
discussed at the end of Section 17.2.4 and in Section 19.2.2. Furthermore, this can be done using 
very few model parameters. In fact, one can think of a TFN model as being a regression model 
having an autocorrelated noise term rather than white noise. Nonetheless, an advantage of 
regression analysis over TFN models is that it can be used with data that are not evenly spaced 
and hence possess missing values. 

What is meant by missing observations must be explained in more detail, especially for the 
case of water quality time series (McLeod et al. (1991)). First, consider what missing means with 
respect to parametric techniques. For many parametric methods, such as the wide variety of time 
series models given in this book, it is usually assumed that observations are available at equally 
spaced time intervals. For example, when fitting a periodic autoregressive model in [14.2.1] to 
average monthly riverflow series, all of the monthly observations across the years must be avail- 
able. If there is at least one missing observation, the data are no longer evenly spaced due to this 
missing value. Before fitting the time series model, one must obtain estimates for the missing 
value or values. Furthermore, for the case of riverflows usually each monthly observation is cal- 
culated as a monthly average of average daily flows. Each daily average may be based upon a 
continuous record taken for that day. Hence, the monthly flow data are often calculated from 
continuous analogue records. 

In contrast to riverflow records, water quality observations usually have quite different 
meanings in sampling theory. More specifically, most water quality records could be classed as 
irregular series of quasi-instantaneous measurements. This is because each water quality sample 
takes about 10 to 15 seconds to collect. With such samples, the term missing data could refer to 
a number of situations including: 
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1. All the unsampled 10 to 15 second periods of the record. This total number is, of course, 
very large and can be thought of as infinity for practical purposes. 
Uncollected or lost samples with respect to a specific monitoring objective. For instance, 
an objective may be to collect one sample per month and if at least one monthly observa- 
tion is missing the data are irregularly spaced due to this missing value. Another objective 
may be to have most of the water quality samples taken during times of high flows to pro- 
duce flow biased data. If no samples are taken for at least one high flow event, then there 
are missing data. 
Data missing in the sense of some analytical framework. For example, suppose that the 
framework chosen is the monthly level. If there is at least one observation per month, then 
one can say that there are no missing values. However, at a daily level there may be many 
missing observations. 
Another stated characteristic of messy environmental data is that the observations may be 

significantly affected by external interventions. These interventions may be man-induced or 
natural. An example of a beneficial man-induced intervention is the introduction of tertiary 
treatment at city sewage plants located in a river basin. This beneficial intervention should cause 
a step decrease in the phosphorus levels in the river, as shown in Figures 1.1.1 as well as 19.1.1 
and explained in Section 19.4.5. On the other hand, uncontrolled industrial development with 
few environmental controls would cause detrimental impacts upon certain water quality vari- 
ables in a river. One can cite many other examples of environmental policy and related land use 
changes which can adversely or beneficially affect water quality. An illustration of a natural 
intervention is the effect of a forest fire in a river basin upon water quality variables. For exam- 
ple, the resulting lack of forest cover may cause more sediments to be carried and deposited by 
rivers. However, as a new forest grows back over the years, the flows and water quality vari- 
ables may slowly revert to their former states, which is the situation for the intervention analysis 
application presented in Section 19.5.4. In trend analysis one wishes to detect and analyze trends 
caused by man-made or natural interventions. 

The intervention model of Part VIII and Section 22.4 constitutes a flexible type of model 
that can be used to estimate trends. Regression models can also be designed for estimating the 
magnitude of trends in a series. One approach is to model all of the components in [24.1.11 
employing a regression model. Alternatively, one could describe some of the components in 
[24.1.1] using regression analysis and the remaining parts utilizing other statistical methods. For 
instance, a nonparamemc trend test (see Section 23.3) could be applied to the residuals of a 
regression analysis to check for the presence of trends after the covariate and seasonality points 
have been suitably accounted for using regression analysis (see Section 23.3.5). Brown et al. 
(1975) employ cumulative sum statistics for tests of change in a regression model structure over 
time. Within the water resources and environmental engineering literature applications of 
regression analysis in trend assessment include contributions by Alley (1988), Cunningham and 
Morton (1983), El-Shaarawi et al. (1983), Loftis et al. (1991), McLeod et al. (1991). Smith and 
Rose (1991). Reinsel and Tiao (1987), Stoddard (1991), and Whitlatch and Martin (1988). 

Esterby and El-Shaarawi (1981a,b) devise a procedure for estimating the point of change 
and degree in polynomial regression, while El-Shaarawi and Esterby (1982) extend the approach 
for use with a regression model having an autoregressive error process of order one. In environ- 
mental engineering problems, the time at which an intervention takes place due to additional 

2. 

3. 
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pollution loads and other reasons is often unknown. The approach of Esterby and El-Shaarawi 
can estimate the time of the intervention (called the point of change) as well as the order of the 
polynomial regression and associated model parameters both before and after the intervention. 
Moreover, Esterby (1985) provides a flexible computer program which allows practitioners to 
implement their versatile regression analysis technique. As an exploratory data analysis tool, the 
method of Esterby and El-Shaarawi (1981a.b) and El-Shaarawi and Esterby (1982) is useful for 
detecting the presence and star& of the effects of an intervention. Because estimates of the model 
parameters both before and after the start of the intervention are obtained, their technique can 
also be considered as a confiatory data analysis tool. Finally, El-Shaarawi and Delorme 
(1982) present statistics for detecting a change in a sequence of ordered binomial random vari- 
ables. 

As pointed out earlier in Section 19.2.3, MacNeill (1985) also presents a flexible technique 
for detecting and modelling the effects of unknown interventions. In particular, he develops a 
procedure called adoptive forecarting and estimation using change-detection. To activate this 
adaptive procedure, a successively updated change-detection statistic is proposed. The larger the 
change in the parameters in a regression, exponential smoothing, ARMA or other type of model, 
the larger is the expected value of the change-detection statistic. Additional research related to 
MacNeill's change-detection statistic is referred to in Section 19.2.3 under other trend detection 
techniques. In addition to trend assessment, regression analysis has been extensively utilized for 
addressing a wide variety of problems arising in water resources and environmental engineering. 
For example, interesting applications of regression analysis to natural phenomena are provided 
by Beauchamp et al. (1989). Cleaveland and Durick (1992). Cohn et al. (1992). Duffield et al. 
(1992). Gunn (1991), Helsel and Hirsch (1992). Keppeler and Ziemer (1990). Kite and 
Adamowski (1973). Lyman (1992), Millard et al. (1985), Porter and Ward (1991). Potter (1991), 
See et al. (1992), Simpson et al. (1993), Tasker (1986), Wong (1963). and Wright et al. (1990). 
Moreover, fuzzy regression analysis (Bardossy, 1990; Kacrzyk and Federizzi, 1992; Tanaka et 
al., 1982), has been employed in environmental applications (Bardossy et al., 1990,1992). 

Regression models can be used as both exploratory and confirmatory data analysis tools. 
Section 24.2.2 presents a flexible regression model for visualizing trends in a series at the 
exploratory data analysis stage. In Section 24.2.3, an example of designing a regression model 
as a confirmatory tool in an environmental study is presented. Finally, for discussions about the 
potential pitfalls that one should be aware of when applying regression analysis as well as other 
kinds of statistical techniques, the reader may wish to refer to the references cited in problem 
24.4 at the end of the chapter. 

24.2.2 Robust Locally Weighted Regression Smooth 

Overview 
Suppose that two variables that can be samples are denoted by X and Y. The measurements 

for these variables are given by (xjy;) .  i = 1,2, . . . , n .  In a scatterplot, the values for the X and Y 
variables can be plotted as the abscissae and ordinates, respectively. To gain insight into the 
relationship between X and Y, it is informative to plot some type of smoothed curve through the 
scatterplot. In the final part of this section, it is explained how smoothed curves can be obtained 
for a graph of a single time series and also a scatterplot of a time series where values at time t-k 
are plotted against those at time 1. However, for convenience and generality of presentation, 



944 Chapter 24 

developing a smoothed curve for (xi ,yi)  is now discussed. 

A flexible type of smoothing procedure which works well in practice is the robust locally 
weighted regression smooth (RLWRS) developed by Cleveland (1979). Cleveland (1979, 1985). 
Chambers et al. (1983) and others refer to the general smoothing procedure as LOESS or 
LOWESS for locally weighted least square regression (when this procedure is iterated robustness 
is taken into account), Whatever the case, in this chapter the acronym RLWRS is employed. 
The RLWRS is a member of a set of regression procedures that are commonly referred to as non- 
parametric regression (Stone, 1977). In practice, the RLWRS has been applied to a rich range 
of problems across many fields. For example, Bodo (1989) and McLeod et al. (1991) have util- 
ized RLWRS for trend assessment of water quality time series, and the RLWRS is also applied 
to water quality time series in Sections 24.2.2 and 24.3.2 in this chapter. Moreover, Cleveland et 
al. (1990) have developed a seasonal-trend decomposition procedure based upon the RLWRS. 

In essence, the RLWRS is a method for smoothing a scatterplot of ( x i y i ) ,  i = 1,2, . . . , n ,  in 
which the fitted value at xk is the value of a polynomial fitted to the data using weighted least 
squares. The weight for (xi,yi) is large if xi is close to xk and is small if this is not the case. To 
display graphically the RLWRS on the scatterplot of (xi,yi), one plots (x i , j i )  on the same graph 
as the scatterplot of (xi ,y i ) ,  where (xi&) is called the smoothed point at xi and ji is called the fit- 
ted value at x i .  To form the RLWRS, one simply joins successive smoothed points ( x i j i )  by 
straight lines. Because a robust fitting procedure is used to obtain the RLWRS, the smoothed 
points are not distorted by extreme values or other kinds of deviant points. 

General Procedure 

follows. Let W be a weight function which has the following properties: 
1. 

2. W(-x)  = W(x) .  

3. 
4. W(x)=O for 1x121. 

If one lets 0 < f < 1 and r be * n )  rounded to the nearest integer, the outline of the procedure 
is as given below. For each x i .  weights, wk(xi) ,  are defined for all x k ,  k = 1,2, . . . , n ,  by employ- 
ing the weight function W. To accomplish this, center W at xi and scale W so that the point at 
which W first becomes zero is the r th  nearest neighbour of xi .  To obtain the initial fitted value, 
j i ,  at each xi a dth degree polynomial is fitted to the data using weighted least squares with 
weights wk(xi). This procedure is called locally weighted regression. Based upon the size of the 
residual yi -ji, a different weight, Si, is defined for each (xi ,y i ) .  In general, large residuals cause 
small weights while small residuals result in large weights. Because large residuals produce 
small weights, the effects of extremes tend to be toned down or smoothed, thereby making the 
procedure robust. After replacing wk(xi) by Siwk(xi), new fitted values are computed using 
locally weighted regression. The determination of new weights and fitted values is repeated as 
often as required. All of the foregoing steps taken together are referred to as robust locally 
weighted regression. 

As explained by Cleveland (1979), the general idea behind his smoothing procedure is as 

W ( x )  > 0 for 1x1 < 1. 

W ( x )  is a nonincreasing function forx 2 0. 
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In the smoothing procedure, points in the neighbourhood of (xi,yi) are used to calculate 9;. 
Because the weights wk(xi) decrease as the distance of xk from xi increases, points whose abscis- 
sae are closer to xi ,  have a larger effect upon the calculation of fi while further points play a 
lesser role. By increasing f, the neighbourhood of points affecting Y;. becomes larger. There- 
fore, larger values off tend to cause smoother cwes .  

In the RLWRS procedure, local regression means that regression at a given point is carried 
out for a subset of nearest neighbours such that the observations closer to the specified point are 
given larger weights. By taking the size of the residuals into account for obtaining revised 
weights, robustness is brought into the procedure. Finally, the robust locally weighted regres- 
sion analysis is carried out for each observation. 

Specific Procedure 

The procedure presented by Cleveland (1979) for determining the RLWRS is as follows: 
First the weight function, W, must be specified. Let the distance from xi to the rth nearest 
neighbour of xi  be denoted by hi for each i. Hence, hi is the rth smallest number among 
Ixi - x j l ,  fo r j  = 1,2,. . . , n .  Fork = 1,2,. . . , n ,  let 

1. 

Wk(Xj)  = W((x,  - x ; ) / h ; )  [24.2.1] 

A possible form for the weight function, is the hicube given by 

W ( X )  = (1 - 1 ~ 1 ~ ) ~  for 1x1 < 1 

= O  for 1x1 > 1 [24.2.2] 

2. The second step describes how locally weighted regression is carried out. For each i ,  deter- 
mine the estimates, bj(xi) ,  j = 0,1, . , . , d ,  of the parameters in a polynomial regression of 
degree d of yk on xk.  This is fitted using weighted least squares having weight wk(xi) for 
( x k y k ) .  Therefore, the (Ej(xi) are the values of pi which minimize 

[24.2.3] 

When using locally weighted regression of degree d ,  the smoothed point at xi is (x i , j i )  for 
which j i  is the fitted value of the regression at xi. Hence, 

[24.2.4] 

where rk (x i )  does not depend on y j ,  j = 1,2, . . . , n .  Cleveland (1979) uses the notation 
rk(xi )  to reinforce the fact that the rk(xi) are the coefficients for the yk coming from the 
regression. 
Let the bisquare weight function be given by 3. 
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~ ( x )  = (1 -x212 for 1x1 < 1 

= 0, for 1x1 2 1 124.2.51 

Let the residuals for the current fitted values be ei = yi - Y;.. The robustness weights are 
defined by 

6 k  = B (I?@) [24.2.6] 

where s is the median of the leil. As pointed out by Cleveland (1979), other types of 
weight functions could be used in place of B(x) .  

This step is used to calculate an iteration of robust locally weighted regression. For each i ,  
determine new Y;: by fitting a dth degree polynomial using weighted least squares having 
the weight 6kw&j) at (xkvyk). 

Iteratively execute steps 3 and 4 for a total of I’ times. The final fi constitute the fitted 
values for the robust locally weight regression and the (xi$;) i = 1,2, . . . , n ,  form the 
RLWRS. 

4. 

5 .  

Selecting Variables 

In order to employ the above procedure, one must specify f, d .  f‘ and W. Cleveland (1979) 
provides guidelines for doing this. First consider the variable f, where 0 < f 5 1, which controls 
the amount or level of smoothness. As noted earlier, an increase in f causes an increase in the 
smoothness of the RLWRS. The objective is to select a value off which is as large as possible 
to minimize the variability in the smoothed points but without hiding the fundamental pattern or 
relationship in the data. When it is not certain which value off  to select, setting f = 0.5 often 
produces reasonable results. In practice, one can experiment with two or three values off  and 
select the one which produces the most informative smooth. Bodo (1989) provides suggestions 
for selecting f for monthly and lower frequency monitoring data. 

Instead of qualitatively selecting one or more values of f ,  one can estimate f. Based upon 
the research of Allen (1974). Cleveland (1979) suggests an approach for automatically determin- 
ing f using a computerized algorithm. The approach begins with the locally weighted regression 
in step 2. Leaving y i  out of the calculation, for a specified value off let Y;:(f) be the fitted value 
of yi. A starting value of fo forf is chosen by minimizing 

[24.2.7] 

Next, using f =fo the robustness weights in [24.2.6] in step 3 can be determined. Omitting y i  

from the calculation and using the robustness weights, let 2.u) be the fitted value at xi for a 
given value off. The next value off is determined by minimizing 

r24.2.81 

Using the latest estimated value off,  the last step can be repeated as many times as are necessary 
in order to converge to a suitably accurate estimate for f. Depending upon the problem at hand, 
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this procedure for estimating f may require substantial computational time. 
The parameter d is the order of the polynomial that is locally fitted to each point. When 

d = 1, a linear polynomial is specified. This usually results in a good smoothed curve that does 
not require high computational effort and, therefore, a Linear polynomial is commonly used. 

The parameter t f  stands for the number of iterations of the robust fitting procedure. Based 
upon experimentation, Cleveland (1979) recommends using t f  = 2. However, the authors of this 
book have found that t’ = 1 is sufficient for most applications. 

In the description of the general procedure for RLWRS, four required characteristics of the 
weight function, W ( x ) ,  are given. It is also desirable that the weight function smoothly 
decreases to zero as x goes from 0 to 1. The tricube function in [24.2.2] possesses all of the 
above stipulated properties. Of course. other appropriate weight functions possessing the above 
attributes could also be entertained. 

Applications 

The RLWRS can clearly depict meaningful relationships for the situations described below: 
Scatter Plot ofX against Y - The measurements of variables X and Y are given by (x ;y ; ) ,  

i = 1,2, . . . , n.  In a scatter plot, the values for the X and Y variables are plotted as the 
abscissae and ordinates, respectively. A RLWRS through the scatter plot can visually 
display the underlying relationship between X and Y .  

Time Series Plot - In a graph of a time series, one plots the values of the time series x, at 
each time t against time t = 1,2,. . . , n .  Consequently, the point (x;,y;) used in the pro- 
cedure described above is simply replaced by ( t j , ) .  

Scatter Plot of a Single Time Series - In a scatter plot of a variable X, one plots x,-~ against 
x, in order to see how observations separated by k time lags are related. In the procedure 
for determining the RLWRS, simply substitute ( x , ~ , - ~ )  for (xi,y;) in order to obtain the 
smooth. 
Applications are now given to illustrate how RLWRS’s can be useful in a time series plot _ _  

and a scatter plot. The data-used in the graphs are water quality data from the Ontario Ministry 
of the Environment for the Saugeen River at Burgoyne, Ontario, Canada. 

As explained in Section 22.3.2, one of the simplest and most informative exploratory data 
analysis tools is to plot the data against time. Characteristics of the data which are often easily 
discovered from a perusal of a graph include the detection of extreme values, trends due to 
known or unknown interventions, dependencies between observations, seasonality, need for a 
data transformation, nonstationarity and long term cycles. 

A time series plot is especially useful for visually detecting the presence or absence of a 
trend. Figure 24.2.1, for example, shows a graph of logarithmic total nitrates for the Saugeen 
River against time, where each observation is marked using a cross. The fact that h = 0 is writ- 
ten above the graph means that the natural logarithmic msformation from [3.4.30] is invoked. 
The two horizontal lines plotted in the graph delineate the 95% confidence interval (CI) limits if 
the series is assumed to be normally independently distributed (NID). The observations that lie 
far outside the 95% CI in Figure 24.2.1 can be considered as outliers under the assumption that 
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the data are NID. 
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Figure 24.2.1. Graph of logarithmic total nitrates denoted by 
NO, ( m g )  against time for the Saugeen River. 

In Figure 24.2.1, there is one particularly large observation occurring in 1982. One may 
wish to examine the records to see if this observation is correct. If the extreme observation were 
erroneous, one could remove it from the record and thereby not use it in subsequent data 
analysis. However, the techniques used in the general trend analysis procedure of Section 24.3 
are robust or insensitive to outliers. Therefore, this extreme value, and others, are not eliminated 
from the record. 

The line indicating the upward trend through the data is the RLWRS for this time series 
plot. This robust smooth is referred to in Figure 24.2.1 as RS80 because a value off  = 0.8 is 
employed when plotting the smooth. Hence, the number beside RS is the f value multiplied by 
100. 
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As shown by the dark mass of crosses in the earlier years, more observations were taken at 
that time. The large gap between many observations, especially in the period from 1979 to 1981, 
shows that there are time periods during which few measurements were taken and, therefore, the 
sequence of observations are unequally spaced. The sinusoidal cycle, which is especially pro- 
nounced during the first few years, means that the logarithmic total nitrate data are seasonal. 

The results of the nonparametric Mann-Kendall trend test (see Section 23.3.2) written 
below the graph in Figure 24.2.1 confirm that there is an upward trend. This is because the value 
of the statistic tau calculated using [23.3.5] is positive and the significance level (SL) for this 
monotonic trend test is close to zero. A small SL (for example, a value less than 0.05) means one 
should reject the null hypothesis that there is no trend and accept the alternative hypothesis that 
there is a trend. Alternatively, if the SL level is large and greater than say 0.05, one should 
accept the null hypothesis that there is no trend. Because the Mann-Kendall test in r23.3.51 or 
[23.3.1] is designed for employment with nonseasonal data, the result of the test is only a rough 
indicator for confirming the presence of a monotonic trend in the time series in Figure 24.2. I. 

Figure 24.2.2 shows a scatter plot of the logarithmic flows of the Saugeen River (the X 
variable) against the logarithmic total nitrates (Y variable). The flows are only used for the same 
times at which the total nitrate measurements are available. Notice that there appears to be a 
nonlinear function relationship between the flows and the nitrates. To allow the RLWRS to fol- 
low this relationship a graph using RS50 is employed. A visual examination of this RLWRS 
shows that the extreme values do not adversely affect it. The Kendall rank correlation test given 
at the bottom of Figure 24.2.2 is described in Appendix A23.1. Because tau is positive, there is 
an upward trend in the scatter plot. The fact that the SL is very small means that the relationship 
is significant. 

24.2.3 Building Regression Models 

Overview 
Regression analysis constitutes a very general approach to formally modelling statistical 

data. In fact, regression analysis models can be written in a wide variety of ways and can handle 
many different situations. When fitting regression models to data sets, one should follow the 
identification, estimation and diagnostic check stages of model construction, as is done 
throughout this book for time series models. To illustrate how regression analysis is applied in 
practice, a case study involving water quality time series is presented. 

Lake Erie Water Quality Study 
In a particular data analysis study, one should design a specific type of regression model for 

addressing relevant statistical problems with the data being analyzed. As a brief example of how 
this is done, consider the statistical data analysis study of water quality time series measured at 
Long Point Bay in Lake Erie, Ontario, Canada, which is presented in Section 23.5. As summar- 
ized in Table 23.5.1, a wide variety of graphical, parametric and nonparametric techniques are 
utilized for addressing challenging statistical problems. The last item in Table 23.5.1 mentions 
that regression analysis is employed in the investigation. 
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Figure 24.2.2. Scatter plot of logarithmic nitrates against logarithmic flows 
for the Saugeen River. 

Regression Model Design: For the Lake Erie project, a flexible regression model is designed for 
accomplishing tasks which include determining the best data transformation, ascertaining the 
components required in a regression model, and estimating both the average monthly and annual 
values for the series. One can then check for long term trends by examining a smoothed plot of 
the estimated average annual values. 

The most general form of the regression model used in the project is written as 

where i = 1.2, . . . , n ,  denotes the yew, j = 1,2, . . . ,s, denotes the season when there are s sea- 
sons per year (for the monthly Nanticoke data s is usually 9 rather than 12 because often data are 
not available for the months of January, February and March 1; k = 1.2, . . . , nii. denotes the data 
point in the ith year and jth season for which there is a total of nii data points; y$) is the kth data 
point for a given water quality variable in year i and month j where the 3c indicates a Box-Cox 
transformation (Box and Cox, 1964) which is defined below; CI is the constant term; pLi is the 
parameter for the annual effect in the ith yew, aj is the parameter for the seasonal effect in the 
j t h  season; yo is the interaction term; xik is the kth water depth value for the ith year and j th  
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season; 2 is the mean depth across all of the years and seasons; is the depth parameter and t?$ 

is the error for the kth data point in the ith year and jth season and is normally independently 
distributed with mean zero and variance d. In order for the model to be identifiable, pn =0, 
a, = 0 ,  yi, =0, i = 1.2,. . . , n ,  and y,. =0, j = 1.2,. . . ,s. Also, if nii = O  then yii =O. In addi- 

tion, yii = O  if z n e  = 1 or z n i i  = 1. If, for example, nii ‘2 1 for all i j  then there are 

1 + (n - 1)  + (s - 1) + (n - l)(s - 1) = ns parameters in the model if one ignores the depth 
parameter, the transformation parameter X, and the variance of the error. 
Box-Cox Transformation: As is also explained in Section 3.4.5, in order to cause the data to be 
approximately normally distributed and homoscedastic (i.e., have constant variance), the data 
can be transformed using a Box-Cox transformation (Box and Cox, 1964) which is defined as 

s n 

j= 1 i= 1 

[24.2.10] 

where c is a constant which is usually assigned a magnitude which is just large enough to make 
all entries in the time series positive. Along with maximum likelihood estimates (MLE’s) and 
standard errors (SE’s) for the other model parameters in [24.2.9], one can obtain the MLE of X 
and its SE for a given data set. Because it is known that MLE’s are asymptotically normally dis- 
tributed, one can obtain the 95% confidence limits for the MLE of a model parameter such as X. 
Automatic Selection Criteria: A wide variety of statistical procedures are available for select- 
ing the best regression model and making sure that certain modelling assumptions regarding the 
residuals are satisfied. For example, to choose the most appropriate regression model, one can 
employ automatic selection criteria such as the AIC and BIC defined in [6.3.1] and [6.3.5], 
respectively. 
R’ Coemcient: A common criterion for assessing the adequacy of fit of a regression model is 
the square of the multiple correlation coefficient, denoted by R2. This statistic reflects the pro- 
portion of the total variability which is explained by the fitted regression equation. R2 has a 
range between 0 and 1 and the higher the value of R2, the better is the statistical fit. Conse- 
quently, when comparing competing regression models, the one with the highest R2 value is 
selected. 
Whiteness Tests: To test the adequacy of a fitted model, one can check if one or more assump- 
tions underlying the model residuals are satisfied. In particular, one may wish to ascertain if the 
residuals are random or uncorrelated. The generalized Durbin-Watson test statistic (Wallis, 
1972) provides a test of the null hypothesis that there is no autocorrelation in the residuals of a 
regression model against the alternative hypothesis that there is significant autocorrelation. 
More specifically, the test statistic is defined as 

[24.2.11] 

where 6, is the residual estimated at time I ,  n is the length of the residual series, and k is a suit- 
ably selected positive integer. Based upon the work of Shively et a]. (1990) as well as Ansley et 
al. (1992). Kohn et al. (1993) develop an algorithm for computing the p-value of the test statistic 
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in [24.2.11]. Because of this, one can now conveniently execute an hypothesis test for whiteness 
using the generalized Durbin Watson test statistic. Additionally, the residual autocorrelation 
function (RACF) defined at lag k as 

rk(6) = i 46t-kli42 
f=k+l f = l  

is related to the test statistic in [24.2.11] by the relationship 

[24.2.12] 

[24.2.13] dk 
r&!)=l - - 

2 

Kohn et al. (1993) furnish a technique for calculating the p-value for the test statistic in [24.2.13] 
that allows this statistic to also be used as a whiteness test. With nonseasonal data, for example, 
one may wish to ascertain if rl is significantly different from zero. For a seasonal time series, 
one may also want to examine rk(e^> for the case where k is the number of seasons per year or 
some integer multiple of the seasonal length. 

The runs test constitutes another procedure for testing whether or not the residuals are 
white. The runs test is a simple but often effective test of the null hypothesis that a time series is 
random. Let M denote the median of a time series z1,z2, . . . , 2,. If one replaces each zt by a + 
or - according as zt S M of zt > M respectively, then a run is a string of consecutive + or -. The 
total number of runs, say R ,  yields a test statistic for randomness. The exact expected number of 
runs is given by 

2n1n2 

“1 + “2 
E ( R )  = 1 + - , [24.2.14a] 

where nI is the total number of + and n2 = n - nl . If there is persistence in the series, the 
observed number of runs, R,  will tend to be less than the expected. On the other hand, for alter- 
nating behaviour the number of runs will exceed E ( R ) .  The exact variance of R is given by 

2n,n2(2nln2 - n) 
n2(n - 1) 

var(R) = [24.2.14b] 

Provided that n1 and n2 are both greater than 20, the normal approximation can be used to com- 
pute the significance level (Swed and Eisenhart, 1943). A two-sided test is used. The Runs Test 
could be computed about a value other than M but it would have less power. When either 
nl 5 20 or n2 5 20 exact formulae given by Swed and Eisenhart (1943) for the probability func- 
tion of R are used to compute the exact significance level of a two-sided test. 

For the case of the regression model in [24.2.9], one would like to ascertain if the residuals, 
f?ijk, are random. Consequently, in the above test, the z, series is replaced by the f?$ series. The 
runs test makes no distributional assumption other than independence. When the residuals of a 
regression model are not random, this would indicate that the fitted model in inadequate. 
Analysis of Variance for the Regression: In order to test the statistical significance of the 
regression model, an ANOVA (analysis of variance) for regression can be executed. For the 
model in [24.2.9], the null hypothesis is that all parameters (Le., the pi’s, ails. yii’s. and p) are 
zero except for the mean which would be given by p when the other parameters are zero. The 
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alternative hypothesis is that at least one of the parameters, other than the mean, is nonzero. 

The total SS is 
To calculate the test statistic, various kinds of sums of squares (SS) must be determined. 

ssloral= D& [24.2.15] 

where the x refers to summing over all i ,  j and k. Of course, if the model is fitted to data 
transformed by a Box-Cox transformation, the SS in [24.2.15] and elsewhere are calculated for 
the transformed data. The total corrected SS is given by 

[24.2.16] 

where 7 is the overall mean of the yijk. To calculate the SS of the residuals or the errors, one 
uses 

ss~oral corrected = X Q i j k  - B2 

ssres = coijk - r24.2.171 

where f i j k  is the predicted value of y $  using the fitted regression model in [24.2.9]. The follow- 
ing identity can be used to ascertain the SS for the mean. 

ssmem = Ssmd - ssloral corrected 

Finally, the SS for the regression is given by the identity 

Ssreg = SSloral- SSmm - SSres 

[24.2.18] 

[24.2.19] 

To determine the mean square (MS) for a given SS, one divides the SS by the degrees of 
freedom (DF). The number of degrees of freedom for the regression, denoted by DFreg. is the 
total number of p i ,  a,, yij and p parameters in [24.2.9] which are not restricted to be zero. If, for 
instance, nii 2 1 for all i and j .  there are 

1 + (n - 1 ) +  (s - 1) + (n - l)(s - 1 ) +  1 = m  + 1 

degrees of freedom which are due to the mean, pi’s, a,’s, kii’s, and p parameters, respectively. 
The number of degrees of freedom for the mean correction is simply one while the DF for the 
SS,, is 

DF,, = n - DFre8 - 1 , [24.2.20] 

The MS’s for the regression and residuals are given by 

[24.2.21] 

and 

Ssres 

DFres 
MS, = - , [24.2.22] 

respectively. 
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The test statistic is given by 

[24.2.23] 

which follows a F dismbution with DFre8 and DFres degrees of freedom. After calculating the 
test statistic, one can easily determine the SL in order to ascertain whether or not the null 
hypothesis should be rejected. For this test, it is assumed that the residuals are normally 
independently distributed with a mean of zero and a constant variance. 
Comparing Other Alternative Models: The ANOVA for the regression compares the simplest 
possible regression model, for which there is only a mean level, to the full model (FM). In gen- 
eral, one may wish to know whether or not a reduced version of the FM, denoted by RM for 
reduced model, can describe a data set statistically as well as the more complex FM which con- 
tains all of the parameters of the simpler RM. The null hypothesis is that the parameters in the 
FM which are not contained in the RM are all zero. The alternative hypothesis is that at least 
one of these parameters is nonzero. If, for example, the null hypothesis were accepted based 
upon the SL of the test statistic, the RM would adequately model the data and the FM would not 

Let )$k and y*# be the values predicted in the regression equations for the Fh4 and RM 
be required. 

models, respectively. The SS of the residuals or errors for the FM and RM are given by 

[24.2.24] 

and 

respectively. The test statistic is then written as 

[24.2.26] 

where DFres(FM) and DFres(RM) are the numbers of degrees of freedom for the FM and RM, 
respectively, which arc calculated using [24.2.20]. The test statistic in [24.2.26] follows an F 
distribution with [DFres(RM)-DFres(FM)] and DFr,(FM) degrees of freedom. To determine 
whether or not the null hypothesis should be accepted, the SL for the test statistic can be calcu- 
lated. 
Test for Depth Effect: One may wish to test the hypothesis that an estimated parameter in a fit- 
ted regression model is equal to a given constant. If the estimated parameter is &. one may wish 
to test the null hypothesis 

where Po is a constant selected by the investigator. The alternative hypothesis is 

The test statistic is 
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[24.2.27] 

where t follows a student's r distribution on DF,, degrees of freedom calculated using 
[24.2.19], and SE is the standard error of estimation for 6;. After calculating the SL for the 
statistic in [24.2.26], one can decide whether or not to accept the null hypothesis. 
Estimating Monthly Means: After fitting the regression model in [24.2.9] to a given data set, 
one can obtain estimates for the average monthly values for those months for which at least 
some measurements were taken. When the data are transformed using the Box-Cox transforma- 
tion in [24.2.10], the average monthly values are first calculated for the transformed domain. 
Letting Gii stand for the estimate of the average monthly value in year i and month j ,  then 

A 1  A 

4.. II = p + pi + aj + ?Q [24.2.28] 

where the definitions for the estimated parameters on the right hand side are given in [24.2.9]. 
The 95% confidence interval for jii is Yii f 1.96SE. To determine the minimum mean square 
error (MMSE) estimates of the average monthly means in the untransformed domain, one can 
use the formulae given by Granger and Newbold (1976) which are discussed in Section 8.2.7. 
For instance, when A. = 0 in [24.2.9], the MMSE estimate is 

[24.2.29] 

To calculate the 95% confidence limits of Vii. one can replace Gii by Gii + 1.96SE and 
vii - 1.96SE in order to determine the upper and lower limits, respectively, for the transformed 
domain. 
Estimating Annual Means: By letting Ci represent the estimate of the average annual value for 
year i in the transformed domain, the annual mean for year i can be calculated using 

- 1  vii = exp[vQ + -vur(vii)] 
2 

[24.2.30] 

where s is the number of seasons for which the VQ are estimated. The variance of j ;  is deter- 
mined as 

[24.2.31] 

The 95% confidence limits for \;i are \;; f 1.96SE where SE is the square root of the variance in 
[24.2.28]. To determine the MMSE estimate, <;, of the average annual value for year i in the 
untransformed domain one can employ the formulae of Granger and Newbold (1976). The 95% 
confidence limits for Vj are found by taking the inverse Box-Cox transformation of the 95% con- 
fidence limits in the transformed domain. To determine visually if there is a long term trend, 
one can plot a RLWRS or other kind of smoothed curve through the estimated annual time 
series. One could also produce a separate graph of the Tukey smooth for the annual values 
described in Section 22.3.5. 
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24.3 TREND ANALYSIS METHODOLOGY FOR WATER QUALITY TIME SERIES 
MEASURED IN RIVERS 

24.3.1 Introduction 

The collection and analysis of water quality time series are of great import in many regions 
throughout the world. especially in highly populated and industrialized areas. For example, the 
Ministry of the Environment within the Canadian province of Ontario operates a spatially and 
temporally extensive sampling network called the Provincial Water Quality Monitoring Network 
or simply PWQMN. Approximately one sample per month is collected at over 700 sites, which 
may be analyzed for up to 60 water quality indicator parameters. In fact, the PWQMN is one of 
the world’s largest water quality sampling networks falling under the umbrella of a single politi- 
cal jurisdiction. Large sums of money are being spent on collecting substantial data through the 
PWQMN. To make this data meaningful and useful. they must be properly summarized and 
analyzed. The Ministry of the Environment, as well as many other organizations, are especially 
interested in detecting and modelling historical trends in PWQMN data. Trend analyses are 
required for alerting authorities about water quality degradation so that appropriate corrective 
action can be taken and for evaluating the performance of pollution abatement schemes. 

The purpose of this section is to present a general methodology for analyzing trends In 
water quality time series measured in rivers. When checking for the presence of a trend in  a 
water quality time series, the methodology properly takes into account the effects of riverflows 
and seasonality upon the water quality observations. Furthermore, the methodology can be uscd 
with messy water quality data (see Section 23.1) which may possess undesirable characteristics 
such as having outliers, non-normality and missing values. 

To design the steps presented in the methodology, the authors examined a wide variety of 
PWQMN water quality time series measured in the Saugeen and Grand Rivers in Southcm 
Ontario, Canada. Based upon the many types of trend analysis problems that arose when analyz- 
ing the data, a systematic procedure for studying the time series was developed. Because unfore- 
seen problems were discovered as different kinds of water quality data were analyzed, the m n d  
analysis algorithm was built and improved in an iterative fashion. The final product is a 
comprehensive and flexible trend analysis methodology for carrying out systematic trend studies 
of water quality time series. 

Within the steps in the methodology, specific graphical, parametric and nonpararnetric 
techniques described in Part X of this book are utilized. Although the authors found these tech- 
niques to be sufficient for handling all the trend analysis problems they encountered, practition- 
ers and researchers may wish to employ additional specific methods at certain steps in the algo- 
rithm. For instance, when looking for basic characteristics of the data by examining graphs of 
the data, some people may wish to use graphical methods beyond those presented in Section 
22.3. Whatever the case, the main steps in the algorithm will remain the .same. 

In the next section, the steps in the trend analysis methodology are presented and practical 
applications are employed to demonstrate how the methodology can easily be applied in practice. 
Although the authors actually applied their methodology to eight PWQMN water quality series 
plus one waterflow sequence measured at two locations in Southern Ontario, only some 
representative results are given to explain how the methodology works. Finally. an earlier ver- 
sion of research appearing in this section is provided by McLeod et al. (1991). 
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24.33 Methodology Description 

Overview 

The methodology given below is valid for use with messy water quality series measured in 
rivers. In the description, it is assumed that one is ultimately wishing to detect trends at the 
monthly level. Nonetheless, the methodology can be easily converted for use with other sea- 
sonal levels such as quarter-yearly or weekly. To explain the procedure, the NO, and riverflow 
data for the Saugeen River at Burgoyne, Ontario, Canada, are employed. 

The overall trend analysis study is divided into the two main categories of Graphical Stu- 
dies and Trend Tests. These two groupings reflect the idea of exploratory and confmatory data 
analyses referred to in Sections 1.2.4.22.1.23.1 and 24.1. Within the category of Graphical Stu- 
dies, the following three versions of the water quality series are examined first for trends: 
1. Raw or unadjusted water quality time series: The given series may be transformed by the 

Box-Cox transformation in [3.4.30] or [24.2.10] in an attempt to make a non-normal time 
series become approximately normally distributed (see discussion in Section 3.4.5 and 
24.2.3). 

Flow-adjusted water quality time series: This is the time series for which effects of flow 
upon water quality are removed, as explained in detail below. As mentioned in Section 
24.1 just after r24.1.11, in certain situations one may wish to use a covariate series other 
than flow to adjust the water quality series. If this is the case, replace the word flow by the 
name of the covariate in the general methodology described in this section. 
Detrended-flow-adjusted water quality time series: After removing trends from the water 
quantity time series, the influences of flow upon the water quality time series are elim- 
inated in order to produce the detrended-flow-adjusted water data. 

Following this, the three average monthly versions of the above three kinds of data are studied 
using graphical procedures. As  noted at the start of this section, one can easily use a seasonal 
time scale other than monthly. If this is required, replace the word monthly by the designated 
seasonal category in the description of the methodology. 
4. Mean monthly unadjusted water quality time series. 

5. Mean monthly flow-adjusted water quality time series. 

6. Mean monthly detrended-flow-adjusted water quality time series. 

The manner in which these series are calculated is explained below. The main graphical pro- 
cedure used to examine the six types of water quality data are a trace or time series plot (Section 
22.3.2) along with a smoothed curve (called RLWRS in Section 24.2.2) through the plotted data. 
Finally, under the category of trend tests, the above three types of monthly water quality data are 
analyzed using trend tests from Chapter 23. Of particular importance is the Spearman partial 
rank correlation test described in Section 23.3.6 which works extremely well with seasonal data. 

The overall trend analysis methodology is summarized in Table 24.3.1. Specific details are 
presented in Table 24.3.2 for carrying out the Spearman partial rank correlation mentioned oppo- 
site d in Table 24.3.1. The steps in the methodology are now explained in detail using the total 
nitrate (i.e. NO,) data measured in the Saugeen River at Burgoyne. 

2. 

3. 
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Table 24.3.1. Trend analysis methodology for use with water 
quality time series measured in rivers. 

TREND ANALYSIS METHODOLOGY 

GRAPHICAL TREND STUDIES 

Examine traces along with smoothed curves (i.e. RLWRS’s) for the fol- 
lowing data sets: 

Given Data: 
1. Unadjusted water quality time series. 
2. Flow-adjusted water quality time series. 
3. Detrended-flow-adjusted water quality time series. 

Mean Monthly Data: 
4. Mean monthly unadjusted water quality time series. 
5 .  Mean monthly flow-adjusted water quality time series. 
6. Mean monthly detrended-flow-adjusted water quality time series. 

TREND TESTS 

For the three mean monthly data sets (i.e. 4,5 and 6), the following trend 
tests are carried out: 
a. Mann-Kendall (Section 23.3.2). 
b. Spearman’s rho (Section 23.3.6). 
c. Seasonal Mann-Kendall (Section 23.3.2). 
d. Spearman partial rank correlation when partialling out seasonality 

(Section 23.3.6). 
To test for seasonality, the Kruskal-Wallis test (Appendix A23.3) and 
box and whisker graphs (Section 22.3.3) can be used. The tests under c 
and d are designed for use with seasonal data. 
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Table 24.3.2. Algorithm for the Spearman partial rank 
correlation trend test when partialling out seasonality. 

ALGORITHM 

1) 

2) 

X, is one of the three monthly series given under 4 ,5  and 6 in Table 24.3.1. 

Test for the presence of seaqonality in X, using 

a Box and whisker graphs (Section 22.3.3). 
b. Kruskall-Wallis test (Appendix A23.3). 
If seasonality is not found, use the ordinary Mann-Kendall trend test (Section 23.3.2). 
When seasonality is present, cany out the Spearman partial rank correlation test of 
Section 23.3.6 where: 
a. 

b. 

c. 

3) 
4) 

X, is the series from 1). 

Y, = t where t is the time of the observation. 

2, is obtained from the ranking of the seasonal effects in the Kruskall-Wallis test 
(Appendix A23.3). 

Graphical Trend Studies 

Given Data: 

1. Unadjusted water quality time series: As indicated in Table 24.3.1, the first step is to exam- 
ine a trace along with a RLWRS of the given unadjusted data or the data aansformed by a Box- 
Cox transformation in [3.4.30] or 124.2.101. A common transformation is to take natural loga- 
rithms of the data (i.e. k = 0 in [3.4.30]). A graph of the logarithmic total nitrates (NO,) for the 
Saugeen River is displayed in Figure 24.2.1. One can easily see the increasing trend over time 
traced by the RLWRS. Additionally, the results of the Mann-Kendall test at the bottom of the 
graph also confm the presence of a trend. However, the SL may not be meaningful because of 
the high degree of correlation in the data caused by frequent sampling at particular time periods, 
especially from 1976 to 1978. Moreover, there is also strong seasonality in this data which the 
Mann-Kendall test cannot properly take into account. 
2. Flow-adjusted water quality time series: The question arises as to whether or not a given 
water quality variable is dependent upon flow. Figure 24.2.2 displays a scatter plot of the loga- 
rithmic NO, series against logarithmic flows. Each flow value is plotted for exactly the same 
time at which the corresponding NO, observation is made. As shown by the RLWRS, there is 
an obvious dependency between NO, and flow. The value of the Kendall rank correlation test 
statistic (Appendix A23.1) listed at the bottom of Figure 24.2.2 for the data plotted in this figure, 
is also significantly large and, therefore, confms this finding. 

Each sample flow value in Figure 24.2.2 is the average daily value for the day on which the 
corresponding NO, value was collected. For relatively large rivers such as the Saugeen and 
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Grand, the discrepancy between instantaneous flow for the exact point in time at which the water 
quality sample is collected and the mean daily flow, is generally negligible. 

Because the water quality values and flows are dependent, one would like to see if a trend 
is present in the logarithmic water quality time series after the flow effects are removed. To 
accomplish this, one can examine the residuals of the RLWRS in Figure 24.2.2 . To calculate 
the residual for each plotted point in Figure 24.2.2, one subtracts the value of the RLWRS at that 
point. For convenience, a RLWRS using RS50 is used when calculating the residuals. This 
series is called the flow-adjusted water quality time series. Other approaches for obtaining 
flow-adjusted water quality time series are discussed in Section 23.3.5. 
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Figure 24.3.1. Graph of the flow-adjusted NO, 
series against time for the Saugeen River. 
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Figure 24.3.1 presents a trace of the flow-adjusted NO, data for the Saugeen River. Notice 
that even after flow effects are removed, the RLWRS stil l  shows an obvious upward trend over 
time. 
3. &trended-flow-adjusted water quality time series: If a trend were present in the flow or 
covariate series, one would want to remove this tnnd and then subsequently adjust the water 
quality time series for detrended flow. In this step, a flexible procedure for obtaining a 
detrended-flow-adjusted water quality series is described. 

Suppose, for now, that the NO, series really does not have a trend. Flows may cause a 
trend to appear in the series due to one or both of the following two reasons. First, there may be 
a real trend in the flows which also causes a trend in the NO, series. Second, thq sampling bias 
of the flows may cause a trend. Recall that in Figurc 24.2.2, each flow is plotted for exactly the 
same time as the corresponding NO, observation so that many of the flow observations are not 
used when producing the flow-adjusted NO, series. When the complete series of logarithmic 
Saugeen flows are plotted against time, no trend is present. However, when the logarithmic 
flows are plotted against time for exactly the same times at which the NO, values are measured, 
Figure 24.3.2 shows that the sampling bias has created an obvious trend. To remove the trend 
from the logarithmic flow series in Figure 24.3.2, one can subtract the RLWRS value from the 
logarithmic flow series at each time point for which an NO, observation is available. This resi- 
dual series is determined for a RLWRS using RS50 to obtain the detrended logarithmic flow 
series. 

Figure 24.3.3 displays a scatter plot of the logarithmic NO, series against the detrended 
logarithmic flows. Notice that there is still a dependence between the two series even after the 
trend due to sampling bias is removed from the logarithmic flows. To obtain the detrended- 
flow-adjusted NO, series, one uses the residuals of the RLWRS for the case when RS50 is used 
to determine the smooth. 

For the Saugeen River data, the complete flow record possesses no trend. Because of this, 
one can state that the trend in the partial flow record plotted in Figure 24.3.2 is due to sampling 
bias. If the complete record of flows contained a trend, then a trend in the partial flow record 
6.e. those flows occurring on the same days at which the water quality samples were collected) 
would be due to an actual trend in the flows and perhaps also sampling bias. 

Figure 24.3.4 shows a graph of the detrended-flow-adjusted data against time. Both the 
RLWRS and the Mann-Kendall trend test result in this figure show that there is a trend. 

Mean Monthly Data 

4. Mean monthly unadjusted water quality series: To ascertain the behaviour of the NO, 
series at the monthly level, one can examine graphs of the average monthly series. One should 
keep in mind that the term "average" refers to calculating a mean which may be determined from 
only a few observations in a given month, each of which is collected in a 10 to 15 second time 
interval (see discussion on missing values in Section 24.2.1). Figure 24.3.5 shows a graph of the 
logarithms of the mean monthly NO, series for the Saugeen River. The RLWRS shows that 
there is an increasing trend over time. Additionally, there are some months for which no obser- 
vations are available. 
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Figure 24.3.2. Logarithmic Saugeen flows against time plotted at exactly the same 
times at which NO, observations are available. 

5. Mean monthly flow-adjusted water quality time series: Except for the fact that monthly 
values are used, the logarithmic mean monthly flow-adjusted NO, series is calculated in exactly 
the same way as the logarithmic flow-adjusted water quality time series for the given data under 
item 2. Hence, one determines the residuals of the RLWRS using RS50 fitted to a scatter plot of 
logarithmic mean monthly NO, series against the logarithmic mean monthly flows. Figure 
24.3.6 displays the graph of the logarithmic mean monthly flow-adjusted water quality series 
against time, for which there is a striking linear upward trend. 
6. Mean monthly detrended-flow-adjusted water quality time series: To eliminate the 
effects of trends and/or sampling bias in the monthly flows upon the average monthly NO, 
series, one can calculate the average monthly detrended-flow-adjusted data. The Same procedure 
followed for determining the flows under item 3 for the given data is also employed here. First, 
one fits a RLWRS using RS50 to a graph of the logarithmic mean monthly flows against time 
where the flow observations are only used for months for which NO, values are available. The 
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Figure 24.3.3. Scatter plot of the logarithmic NO, data against detrended 
logarithmic flows for the Saugeen River. 

residuals of the smooth form the logarithmic mean monthly detrended flow series. Second, a 
RLWRS smooth using RS50 is fitted to a scatter plot of the logarithmic mean monthly NO, 
series against the logarithmic mean monthly detrended flow series. The residuals of this smooth 
constitute the logarithmic average monthly detrended-flow-adjusted NO, series. 

Figure 24.3.7 displays a plot of the logarithmic average monthly detrended-flow-adjusted 
time series against time. The RLWRS clearly reveals the increasing trend present in this data. 

Trend Tests 

The four trend tests listed in the bottom half of Table 24.3.1 are applied separately to each 
of the three types of mean monthly series. For all three series, the four trend tests give exactly 
the same results. Because of this, representative findings are presented for only one of the three 
monthly series for explanation purposes in this section. 
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Figure 24.3.4. Graph of detrended-flow-adjusted logarithmic 
NO, observations against time for the Saugeen River. 

Consider the fifth series which is the logarithmic mean monthly flow-adjusted NO, series 
for the Saugeen River. Table 24.3.3 presents the results for the four trend tests for this series 
while Table 24.3.4 gives the average rank value and rank found for each of the twelve seasons 
used in the Kruskal-Wallis seasonality test. Finally, Figure 24.3.8 displays the box and whisker 
graph for each of the 12 months for the series being considered. The reader can refer to Section 
23.3 for descriptions of the statistical trend tests listed in Table 24.3.3, Appendix A23.3 for a 
presentation of the Kruskal-Wallis test used in Table 24.3.4, and to Section 22.3.3 for an expla- 
nation of box and whisker graphs. 

Each of the four trend tests findings in Table 24.3.3 demonstrate that there is a significant 
trend. In particular, notice that the significance levels are very close to zero for the Mann- 
Kendall (Section 23.3.2), Spearman’s rho (Section 23.3.6), seasonal Mann-Kendall (Section 
23.3.2) and the Spearman partial rank correlation (Section 23.3.6) trend tests. 
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Figure 24.3.5. Graph of the logarithmic average monthly series 
against time for the Saugeen River. 

The test statistic in Table 24.3.4 for the Kruskall-Wallis test has a value of 47.519 and a 
significance level close to zero. Hence, there is seasonality present in the series. One can also 
see the cyclic pattern caused by seasonality in the box and whisker graphs for this NO, series in 
Figure 24.3.8. Notice, in particular how the median levels change from month to month. 

Figure 24.3.8 is an example of what is called a notched box-and-whisker graph in Section 
22.3.3. The notches on both sides of a box can be used to ascertain if the median in one month is 
significantly different from another. In particular, when comparing two months, if the median 
bar in one month overlaps with the notch in the other, and vice versa, then one can argue that the 
medians for these two months are not significantly different from one another at the 5% signifi- 
cance level. When there are not many data points used to determine a box and whisker plot for a 
given season, any peculiarities in the plot should be cautiously considered. In Figure 24.3.8, the 
varying median levels across the months show that the data are seasonal. Notice also for some 
months that a notch for the mean may extend above an upper hinge or below a lower hinge. 
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Figure 24.3.6. Graph of the logarithmic mean monthly flow-adjusted 
NO, series against time for the Saugeen River. 

Because of the importance of the Spearman partial rank correlation test for detecting 
trends in seasonal data, consider the results of this test in more detail. The algorithm for this test 
is given in Table 24.3.2. In this case, the X, is the fifth series which is the logarithmic mean 
monthly flow-adjusted NO, series for the Saugeen River. Under Step 2 of the algorithm in 
Table 24.3.2, the Kruskall-Wallis test result in Table 24.3.4 as well as the box and whisker 
graphs of Figure 24.3.8 demonstrate that the data are seasonal. In Table 24.3.4, the seasons are 
ranked from smallest to largest according to the average rank values for the months. The 
monthly medians in Figure 24.3.8 can also be compared to obtain the same rankings. Following 
Step 4 of the algorithm in Table 24.3.2, one lets the Y, series in the Spearman test be time t while 
Z, consists of the seasonal ranks where each month across the years is always given the same 
rank. By substituting into [23.3.35], one can obtain the Spearman test statistic which has a value 
of 0.572. Because the SL is almost zero, there is a significant trend over time in the data when 
the effects of seasonality are partialled out. Since the test statistic is positive, the trend is 
increasing over time. 
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Figure 24.3.7. Graph of the logarithmic average monthly detrended-flow-adjusted 
data for the Saugeen River. 

Table 24.3.3. Trend test results for the logarithmic mean monthly flow-adjusted 
NO, series for the Saugeen River at Burgoyne. 
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Table 24.3.4. Average ranks and ranks from the Kruskal-Wallis analyses for the 
12 months of the logarithmic mean monthly flow-adjusted NO, 

series for the Saugeen River at Burgoyne. 

Months Sample Sizes Average Rank Values Ranks 
1 10 89.50 6 
2 10 107.70 7 
3 I1 107.40 7 
4 11  92.27 6 
5 12 42.00 2 
6 12 37.17 1 
7 11  46.18 2 
8 11 60.82 4 
9 12 68.33 5 

10 11 54.36 3 
11 13 57.92 3 
12 1 1  64.91 4 

Test statistic = 47.519 Significance level = O.OO0 

24.3.3 Summary 

A flexible and comprehensive trend analysis methodology is now available for carrying out 
a systematic study for detecting and modelling trends in water quality series measured in rivers. 
As summarized in Table 24.3.1, the two main components to the methodology are the Graphical 
Trend Studies and the Trend Tests. Of particular import and usefulness for analyzing trends in 
seasonal water quality data is the Spearman partial rank correlation test of Section 23.3.6. When 
using this test for detecting a trend in a seasonal series for which seasonality is partialled out, the 
Spearman algorithm of Table 24.3.2 can be utilized. Finally, the overall methodology contains 
procedures for accounting for the effects of flow upon a given water quality variable. 

At various locations in Section 24.3.2, it is noted that one could, if required, use additional 
graphs and trend tests within the overall trend analysis methodology of Table 24.3.1. For 
instance, one may wish to employ the adjusted variable Kendall trend test proposed by Alley 
(1988). However, the authors found that the specific exploratory and confirmatory techniques 
presented in Part X, readily handled all the situations that arose when examining the water qual- 
ity series from the Saugeen and Grand Rivers in Southern Ontario. 

Another approach to the trend analysis would be to add a deseasonalization step either 
before or after Step 2 in Table 24.3.1. However, this procedure is not followed here for a 
number of reasons. First, adjusting the water quality series for flow or some other covariate 
series may also remove some seasonality. Secondly, an efficient procedure for removing 
seasonality from a wide variety of messy water quality time series may be very difficult to 
design. Finally, when seasonality is present in the data sets numbered 4 to 6, a seasonal trend 
test can be used for checking for the presence of trends in seasonal data (trend tests under c and d 
in Table 24.3.1). 
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Figure 24.3.8. Box and whisker graphs for the logarithmic mean monthly 
flow-adjusted NO, series for the Saugeen River. 
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As demonstrated by the application to the total nitrates data for the Saugeen River, the 
methodology of Section 24.3.2 works well in practice. In Table 24.3.5, a summary of the find- 
ings for the NO, data is presented. For both the graphical trend studies and the trend tests, 
trends are always detected in the versions of the NO, series that are examined. 

Table 24.3.5. Summary of the trend analysis nsults for the total nitrates data 
measured in the Saugeen River at Burgoyne. 

Data Transformation: Logarithmic 
Seasonality: Very strong 

Flow-Concentration Relationship: Positive relationship at low flow with relatively con- 
stant relationship at higher flow. 

Outliers: A few (see Figure 24.2.1). Keep in mind that all techniques used in Table 24.3.1 
are robust to outliers. 

Trend: All tests indicate a significant trend. Examination of the trace plots suggest that it 
is largely due to a difference in levels in the data from 1975-1978 and 1982-1989. 

Other: Very little data over the period 1979-1981. 

As reported elsewhere by McLeod et al. (1991), the authors have used the general trend 
analysis methodology of Section 24.3.2 with many other water quality time series. In particular, 
they applied the methodology to the eight PWQMN water quality series (mg/l) listed in Table 
24.3.6, as well as riverflow series (m3/s), for the Saugeen River at Burgoyne and also the Grand 
River at Dunnville, Ontario. The data at these two sites were selected for study because flow 
biased monitoring was used. This means that more samples were collected at high flows for the 
purpose of mass-discharge estimation. Hence, the data collected at these high frequency moni- 
toring sites should contain greater relevant information and their analyses should provide insight 
into how to analyze both highly monitored and less frequently monitored sites. Representative 
trend analysis results for the NO, series for the Saugeen River are employed in Section 24.3.2 
for explaining how to apply the methodology. 

24.4 CONCLUSIONS 

Regression analysis provides a set of flexible statistical tools which can be useful in 
environmental impact assessment studies as exploratory and confirmatory data analysis methods. 
A particularly flexible smoothing technique which can be employed as an exploratory data 
analysis method, for tracing mnds in a time series, is the RLWRS of Section 24.2.2. Lewis and 
Stevens (1991) provide another informative regression approach for drawing a trend c w e  
through a time series. As explained in Section 24.3.2, the RLWRS can also be utilized for 
removing trends from a series as well as dependent relationships between two series. In Section 
24.2.3, a specific case study is used for explaining how a regression analysis model can be 
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Table 24.3.6. Water quality variables measund in the Saugeen River at 
Burgoyne and the Grand River at Dunnville, Ontario, Canada. 

~~ 

Water Quality Variables 
Ammonia Nitrogen 

Total Kjeldahl Nitrogen 
Total Nitrates (NO,) 

Filtered Reactive Phosphorus 
Total Phosphorus 
Suspended Solids 

Alkalinity 
Conductivity 

designed as a confirmatory data analysis technique. 
A flexible and comprehensive trend analysis methodology is now available for detecting 

trends in water quality data measured in rivers. As described in Section 24.3.2, the trend 
analysis procedure consists of the two main stages of graphical trend studies and trend tests. 
Specific graphical techniques and statistical trend tests that can be employed in the two main 
stages are described in detail in Sections 22.3 and Chapter 23, respectively. A particularly 
powerful trend test for use with seasonal water quality data is the Spearman partial rank con-ela- 
tion test given in Section 23.3.6. Table 24.3.2 presents an algorithm for applying the Spearman 
partial rank correlation trend test when partialling out seasonality. Application of the trend 
analysis methodology to water quality series measured in the Saugeen and Grand Rivers demon- 
strates that the procedure works well in practice. 

The overall trend analysis methodology outlined in Table 24.3.1 contains many original 
developments in environmental impact assessment. Firstly, the RLWRS of Section 24.2.2 is 
used for calculating flow-adjusted and detrended-flow-adjusted water quality series. Secondly, 
by employing the detrended-flow-adjusted water quality procedure one can eliminate sampling 
bias when the entire rivefflow series does not possess a trend. As a third contribution, the 
methodology suggests testing for the presence of seasonality before applying a seasonal trend 
test such as the seasonal Mann-Kendall test of Section 23.3.2. Simulation studies show that 
when the data are not seasonal, the seasonal Mann-Kendall test is not as powerful as the Mann- 
Kendall trend test. Fourthly, the Spearman partial rank correlation test (Section 23.3.6) when 
partialling out seasonality provides a powerful test for use with seasonal water quality time 
series. As noted in Section 23.3.6, the Kendall partial rank correlation test cannot be used for 
this purpose since the distribution of the test statistic is unknown and probably analytically 
intractable. 
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PROBLEMS 

24.1 

24.2 

24.3 

24.4 

24.5 

24.6 

24.1 

24.8 

24.9 

Beyond the literature cited in this chapter, locate three other references in which 
regression analysis is applied to water resources or environmental engineering prob- 
lems. Briefly explain the purpose of and approach for using regression analysis in 
each of the papers. Moreover, outline the benefits and drawbacks of employing 
regression analysis for each of the case studies and suggest how improvements 
could be made. 
A general approach for trend analysis is given in [24.1.1]. Find a paper in the 
environmental engineering literature not cited in Chapter 24 in which regression 
analysis is employed for describing the situation in [24.1.1]. Summarize how the 
regression analysis is used and explain the advantages and disadvantages of employ- 
ing the regression procedure as given by the authors of the paper. 
Alley (1988) and also Smith and Rose (1991) describe two basic ways in which 
regression analysis can be employed in trend assessment, Explain how each of these 
procedures is carried out and compare their relative strengths and weaknesses. 
Many authors, including Pearson (1897), Huff (1954), Good (1959, 1978), Benson 
(1965), Wong (1979), Kenny (1982), Wong and DeCoursey (1986), Kite (1989), and 
Kronmal(1993), discuss statistical fallacies including those arising from the use and 
abuse of regression analysis. By refemng to appropriate literature, clearly explain 
how spurious correlations and other problems can take place when regression 
analysis is improperly utilized and how these problems can be overcome. 
Beauchamp et al. (1989) compare regression and time series methods for synthesiz- 
ing missing streamflow records. After summarizing how they carry out their study, 
comment upon their findings. 
Outline how the approach of Esterby and El-Shaarawi (198 la,b) and El-Shaarawi 
and Esterby (1982) works for detecting a point of change in a regression model and 
estimating the magnitude of the change. 
Concepts from fuzzy set theory have now been incorporated into regression 
analysis. By referring to the appropriate literature, outline the theory and practice of 
fuzzy regression analysis and discuss the dividends that can be gained by employing 
this approach. Describe a hydrological application of fuzzy regression analysis, 
including a discussion of the insights that are found about the problem being stu- 
died. 
As pointed out in Section 24.2.2, Cleveland et al. (1990) have developed a 
seasonal-trend decomposition procedure based upon the RLWRS (Cleveland, 1979). 
Outline the main steps in this technique and discuss its advantages and drawbacks. 
Apply the procedure to a seasonal time series which is of interest to you and be sure 
to mention any insights which you gain. 
Select two nonseasonal time series between which you feel a meaningful relation- 
ship may exist. Plot the RLWRS of Section 24.2.2 on a scatter plot of these two 
series. Experiment with various values of the smoothing variable, f, where 
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24.10 

24.11 

24.12 

24.13 

24.14 

24.15 

24.16 

24.17 

24.18 

24.19 

0 < f 5 1.  Discuss the insights that are provided by the graph. 
Carry out the instructions of Problem 24.9 for two seasonal time series. 
Choose a nonseasonal time series that you think may contain a trend. On a time 
series plot of the series against time, draw the RLWRS. Comment upon the 
behaviour of any trend that you find in your data set. 
Execute the instructions of Problem 24.11 for the case of a seasonal time series. 
The sample autocorrelation function (ACF), rk, in [2.5.9] provides a means for 
quantifying the linear dependence between values in a time series separated by k 
time lags. To visualize dependence within a single time series, q, one can draw a 
scatter plot of zf against Z1-k along with a RLWRS. Select a nonseasonal time series 
which is of interest to you and produce a scatter plot and RLWRS of zf versus z,-k 

for k = 1,2,. . . ,7.  Comment upon the type of dependence that you can visually 
detect in each of the scatter plots. Also, calculate rk in [2.5.9] for k = 1,2,. . . ,7 ,  

and compare these results to the visual findings. 
In Section 24.2.3, a specific regression model is designed for modelling water qual- 
ity time series measured in a lake. Locate a paper in the environmental engineering 
literature in which the authors employ regression analysis. By using equations when 
necessary, clearly explain how the authors design, calibrate and check the residual 
assumptions of their regression model. Describe how the regression analysis 
assisted the authors in reaching a better understanding about their problem and how 
their study could be improved. 
For a set of time series that is of direct interest to you and for which it would be 
appropriate to apply regression analysis, explain how you would design a regression 
model for studying meaningful relationships among the series. Apply the most 
appropriate regression model to the data set and check that the residual assumptions 
are satisfied. Explain the advantages and drawbacks of your approach as well as any 
surprising results that you uncovered. 
In Section 24.3.2, the Spearman partial rank correlation test defied in Section 
23.3.6 is employed for checking for trends after removing seasonality. Using an 
outline similar to the one given in Table 24.3.2, explain how this test can be utilized 
for taking into account correlation when testing for the presence of a trend in a time 
series. 
Table 24.3.1 outlines the trend analysis methodology for use with water quality time 
series measured in rivers. Beyond the techniques referred to in Section 24.3.2, men- 
tion other methods that could be employed with this methodology. 
Select a seasonal water quality time series as well as an accompanying riverflow 
series that are of interest to you. Carry out the methodology of Section 24.2.2 as 
well as Section 24.3.2 to check for the presence of trends. Clearly explain all of 
your steps and comment upon your findings. 
In the trend assessment methodology of Section 24.3.2, it is assumed that monthly 
data is employed in steps 4 to 6 in Table 24.3.1. Cany out the instructions of Prob 
lem 24.18 for the case of quarter-yearly data. 
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24.20 In Steps 4 to 6 in the trend assessment methodology summarized in Table 24.3.1, it 
is assumed that monthly data arc calculated. Execute the instructions of Problem 
24.18 for the situation where weekly data arc used in these steps. 
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DATA ACQUIslTION 

Table 1.6.2 provides a summary of the rich variety of time series models that are presented 
in the book. To clearly explain how these classcs of models can be fitted to real data sets for 
addressing a range of practical problems, illustrative applications are provided throughout the 
chapters. At the end of each chapter, exact references are given for the time series utilized in the 
applications to allow interested readers to obtain the data from the original publication sources. 
Most of the time series consist of hydrological and other kinds of environmental observations. 
Nonetheless, as noted in Section 1.6.1 many of the time series models described in the book can 
be employed by professionals working in fields outside of hydrology and environmental 
engineering, for application to their particular b d s  of time series. 

The authors would like to encourage readers to fit models to their own sets of data and use 
the applications given in the book as a guide. However, some readers may wish to gain confi- 
dence in practical time series analysis by fitting models to time series utilized in the applications. 
Accordingly, some representative time series are listed in this appendix. 

To apply the time series models to data a flexible decision support system @SS) is 
required. One such system is the MHTS (McLeod-Hipel Time Series) Package referred to in 
Section 1.7. Included with this package arc many of the time series employed in the practical 
applications in the book. 

Most of the datasets referred to in this book are archived in Statlib. This means they an 
available in electronic form to anyone who has access to e-mail. To obtain these datasets, send 
the following one-line message to statlib@lib.stat.cmu.edu : 

send hipel-mcleod from datasets 

Statlib is a system for the distribution of software, datascts and general information of interest to 
statisticians. For further information, one can contact: 

Michael M. Meyer 
Computing Services and Department of Statistics 

Carnegie Mellon University 
Pittsburgh, PA 15213 

mike@ stat.cmu.edu 
Many environmental and other government agencies throughout the world generously fur- 

nish extensive data listings for little or no cost. In Canada and the United States, for instance, 
one can obtain extensive hydrological time series on CD ROM by contacting, respectively, the 
agencies given below. 

TcI: (412) 268-3108 
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In Canada: 
S. Y. Shiau. D. W. Kirk and J. Mcllhmey 
Water Resources Branch 
Environment Canada 
Ottawa Ontario, Canada K1A OH3 

In the United States of America: 
J. R. Slack, A. M. Lumb and J. M. Landwehr 
Water Resources Division 
U. S. Geological Survey 
Reston, Virginia U. S. A. 22092 

DATA LISTING 

"he data listed below consist of four sets of time series to which ARMA, ARIMA, three 
types of seasonal, and intervention models are fitted. Included with each listing of a time series 
are an explanation of the specific type of data, the reference in which the data are published. the 
number of the figure in which the series is plotted in this book, the type of model fitted to the 
data, and the numbers of the sections where model construction results are presented for the 
model fitted to the data set. Moreover, the data are listed sequentially from left to right starting 
with the top line and continuing on lower lines. 

Stationary Nonseasonal Time Series 

1. Average annual flows of the St. Lawrence River at Ogdensburg, New York in m3/s from 
1860 to 1957. 

Reference: Yevjevich (1963) 
Time Series Plot: Figures 2.3.1 and II.1 
Model Type: Constrained AR(3) model without I$* 
Model Construction 

Identification: Section 5.4.2 
Estimation: Section 6.4.2 
Diagnostic Checks: Section 7.6.2 

7788 8040 
7331 6342 
6567 7249 
7331 6485 
6424 6458 
6199 6485 
6628 6485 
6171 6171 
6028 6062 
7644 7788 

7733 
6710 
7106 
6853 
6853 
7303 
6144 
5892 
7024 
7331 

7528 7528 6962 7699 6853 7051 
7392 6540 7447 7133 7133 7331 
7644 7160 7869 7617 6826 6962 
6853 6117 6028 6171 6458 6458 
6908 6737 6826 6908 7419 6819 
6826 6260 6792 6826 6997 7106 
6260 6062 5892 6396 6737 7222 
5326 5183 5435 6062 6171 6117 
6997 6853 7276 7276 7303 6826 
7194 7249 7303 6826 

7897 
6908 
7419 
6396 
6540 
6396 
7447 
5946 
6683 
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2. Annual Wolfer sunspot numbers from 1770 to 1869 
Reference: Waldmeier (1 96 1 j 
Time Series Plot: Figure 5.4.6 
Model Construction 

Identification: Section 5.4.5 
Estimation: Section 6.4.3 
Diagnostic Checks: Section 7.6.3 

101 82 67 35 31 7 20 93 154 126 
85 68 39 23 10 24 83 132 131 118 
90 67 60 47 41 21 16 6 4 7 
15 34 45 43 48 42 28 10 8 3 
0 1 5 12 14 35 46 41 30 24 

16 7 4 2 9 17 36 50 64 67 
71 48 28 9 13 57 122 138 103 86 
65 37 24 11 15 40 62 99 125 96 
67 65 54 39 21 7 4 23 55 94 
96 77 59 44 47 31 16 7 38 74 

3. Average annual temperature data in degrees celcius for the English midlands from 1723 to 
1970. 

Reference: Manley (1953) 
Model Types: AR(2) or MA(2) 
Identification Graphs: Sections 2.5.4 and 3.3.2 

9.77 9.27 8.66 9.34 9 94 9.52 9.26 10.04 9.85 9.69 
10.47 9.80 9.54 10.30 9.92 9.81 9.20 6.84 9.30 8.36 
9.81 8.78 8.81 8.61 9.82 8.77 9.44 9.69 8.42 9.19 
9.08 8.83 8.54 8.77 8.95 8.95 10.00 9.83 10.00 9.58 
8.93 8.72 8.50 8.62 8.69 8.93 8.77 8.51 8.55 9.15 
9.24 9.07 10.09 9.01 9.08 9.20 10.40 9.09 10.20 8.01 
9.28 7.83 8.54 8.25 9.28 9.21 8.91 9.44 9.27 9.19 
9.09 9.89 8.67 9.02 9.00 9.61 7.89 9.23 9.60 8.95 
9.05 9.57 8.97 9.80 8.64 8.84 8.93 8.76 9.67 8.20 
8.71 7.75 9.06 7.87 8.89 9.84 9.23 8.55 9.51 10.05 
8.37 9.31 9.72 10.07 9 46 10.30 8.16 8.69 10.09 9.47 
9.49 10.47 9.55 8.86 8 82 8.05 8.68 8.97 8.71 9.22 
9.06 8.59 8.26 10.15 9 22 9.42 9.30 9.10 9.14 9.80 
8.37 9.31 8.02 9.08 10.07 9.12 9.61 7.89 9.12 9.17 
9.67 8.85 9.69 9.65 9.02 10.38 9.62 8.98 9.05 9.75 
8.98 9.30 9.43 9.51 9.17 9.24 7.42 9.09 8.56 9.45 
9.02 9.83 8.57 8.69 8.27 8.22 8.99 8.73 8.49 8.17 
9.97 9.30 8.65 9.33 9.42 10.07 9.69 9.56 9.11 8.83 
9.32 9.00 9.13 9.43 8.84 9.36 8.55 9.12 10.05 9.36 
9.78 9.88 8.93 9.18 8.51 9.51 8.48 9.57 10.47 8.67 
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9.08 9.27 9.17 9.72 9.20 9.57 9.01 9.43 8.99 9.38 
9.83 9.99 9.72 9.32 9.57 10.18 9.68 9.05 9.09 9.05 

10.03 9.57 10.27 9.45 9.57 10.01 10.62 9.41 9.27 9.09 
9.84 9.22 9.28 8.83 10.02 9.42 10.48 9.73 9.94 8.59 
8.47 9.47 8.95 9.45 9.61 9.30 9.26 9.57 

Nonstationary Nonseasonal Time Series 

4. Average annual water use for New York City in litrcs per capita per day from 1898 to 1%8. 
Reference: Salas and Yevjevich (1972) 
Time Series Plot: Figures II.2 and 4.3.8 
Model Type: ARIMA(O,l,O) 
Model Identification: Section 4.3.1 

435.7 .2 402.8 421.3 431.2 426.2 425.5 423. 50.1 450.1 
439.1 419.0 417.9 384.2 385.4 374.4 401.3 382.7 403.5 410.0 
454.6 448.2 489.5 476.2 473.2 475.1 476.6 502.7 506.5 499.7 
495.5 522.8 537.1 509.1 502.7 500.4 508.4 498.9 507.2 505.0 
503.8 511.4 467.9 493.6 470.5 503.5 544.3 553.0 551.9 564.4 
567.8 562.1 457.3 500.1 522.0 525.4 511.0 533.4 534.1 562.9 
557.2 584.1 582.6 590.5 581.1 583.0 567.1 499.3 493.6 533.7 
581.1 

Seasonal Time Series 

5. Average Monthly flows of the Saugeen River in m3/s at Walkerton, Ontario, Canada, from 
January, 1915, until December, 1976. 

Reference: Environment Canada (1 977) 
Time Series Plot: Figure VI.1 
Model Types: Deseasonalized and PAR Models with 1 = 0 
Model Construction 

Deseasonalized Model: Section 13.4.2 
PAR model: Section 14.4 

16.03 30.30 35.40 
69.38 37.10 35.96 
16.40 13.22 76.46 
7.90 20.95 95.71 

28.60 17.73 90.05 
14.72 14.72 115.53 
40.78 16.03 109.02 
13.96 14.72 69.94 
8.98 8.21 42.76 

23.73 15.91 40.21 
10.14 30.02 72.77 

41.91 
125.73 
82.97 
67.11 
53.52 
63.43 
50.69 
92.03 

103.36 
89.20 
41.06 

14.70 9.20 7.96 11.95 18.63 21.69 22.57 23.19 
46.16 35.11 12.37 7.84 6.91 9.29 12.18 24.49 
32.85 27.84 57.77 11.81 7.70 13.31 10.73 8.27 
23.98 12.88 6.80 4.84 11.78 12.71 25.82 46.72 
44.17 13.93 9.46 8.13 7.19 10.34 24.18 25.15 
23.02 12.91 19.45 9.46 7.11 12.74 32.56 43.89 
28.09 19.71 13.20 9.12 7.14 11.33 12.06 23.19 
20.27 13.71 12.37 8.58 8.41 7.65 8.86 9.71 
70.51 21.49 11.07 9.29 10.25 7.50 10.48 25.85 
63.15 18.94 14.61 13.51 12.01 9.32 8.13 19.88 
14.67 12.09 10.00 8.27 8.86 18.38 60.31 26.62 
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21.66 17.56 
19.11 17.13 
29.45 19.82 
64.28 27.30 
46.44 66.83 

7.28 8.83 
64.56 67.96 
38.23 26.05 
33.98 19.40 
20.53 13.03 
8.50 8.47 

56.92 54.93 
13.73 67.39 
19.26 14.16 
9.20 8.61 

34.26 20.67 
22.65 14.58 
32.28 48.70 
22.65 25.63 
10.14 11.84 
52.95 35.11 
23.36 31.71 
10.62 16.03 

44.46 34.83 
71.64 27.38 
59.75 33.70 
63.71 31.71 
25.29 26.08 
14.02 61.73 
33.41 24.95 
11.81 10.53 
21.86 26.93 
21.18 15.66 
13.28 13.71 
34.26 27.33 
6.14 16.71 

15.09 14.53 
9.85 8.35 

22.99 16.48 
17.30 39.36 
32.56 35.40 
36.25 24.24 
25.99 56.07 
35.40 39.36 
11.16 16.48 
15.23 19.40 
22.00 17.27 

27.04 
87.22 
67.39 

128.56 
55.78 
14.58 
47.01 
30.87 
45.87 
73.62 
63.15 
20.33 
96.56 
39.36 

8.75 
15.29 

102.22 
98.54 
35.68 
94.01 

112.42 
37.10 

139.89 
87.50 
58.33 
75.32 
51.25 
83.25 
98.26 
73.34 
32.85 
49.27 
30.58 
34.83 
23.50 
46.16 
41.63 
63.43 
44.46 
30.30 
70.23 
39.64 
70.79 
47.57 
19.88 
41.06 
21.38 

128.84 51.54 21.35 11.07 15.18 13.93 
34.55 36.25 21.27 13.96 9.06 8.24 

111.29 25.34 14.38 31.71 30.02 13.93 
137.05 66.54 19.34 16.65 7.84 5.78 
85.80 40.78 23.73 12.83 4.81 3.71 
70.23 23.45 10.36 7.90 6.97 6.14 
83.53 29.45 11.98 19.00 18.32 24.15 
93.45 42.76 15.52 8.10 6.46 5.83 

105.90 21.07 9.32 5.49 4.11 5.01 
21.46 15.29 22.54 8.27 4.62 4.39 
62.86 32.28 12.74 6.20 5.32 9.46 
70.51 30.30 10.79 8.27 9.26 7.99 
41.34 24.24 15.38 6.43 6.31 7.33 

107.60 26.25 12.63 12.77 9.71 5.69 
118.65 52.67 35.40 12.71 9.37 13.11 
99.11 16.82 9.94 5.78 6.43 7.53 
67.39 44.17 40.21 10.51 7.62 15.94 

117.80 89.48 30.87 18.43 15.66 11.75 
92.03 38.51 18.12 8.95 5.97 7.16 
50.97 58.62 40.49 38.23 10.70 16.42 
27.64 19.11 11.86 7.22 6.37 5.92 

208.41 88.91 48.70 23.62 12.49 10.05 
59.75 29.17 11.75 10.19 7.19 5.49 
58.62 18.77 10.17 8.95 5.69 7.42 

132.24 27.13 19.45 15.38 8.83 7.82 
143.85 38.79 20.47 19.65 10.22 17.44 
116.38 32.85 13.73 9.29 9.60 7.90 
42.19 46.16 44.17 40.49 11.13 11.98 

112.13 28.60 19.45 8.52 9.29 17.81 
107.60 26.36 18.09 7.19 5.38 4.30 
126.01 55.22 18.01 13.20 9.85 15.43 
44.46 24.35 21.24 31.43 6.65 16.40 
49.84 11.92 7.67 5.64 5.52 6.71 

133.66 50.40 17.05 10.96 12.94 12.15 
147.81 75.04 36.53 13.39 9.00 7.48 
45.31 30.30 23.13 16.42 11.38 9.94 
65.98 19.34 9.97 6.94 5.95 6.91 
60.88 46.44 14.81 10.65 8.72 7.31 
42.76 17.95 9.29 7.79 13.14 6.48 

110.72 44.17 12.18 9.03 9.94 10.99 
47.86 29.45 20.78 7.39 8.10 7.31 
97.41 24.10 51.82 33.41 18.55 16.57 
52.10 28.60 16.79 10.73 14.98 15.21 

119.21 67.11 25.43 16.48 10.42 7.79 
109.59 30.30 13.11 20.53 8.86 16.11 
122.90 29.45 18.80 13.56 9.71 9.46 
125.44 37.10 21.75 17.56 10.51 8.33 

25.23 
9.94 

40.21 
6.65 
5.30 
9.37 

20.59 
7.87 
4.56 
4.81 

12.88 
12.35 
5.44 

10.70 
18.35 
29.45 
21.75 
9.97 
5.61 

54.37 
6.82 

10.08 
8.13 
9.77 
9.12 

35.11 
6.43 

11.24 
101.37 

7.96 
11.67 
18.63 
6.68 

19.85 
8.61 
8.61 

11.10 
6.74 
6.46 

24.75 
9.06 

33.13 
16.74 
12.97 
23.25 
8.66 

16.23 

59.75 
15.83 
60.60 
14.81 
5.21 

30.02 
45.31 
13.22 
10.70 
17.02 
17.73 
14.58 
5.61 

19.43 
34.55 
43.32 
43.89 
26.53 
12.09 
32.28 
8.66 

11.27 
18.49 

9.09 
24.10 
53.24 
13.03 

36.81 
18.32 
11.81 
33.13 
11.16 
48.99 
12.97 
16.11 
18.80 
13.59 
8.86 

41.63 
23.19 
63.15 
33.70 
23.62 
26.36 
11.47 
21.04 

' 10.22 

27.47 
29.17 
58.33 
13.59 
8.64 

47.29 
53.24 
28.88 
8.41 

12.37 
39.93 
11.64 
5.83 

10.73 
44.46 
34.55 
25.91 
16.08 
10.17 
18.58 
10.79 
19.17 
11.50 
75.61 
52.67 
35.96 
29.45 
18.41 
26.56 
17.02 
31.71 
48.99 
11.58 
34.83 

8.21 
24.89 
15.52 
9.40 

21.07 
61.16 
43.32 
61.45 
46.72 
16.28 
29.45 
26.05 
30.58 
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59.47 30.58 95.43 50.97 35.11 24.13 11.47 9.06 6.57 8.55 22.14 23.19 
31.15 24.21 75.32 83.82 61.73 19.00 12.69 9.57 7.99 11.44 23.70 16.11 
30.30 26.11 50.97 124.59 39.64 16.48 11.24 12.20 19.06 12.80 15.86 39.08 
15.60 40.21 150.36 60.88 35.68 16.91 23.64 11.24 16.20 19.85 29.45 19.00 

6. Average monthly water consumption in millions of l i a s  per day from 1966 to 1988 for the 
city of London, Ontario, Canada. 

Reference: Public Utilities Commission (1989) of London 
Time Series Plot: Figure VI.2 
Model Type: SAruMA(l,O,l)x(O,l,l) with k = -0.75 
Model Construction: Section 12.4.2 

76.83 
83.65 
95.92 
97.29 
93.20 
85.92 
87.29 
95.01 
105.01 
123.20 
103.65 
95.47 
101.83 
108.20 
118.65 
156.8 
120 
109.5 
117.4 
123.4 
137 
164.9 
133.7 
130.7 
129.5 
145.5 
168 
218.2 

77.74 
80.92 
88.19 
102.29 
99.56 
88.65 
88.19 
85.01 
96.38 
114.11 
114.56 
100.47 
102.74 
101.38 
110.47 
135.8 
147.6 
112.1 
118.6 
114.6 
129 
143.3 
148.3 
129.9 
134.7 
133.9 
154.4 
184.6 

80.47 
83.19 
88.19 
99.10 
109.11 
91.83 
89.10 
86.83 
94.10 
120.93 
134.11 
116.38 
102.74 
106.38 
110.02 
130 
149.9 
127 
119.2 
120.2 
124.6 
151.4 
155.1 
145.5 
136.6 
136.6 
150.4 
174.9 

79.56 
83.65 
80.47 
92.74 
124.56 
112.29 
89.10 
86.83 
86.83 
102.74 
131.84 
117.29 
105.47 
108.65 
100.47 
117.5 
131.2 
135.9 
119.7 
122 
117.3 
136.8 
157.2 
156.6 
138.4 
139.4 
139.4 
161.4 

82.28 
83.65 
80.92 
87.29 
115.47 
101.83 
103.65 
86.83 
92.74 
101.83 
113.65 
140.93 
108.65 
107.74 
104.1 
115.8 
134.6 
150.4 
128.6 
121.3 
122.7 
133.1 
147.2 
161.7 
149.6 
141.2 
144.7 
161.4 

100.92 
83.65 
79.56 
85.47 
96.38 
125.02 
127.75 
86.83 
93.20 
95.47 
107.29 
120.02 
139.57 
105.92 
106.6 
105.5 
122.2 
135.6 
142.8 
123.2 
121 
124.8 
142.7 
156 
159.5 
144.9 
143 
145.8 

113.20 
86.83 
80.92 
91.38 
92.29 
102.74 
12 5.47 
100.47 
95.47 
100.01 
10 2.2!) 
111.38 
110.4’1 
129.56 
105.5 
111.6 
117.7 
134.9 
170 
141.1 
122 
132.6 
135.9 
146.1 
171.4 
181.4 
148.3 

90.92 
100.47 
88.19 
92.74 
86.83 
95.01 
125.47 
111.38 
96.38 
100.01 
94.56 
108.65 
118.65 
139.11 
107.5 
113.2 
106.8 
124.1 
145.9 
129.7 
122 
130.2 
123.8 
136.8 
162.1 
187 
152.7 

86.83 
91.38 
91.83 
89.56 
87.29 
91.83 
109.11 
105.47 
99.56 
98.20 
97.29 
105.92 
120.02 
125.93 
117.9 
113.1 
111.5 
120.8 
140.1 
152.4 
126.3 
129.6 
132.3 
132.5 
163.1 
211.4 
173.3 

82.74 
101.38 
96.38 
88.65 
85.92 
86.38 
100.01 
102.74 
120.47 
100.01 
98.20 
99.10 
109.11 
123.65 
136.3 
112.5 
111.3 
112.8 
128.7 
141.9 
158.1 
129.7 
132.7 
129.5 
152.4 
178.1 
226.3 
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7. Average monthly concentrations of atmospheric COz measured in molefractions in ppm at 
the Mauna Loa Observatory in Hawaii from January, 1965, to December, 1980. 

Reference: Keeling et al. (1982) and Bacastow and Keeling (1981) 
Time Series Plot: Figure VI.3 

Model Construction: Section 12.4.3 
Model Type: SARIMA(O,l,l)X(O,l,l)~~ 

319.32 
318.93 
317.86 
321.93 
324.88 
325.33 
324.60 
323.99 
323.61 
328.11 
332.65 
331.63 
330.45 
329.41 
329.24 
334.65 
337.65 
337.63 
337.81 
337.74 

320.36 
319.09 
317.25 
320.29 
324.75 
326.31 
325.57 
325.09 
323.80 
326.39 
332.24 
332.85 
330.97 
330.63 
328.87 
332.41 
337.57 
338.54 
338.16 
338.36 

320.82 
319.94 
319.06 
318.58 
323.47 
327.01 
326.55 
326.12 
325.10 
324.97 
331.03 
333.28 
331.64 
331.63 
330.18 
331.32 
336.25 
339.06 
339.88 

322.06 
320.98 
320.26 
318.60 
321.34 
326.24 
327.80 
326.61 
326.25 
325.32 
329.36 
332.47 
332.87 
332.46 
331.50 
330.73 
334.39 
338.95 
340.57 

322.17 
321.81 
321.65 
319.98 
319.56 
325.37 
327.80 
327.16 
326.93 
326.54 
327.60 
331.34 
333.61 
333.36 
332.81 
332.05 
332.44 
337.41 
341.19 

321.95 
323.03 
321.81 
321.25 
319.45 
323.12 
327.54 
321.92 
327.83 
327.71 
327.29 
329.53 
333.55 
334.45 
333.23 
333.53 
332.25 
335.71 
340.87 

321.20 
323.36 
322.36 
321.88 
320.45 
321.85 
326.28 
329.14 
327.95 
328.73 
328.28 
327.57 
331.90 
334.82 
334.55 
334.66 
333.59 
333.68 
339.25 

318.81 
323.11 
323.67 
322.47 
321.92 
321.31 
324.63 
328.80 
329.91 
329.69 
328.79 
327.57 
330.05 
334.32 
335.82 
335.07 
334.76 
333.69 
337.19 

317.82 
321.65 
324.17 
323.17 
323.40 
322.31 
323.12 
327.52 
330.22 
330.47 
329.45 
328.53 
328.58 
333.05 
336.44 
336.33 
335.89 
335.05 
335.49 

317.37 
319.64 
323.39 
324.23 
324.21 
323.72 
323.11 
325.62 
329.25 
331.69 
330.89 
329.69 
328.31 
330.87 
335.99 
337.39 
336.44 
336.53 
336.63 

Time Series Containing an Intervention 

8. Average annual flows in m3/s of the Nile River at Aswan, Egypt. Average yearly values 
arc calculated for the water year from October 1 to September 30 for each year from 
October 1.1870, to September 30,1945. From 1903 onwards then was a drop in the mean 
level of the Nile flows because of the construction of the Aswan Dam. 

Reference: Hurst et al. (1946) 
Time Series Plot: Figure 19.2.1 
Model Type: Intervention model having a step intervention and an AR(1) noise tern 
Model Construction: Section 19.2.4 

3958.043 3369.694 3485.242 3437.691 3702.352 3817.610 
2875.578 3054.686 4724.150 3834.007 3076.773 2965.759 
3461.708 3141.010 3371.237 2988.425 3607.541 2946.083 
2709.200 3294.840 3556.615 3653.934 3846.064 3713.637 
4252.313 3657.503 3639.370 3197.722 3112.749 2353.684 
2843.652 2194.926 2689.428 2950.906 2247.877 2628.279 
2491.126 2792.630 3321.469 3058.062 2889.853 2495.273 
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1648.823 1981.963 2411.072 3035.203 3556.133 3261.959 
2377.893 2394.964 2499.999 2610.242 2743.633 2744.116 
2338.637 2494.984 2474.440 2446.373 2963.059 2732.252 
2205.150 2681.808 2580.535 2954.378 3025.944 2902.777 
2642.457 2860.242 2665.412 2306.905 1848.090 2569.540 
2503.954 2438.753 2211.130 

9. Average monthly phosphorous data in mg/l from January, 1972, until December, 1977, for 
measurements taken by the Ontario Ministry of the Environment downsmam from the 
Guelph sewage matmcnt plant located in the Gland River basin. Ontario, Canada. In 
February. 1974, a pollution abatement procedure was brought into effect by implementing 
conventional phosphorous treatment at the Guelph station. The man-induced intervention 
of phosphorous removal decreased the mean level of the series after the intervention date. 
Values that are underlined indicate where there arc missing data points. The value written 
above a line is the monthly average across all of the years. 

Source: Ontario Ministry of the Environment, Toronto, Ontario, Canada 
Timc Series Plot: Figures 1.1.1 and 19.1.1 
Model Type: Intervention model having a step intervention component, four missing 
value terms and a SARMA(O,S;)X(O,~)~~ noise term fitted to the logarithmic data. 

.4700 .5100 .3500 .1900 .3300 .1524 .3650 .6500 .8250 1.0000 .3850 .9000 

.2950 .1400 .2200 .2000 .1400 ,4000 .2144 .4950 1.1000 .5900 .2700 .3000 
.0650 .2400 .0580 .0790 .0650 .1200 .0910 .0580 .1200 .1200 .1100 

.4600 .1500 .0860 -0280 .1342 .1100 .3600 .1800 .0650 .1300 .1200 .1900 

.1500 .lo70 ,0470 .0550 .0800 .0710 .1210 .lo80 .1690 .0660 .0790 .lo40 

.1570 .1400 .0700 .0560 .0420 .1160 .lo60 .0940 .0970 .0500 .0790 .1140 



Data Appendix 

REFERENCES 

987 

Bacastow, R. B. and Keeling, C. D. (1981). Atomospheric carbon dioxide concentration and 
the observed airborne fraction. In Bolin, B., editor, Carbon Cycle Modelling, pages 103- 112. 
John Wiley, Chichester. 

Environment Canada (1977). Historical streamflow summary, Ontario. Thechnical report, 
Inland Water Directorate, Water Resources Branch, Ottawa, Canada. 

Hurst, H. E., Black, R. P. and Simaika, Y. M. (1946). The Nile Bain, Volume VU, The 
fu tun  conremation of the Nile. Ministry of Public Works, Physical Department Paper No. 
51, S.O.P. Press, Cairo, Egypt. 
Keeling, C. D., Bacastow, R. B. and Whorf, T. P. (1982). Measurements of the concentration 
of carbon dioxide at Mauna Loa Observatory, Hawaii. In Clark, W. C., editor, Carbon 
Diozide Review 1982, pages 377- 385. Clarendon Press, Oxford. 

Manley, G. (1953). The mean temperatures of central England (1698 - 1952). Quarterly 
Journal of the Royal Meteorological Society, 79: 242- 261. 

Public Utilities Commission (1989). Water wage data for  the city of London, Ontario. 
Technical report, Public Utilities Commission, P.O.Box 2700, London, Ontario. 

Salas, J. D. and Yevjevich, V. M. (1972). Stochastic structure of water we time series. 
Hydrology Paper No. 52, Colorado State University, Fort Collins, Colorado. 

Waldmeier M. (1961). The Sunspot Activity in the Year 1610-1960. Schulthas and Company, 
Zurich, Switzerland. 

Yevjevich, V. M. (1963). Fluctuation of wet and dry years, 1, research data assembly and 
mathematical models. Hydrology Paper No. 1, Colorado State University, Fort Collins, Col- 
orado. 



988 
Data Appendix 



Author I n d u  

AUTHOR INDEX 

989 

Abdeknohsen, M.W. 513,751 
Abraham, B. 49,169,182,286,476,478,539, 

580, 129, 744 
Adamowski, K. 754,943 
M e ,  H. 18, 121, 154, 174, 191, 194, 203, 

204,209,210,211,215,216, 281,227, 
287, 343,434,469,562 

Alavi, AS.  748, 749, 754, 761, 784 
Alexander, R.B. 858,923 
Allen, D.M. 445, 946 
Alley, W.M. 618, 924, 942, 968, 972 
Alpaplan, N. 13 
Anderson, A. 259, 544, 548 
Anderson, A.P. 241, 563 
Anderson, O.D. 49 
Anderson, R.L. 694 
Anderson, T.W. 49, 104, 215, 344 
Anis, A.A. 333, 334, 335, 337, 352, 353, 354, 

363, 366,372 
Anseombe, F.J. 246 
Anselma, V. 574,618 
Ansley, C.F. 228, 750,768, 787,788,792,800, 

Araripe Neto, T.A. 4 
Armstrong, J.S. 544 
Asai, I(. 943 
Askew, A.J. 513, 517 
Astrom, K.J. 608 
Atkieson, A.C. 305,940 
Babu RBO, T. 754 
Baurstow, R.B. 416,445,987 
Bagshaw, M. 673, 731 
Bahadur, R.R. 877 
Bailey, M.J. 191 
Baillie, R.T. 287 
Ballerini, R. 337,496 
Baracos, P.C. 574, 604, 618, 644, 645, 646, 

656,693,694 
BarbM-Nielsen, 0. 100 
Bardossy, A. 943 
Barnard, G.A. 206,336,675,897 

801, 802,951,952 

Barnett, V. 817 
Bartlett, D.R. 71 
Bartlett, M.S. 396, 429, 560, 580, 585, 694, 

699,763 
Bartolini, P. 483,483,489, 742, 747,751, 752, 

756, 757, 759, 779, 784 
Bates, J.M. 544 
Bates, D.M. 941 
Battaglia, F. 182 
Beauchamp, J.J. 646, 694, 695, 679, 943, 972 
Beck, M.B. 174 
Beguin, J.M. 195, 585 
Bendat, J.S. 560, 569 
Bennett, R.J. 19 
Benson, M.A. 972 
Beran, J. 372 
Bergeron, R. 637, 638 
Berman, S.M. 335 
Bernier, J. 753 
Berryman, D. 858 
Berthouex, P.M. 813 
Best, D.J. 865 
Beveridge, W.H. 156, 560 
Bhansali, R.J. 182, 196, 287 
Bhattacharya, R.N. 372 
Bhattacharyya, M.N. 658 
Bilonick, R.A. 657 
Birnhaum, A. 206 
Birta, L.G. 754 
Biswap, A.K. 305 
Black, R.P. 679, 680, 987 
Blackett, P.M.S. 27 
Blom, G. 243 
Bloomfield, P. 287, 407, 696, 855 
Blue, C. 445 
Bobee, B. 858 
Bodo, B.A. 880, 941, 942, 944, 946,956, 970 
Boes, D.C. 333, 335, 336, 397, 511, 512, 751, 

Bogardi, I. 943 
Bohlin, T. 608 

756 

989 



990 Author Index 

Bordley, R.E. 544 
Bormsn, F.H. 878 
Bong, D. 279 
Bouchard, S. 637,638 
Bowler, D.S. 758 
Box, G.E.P. 8 , 9 , l l ,  13,17,24,49,82,92,94, 

95, 100, 121, 122, 124, 140, 163, 175, 
176,191,208,218,219,223,228,235, 
236,239,240,248, 262,287, 302,303, 
317,399,420,429,455,464,476,478, 
500,514,535, 555,556,569, 576,580, 
581, 583,583,584, 585,611,612,646, 
647,650,655,657,658,726,729,738, 
749,754, 757,761,762,787,801,896, 
951 

Box, J. 22 
Bradley, J.V. 863,884 
B r u ,  R.L. 49 
Bray, T.A. 303 
Brelsford, W.M. 483 
Brillinger, D.R. 49, 331, 390, 555, 673, 757, 

758 
Brocha, M. 532 
Brockwell, P.J. 49, 71, 397, 612 
Brown, T.J. 294 
Brown, R.L. 673, 942 
Brown, T.C. 943 
Brubacher, S.R. 695,696,732 
Bryson, M.C. 132,483, 723 
Buckland, W.R. 204, 863 
Bupta, V.K. 372 
Burg, J.P. 97 
Burger, S.J. 345 
Cainer, P.E. 174 
Camacho, R. 532 
Camacho, F. 657,693,746,747,748,750,752, 

754, 763,779,784,787,788,789,790, 
791,792,793,800,810,811,813,839 

Campbell, A. 574,657 
Cane, M.A. 943 
Canfield, R.V. 753, 758 
Capodaglio, A.G. 574,608,613 
Carbone, R. 259,544,548 
Caulder, D.L. 943 
Chamber#, J.M. 813,816,817,940,944 
Chan, W.T. 754 
Chapman, D.T. 50 
Chapman, P.L. 871,942 
Chatfield, C. 49, 54, 182,196 

Checkland, P. 16, 30 
Chen, H.J. 244 
Chemoff, H. 673 
Chin, D.A. 696 
Chorley, RJ. 19 
Chow, G.C. 215 
Chow, K.C.A. 574,618,641 
Cipra, T. 483 
Clapr, P. 511 
Clarke, R.T. 49 
Cleary, J.A. 896 
Cleaveland, M.K. 943 
Cleveland, R.B. 811, 944 
Cleveland, W.S. 182, 183, 196, 430, 672, 695, 

808,811,812,813,816,817,827,940, 
944, 946,947, 972 

Cluis, D. 813, 858 
Cochran, W.G. 69, 276, 506, 854 
Cohen, P. 924 
C o b ,  T.A. 887, 889, 943 
Collomb, G. 279 
Conover, W.J. 317, 854, 863, 870, 893, 925, 

926,928 
Coons, I. 694, 695, 699, 732 
Cooper, D.M. 754, 768 
Copes, J.B. 293 
Cordova, J.R. 753 
Correll, D.L. 924 
Costa, O.C.G. 4 
Costa, J.P. 754 
Cote, L.J. 757 
Cover, K.A. 39!3, 406, 411 
Cox, D.R. 17,23,65, 72,82,92,204,338,372, 

390,420,464,556, 757,835,854,858. 
859,892, 952 

Craddock, J.M. 191 
Cramer, H. 207 
Crawford, J.K. 879, 880 
Crawford, M.M. 574,618, 856, 871, 872,884, 

Croley, II, T.E. 464, 483, 485 
Cryer, J.D. 399 
Cuenca, R.H. 132 
Cunnane, C. 817 
Cunningham, R.B. 942 
D'Angostino, R.B. 242 
D'Astoua, F. 337,657, 693,698 
Dalezios, N.R. 754 
Damazio, J.M. 754 

887 



Author Index 991 

Daniel III, C.C. 879,880 
Davenport, M.S. 923 
Davidon, W.C. 209 
Davies, N. 240, 500 
Davis, L A .  49, 397, 613 
Davis, W.M. 191 
Davia, D.R 754 
Davison, A.C. 390 
Dawdy, D . R  345,878 
Deck, B. 445 
Decourrey, D.G. 50, 742, 752, 755, 972 
DeGreer, G. 362 
Delleur, J.W. 49,174,175,306,464,480,483, 

485,493,503,510,532,574,613,751, 
752, 754, 755, 756 

Delorme, L.D. 943 
Dempster, A.P. 696, 732, 752 
Denny, J. 278 
DeRoven, T.A. 889 
deSilva, F. 445 
Deutsch, S.J. 754 
Deverel, S.J. 887,888 
Dieter, V. 299 
Dietz, E.J. 869, 871 
Dobell, A. 299 
D o h ,  R. 4 
D o h ,  R. 752 
Downing, D.J. 646, 656, 694, 695, 943, 972 
Dransfield, J. 8 
Draper, N.R. 209,940 
Drew, L.G. 91, 180,272,282, 362 
Duckstein, L. 28, 174, 943 
Duffield, J.W. 943 
Dufuor, J.M. 892 
Dunamuir, W. 341,483 
Durbin, J. 100, 140, 398, 673, 942 
Durick, D.N. 943 
duToit, S.H.C. 813 
Eagleson, P.S. 20, 22, 757 
Eaton, J.S. 878 
Eberhardt, A.J. 415,451 
Eberlein, E. 390 
Edwards, A.W.F. 204 
Efron, B. 399 
Eijsvoogel, J. 9 
Eirenhart, C. 952 
El-Shaarawi, A.H. 50,871,889,923,942,943, 

Ellis, J.C. 13 
972 

Elner, R.W. 574 
Enochaon, L. 78,125 
Environment Canada 79, 473, 501, 508, 588, 

Esterby, S.R. 50,923,942,943,972 
Etheridge, D. 445 
Evans, J.M. 673, 942 
Fair, M.G. 4,752 
Fakenmark, M. 22 
Fama, E.F. 180 
Fang, L. 27, 29, 30, 34 
Faris, K.B. 923 
Fanell, R 857,873,874 
Fay, D.M. 574,618 
Feder, P.I. 673 
Federizzi, M. 943 
Feldman, A.D. 754 
Feller, W. 332, 334, 352, 353, 369, 372 
Feng, X. 608,613 
Fern, C.R. 574 
Fernandes, B. 512 
Fiering, M.B. 49, 133,464,483,493,533, 751, 

752, 755 
Fildes, R. 259,544,548 
Fillinm, J.J. 244 
Finzin, G. 752 
Fioria, M. 673, 731 
Firth, M. 49 
Fisher, D.W. 878 
Fisher, F.M. 180, 204, 206 
Fisher, R.A. 275,515, 540,856,858,877 
Fleiss, J.L. 876, 877 
Flenley, J.R. 4 
Folks, J.L. 69, 175, 204, 877, 929 
F o r t h ,  L. 574, 608, 614 
Fosu, P.K. 891 
Fox, J.P. 923 
Franchini, M. 753 
Fraser, P.J. 445 
Fraser, N.M. 24,25,27, 29, 30,34 
Raser, D.A.S. 863 
Revert, D.K. 756, 757 
Fryer, M.J. 407 
N l e r ,  W.A. 49,104 
Gallant, A.R. 758, 941 
Garcia, L.E. 345 
Gardner, L.A. 673 
Gem, N.L. 496 
Ghani, A.A.A. 758 

599,987 



992 Author Index 

Gibbom, J.D. 863, 893 
Gilbert, R.O. 13, 50,863,889 
Gilchrist, W. 163 
Gill, P. 209 
Gilliom, R.J. 889 
Gillroy, E.J. 889 
Gilroy, E.J. 856,857,884,885,887,929,943 
Gipps, P.G. 865 
Gladyshev, E.G. 483 
Gleit, A. 889 
Gnedenko, B.V. 365 
Godolphin, E.J. 453 
Goicechea, A. 28 
Golding, D.L. 838 
Goldsmith, P.L. 676 
Gomide, F.L.S. 332, 338, 354, 370, 372, 373 
Good, I.J. 972 
Gould, B.W. 756 
Gourieroux, C. 195, 585 
Granger, C.W.J. 49, 79, 129, 179, 180, 182, 

191,235,241,259, 271,276,280,335, 
389, 390,391,394,395,407,529,544, 
548,555,556, 563,564,639, 748,754, 
798,811, 955 

Gray, H.L. 191, 195, 197, 215 
Grimvall, A.  923 
Groen, J. 9 
Gruppe, M.R. 483,496 
Grygier, J.C. 694, 756 
Gudmundson, G. 83,742, 757,897, 902 
Guiliano, G. 753 
Gulledge, J1.T.R. 243, 244 
Gunn, J. 943 
Gupta, S.N. 397 
Gumell, A.M. 574 
Guttman, I. 69 
Haan, C.T. 69 
Haemmerli, J. 858 
Haggan, V. 121 
Haith, D.A. 30,50 
Hall, W.A. 513,517 
Hall, A.D. 750, 754, 786 
Haltiner, J.P. 486, 608, 618, 751 
Hamilton, D.C. 430 
Hamming, W.J. 476 
Hannan, E.J. 4, 49, 76, 208, 215, 341, 606, 

749, 754 
Hansen, D.R. 28 
Han~sena, D.M. 585, 597 

Harbaugh, T.E. 574,601 
Harcum, J.B. 858 
Hardin, C. 294 
Harkness, D.D. 8 
Harmandoglu, N.B. 13,464, 742, 755, 760 
Harned, D.A. 879, 880, 923 
Harrison, S.J. 19 
Harvey, A.C. 658, 728 
Hastie, T.J. 940 
Haugh, L.D. 555,556,558,559,569,580,581, 

582, 583,585, 612, 748,823 
Hayden, S. 49 
Haykin, S. 49,97 
Healy, M.J.R. 94, 306, 397 
Helsel, D.R. 50, 887, 889,921, 943 
Henderson, M. 618 
Hercheroder, A.  445 
Herczeg, A.L. 943 
Hewlett-Packard 815 
Hibon, M. 259, 280,287,544, 548 
Hill, G.W. 215 
Hill, I.D. 299, 305, 514 
Hill, R. 305 
Hillier, F. S. 30 
Hillmer, S.C. 510, 750, 754, 767, 786, 811 
W e y ,  D.V. 204, 673,854,858, 
Hipel, K.W. 13, 24, 25, 27, 28, 29, 30, 34, 36, 

50, 51, 91, 122, 175, 176, 182, 183, 
184, 185, 196, 210, 211,218, 225,237, 
239, 245,274, 276,280,284,294,304, 
310, 316,334, 337,338,341,342,346, 
366, 367,394, 396,397,401,431,464, 
470,483,484,493,498,499,503,508, 
511, 514,525,532,541,544,545,555, 
574, 604,580, 581, 593,599, 617,618, 
629, 639,644, 645,646,655,656,657, 
680, 684,686, 693,694,698, 718,724, 
726, 727,742, 746,747,748, 750, 751, 
752, 754,755, 759,760,763, 779,784, 
787, 788,789, 790,793,800,810,811, 
813, 839,858, 863,864,880, 891, 903, 
941, 942,944, 956,970 

Kirsch, R.M. 50,693, 853, 856, 857, 858,864, 
866, 867,868, 689,871,872,878,879, 
884, 885,887,889, 896, 929,943 

Hoaglin, D.C. 672, 813,814,829 
Hobbie, J.E. 878 
Holder, R.L. 305 
Hollander, M. 863, 893 



Author Index 993 

Hooper, E.R. 923 
Hornbeck, R.W. 306 
Hosking, J.R.M. 182, 394,395, 397, 398, 401, 

Hotopp, S.M. 749 
Howard, N. 29 

Huff, D. 972 
Hufschmidt, M.M. 4, 752 
Hugher, J.P. 856, 857,864,866,868, 869,872, 

873, 874,875,876,877,882,888,889, 
890, 891, 896, 929 

407, 411 

HSU, D.-A. 673 

Hui, Y.V. 511 
Hull, T. 299 
Hunter, J.S. 3, 11, 69, 464 
Hunter, W.G. 11,813 
Hurd, H.L. 496 
Hurst, H.E. 91, 331, 332, 336, 337, 369, 370, 

Huzzen, C.S. 337 
Ikeda, S. 64 
Iman, R.L. 854 
International Association of Hydrological Sci- 

Irvine, K.N. 451 
Ishiguro, M. 209 
Jackson, B.B. 175 
Jain, D. 122, 141 
Jandhyala, V.K. 673,680 
Janson, B. 299 
Jaywardena, A.W. 464 
Jeffrey, W.W. 838 
Jeng, R.I. 679 
Jenkb, G.M. 17,24,49,94,95,100,121,124, 

140,163,174,175,176,191,208,218, 
219, 223,228, 235,236,248, 262,287, 
317, 399,420,429,455,458, 500,535, 
555,556,576, 580, 583,584, 585,612, 
611, 646,647,650, 784,834,891, 896 

Jettmar, R.U. 341 
Jimener, C. 72, 274, 276, 280, 284, 394, 396, 

Johnson, L.A. 49 
Johnson, N. 305 
Johnson, N.L. 204,863 
Johnson, R.A. 673, 731 
Johnson, N.M. 878 
Jonckheere, A.R. 866 
Jones, H. 608 

381, 679, 680, 987 

ences 259 

397,493,511,639 

Jones, R.H. 483,658,696, 732 
Jordan, T.E. 924 
Joyeux, R. 389,390, 391,394,395,407 
Kauzyk, J. 943 
Kahan, J.P. 752 
Kalbfleisch, J.G. 69 
Kalbfleisch, J.D. 888,889 
Kalman, R.E. 204 
KarLson, G. 923 
Kashyap, R.L. 50, 174, 757 
Katul, G.G. 132 
Kavalieris, L. 754 
Kawas, M.L. 132,306,464,480, 532, 757 
Keeling, C.D. 416,445, 987 
Kelly, G.D. 195,197,215 
Kelman, J. 4, 754 
Kempthorne, 0. 69, 175, 204 
Kendall, M.G. 49, 50,204,362,811,857,863, 

864,865,866,880,883,892,894,905, 
924 

Kenett, R. 673 
Kenney, B.C. 972 
Keppeler, E.T. 943 
Kheoh, T.S. 240, 287 
Kiesiel, C. 174 
Kilgour, D.M. 27,29, 30, 34 
Killeen, T.J. 869, 871 
King, S.M. 8 
Kinnison, R.R. 889 
Kisiel, C. 278 
Kitagawa, G. 210,211 
Kite, G.W. 638, 943, 972 
Kleiner, B. 123, 813, 816,817, 944 
Klemes, V. 68, 132, 337, 340, 373, 384, 742, 

Klemes, I. 385 
Kloeden, P.E. 23 
Knapp, J.W. 574, 601 
Knoke, J.D. 892 
Knuth, D.F. 296, 299, 303, 320, 366 
Kohler, M.A. 20 
Kohn, R. 750, 768, 788, 792, 800, 802, 951, 

Kohogorov, A.N. 262 
Kottegoda, N.T. 49, 305, 338, 345, 753 
Kotz, S. 69, 204, 863 
Koutsoyianniaa, D. 757 
Kronmal, R.A. 972 
Krushal, W.H. 204 

756 

952 



994 Author Index 

Krushk~l, W.J. 854, 857,863,875,927 
Kucserq G. 752 
Kunrch, H. 372 
Kunts, K.W. 923, 942 
Kushner, E.J. 889 
Kwiatownki, R.E. 50 
Lai, F. 464 
Laird, N.M. 696, 732, 752 
LaMsrche, Jr. V.C. 566 
Lane, W.L. 49, 483, 493, 503, 510, 751, 752, 

Langbein, W.B. 878 
Laren, W.A. 821 
Lawgren, M. 923 
Lawrance, A.J. 338, 345, 752, 755 
Layton, A.P. 658 
Laznik, M.M. 923 
Ledolter, J. 49, 182, 286, 399, 539, 580, 754, 

Lee, E.T. 889 
Lee, H.L. 756 
Lehxmmn, E.L. 276, 506, 863, 870, 890 
Lehmer, D.H. 299 
Lemke, K.A. 574 
Lennox, W.C. 122, 175, 182, 183, 184, 185, 

196, 210,218,225,237,239, 245,430, 
431,656,680,684,686 

754, 756, 757 

798 

Lerner, D. 13 
Lettenmaier, D.P. 13, 176, 345, 656,693,694, 

698, 718,726, 727, 753, 757, 855,857, 
871,896,923,928,943 

Lev, J. 926 
Levenbach, H. 896 
Levine, J.S. 7 
Lewandowski, R 259,544,548 
Lewis, G.L. 574,601 
Lewis, P.A.W. 141, 513, 757, 758, 759, 768, 

970 
Li, W.K. 208, 240, 241, 398, 399, 400, 409, 

429,460,511, 555,574,580, 581,593, 
757,578, 768, 786,789 

Lieberman, G.J. 30 
Likens, G.E. 878 
Lillieforn, H.E. 243 
~im, s. a97 
Lin,Y.C. 121 
L h l e y ,  Jr., R.K. 20 
Littell, R.C. 877,929 
Little, RJ.A. 696 

~ i u ,  L. 585,591’ 
Ljing, L. 174, 196 
Ljung, G.M. 228, 240,500,696, 787, 801 
Ljung, L. 49 
Lloyd, E.H. 333, 334, 335, 337, 352, 353, 354, 

Loftia, J.C. 13, 858, 871, 875, 923, 942 
Looney, S.W. 234,244 
Loucks, D.B. 30,49 
L u m ,  J.M. 675 
Luenberger, D.C. 209 
L u k ,  E.J. 544 
Lyman, R.A. 943 
Maaa, A. 4 
MacInnes, C.D. 759 
MacLaren, G.M.M. 303 
MacNeill, I.B. 673,680, 731, 943 
Mafezzoni, C. 673, 731 
Maidment, D.R. 574, 618, 656 
Makridakis, S. 49, 163, 259, 280, 287, 544, 

Mallows, C.L. 215,827 
Mandebrot, B.B. 333, 336, 338, 339, 345, 353 
Manley, G. 362, 561, 987 
M d e y ,  H.D. 73,280 
Mann, H.B. 857, 864,865, 894 
Mansfield, E. 618 
Marglin, S.A. 4, 752 
Marquardt, D.W. 209 
Marsaglia, G. 299,303 
Marshall, R.J. 696 
Martin, M.J. 942 
Martin, R.D. 123 
Mas, A. 752 
Mass, C. 191 
Mate, M. 132 
Matalas, N.C. 333, 334, 335, 337, 341, 345, 

346, 372, 752, 753, 754, 768 
Marwell, W.H.C. 574,618 
McBean, E.A. 50,580,581, 656, 718 
McBride, G.B. 13 
McClave, J.T. 182,497,533 
McCuen, R.H. 20, 49,69 
McGill, R. 821 
Mdntirc, D.D. 195,197,215 
McKenzie, E. 757 
McKerchar, A.I. 464 
McLave, J.T. 214,215 
McLeod, A.I. 13, 36, 49, 51, 72, 91, 110, 122, 

363,366,372 

545,548 



Author Index 995 

139,175,176,182,183,184,185,196, 
208,209,210, 211,218,219,221,224, 
225,237,238, 239,240,241,245,274, 
276,280,284,287,294,304,306, 310, 
337,338,341,342,346,366,394,396, 
397,398,399,400,401,409,430,431, 
433,437,455,458,464,470,483,484, 
493,498,499,500,503,508,511,514, 
525, 532,541, 544, 545,555, 556,559, 
560,574,580,581,593,599,598,604, 
617,618,629,639,644,645,646,655, 
656,657,658,680,684,686, 693,694, 
698,718,724,726, 742,746,747,748, 
750, 751, 752, 754, 757,763, 768,779, 
784, 787,788, 789, 790, 793, 800,801, 
810,811,813,839, 858,880, 891,925, 
941,942,944,956,970 

McMahan, T.A. 373,514 
McMichael, 464 
McNeil, D.R. 827,828, 829 
McF&e, J.E. 811, 944, 972 
Mein, R.G. 514 
Mejia, J.M. 345, 753, 756 
Mdard, G. 209 
Mendel, J.M. 204 
Mesa, O.J. 372 
M e t d e ,  A.V. 759 
Mimu, S.P. 574, 618 
Michael, J.R. 244 
Miklar, J. 924 
Millard, S.P. 882,887,888,889,890, 891,929, 

943 
Miller, H.D. 23,65 
Miller, R.B. 241, 673, 889 
Miller, W.J. 923 
Miser, H.J. 3 1  
Mohamed, F.B. 754 
Monfort, A. 585 
Mongan, T.R. 923 
Montfort, A. 195 
Montgomery, D.C. 49 
Montgomery, R.H. 858 
Moran, P.A.P. 191,293,334,336 
Morgan, J.A. 493,496,498,499, 533 
Morgenstern, 0. 29 
Moriarty, M. 798 
Mom#, J. 191 
Morton, R. 942 
Moss, M.E. 13, 132,483, 723 

Mostella, F. 813, 940 
Mottershead, D.N. 19 
Muller, M.E. 302,303,514 
Murray, W. 209 
Muagrave, J.C. 811 
Muth, J.F. 163, 165 
Naftz, D.L. 943 
Nmseri, I. 754 
National Research Council 21 
Neave, H.R. 696 
Nebold, P. 618, 639 
Neftel, A. 445 
Nelson, C.R. 49, 798,943 
Newbold, P. 49, 179, 182, 235, 236, 240, 259, 

271, 276,280,460,500,510,529,544, 
548,574,749,754, 787,798, 801,955 

Newell, A.D. 871,942 
Newton, H.J. 486 
Newton, J.  259, 544, 548 
Neyman, J. 858 
Nicholls, D.F. 750, 754, 786 
Nichols, D.G. 657 
Nicklin, M.E. 755 
Niculescu, S.P. 923, 871 
Nielsen, D.R. 132 
Nikanorov, A.M. 923 
Noakes, D.J. 274,276, 280,284,493,525,532, 

540, 544,545, 547, 574,580, 581,599, 
617,618, 639,657, 728 

Noether, G.E., 892 
Norden, R.H. 204 
Novotny, V. 574, 608, 613 
Nychke, D. 855 
O’Connell, P.E. 336, 338,345,354,372, 753 
Obeysekera, J.T.B. 50, 195, 486, 489, 511, 

Oehlert, G. 855 
Oeschger, H. 445 
Olason, T. 574,618 
OLiveira, G.C. 4 
Ord, J.K. 490,892 
Orr, D. 180,335 
Osborn, H.B. 756 
Otnes, R.K. 78, 125 
Owen, W.J. 889 
Oyetunji, O.B. 121 
Ozaki, T. 210,214,218, 219,434, 758 
Pack, D.J. 656,657 
Pagano, M. 94, 100, 105,140,458 

512, 742, 751, 752, 755, 756, 757 



996 Author Index 

Page, E.S. 673, 675 
Page, E.B. 866 
Pagono, M. 483,495,496,497 
Pallesen, L. 813 
Pandit, S.M. 49,121,169 
Pankrats, A. 49 
Panu, U.S. 759 
Papoulis, A. 65,76 
Pargen, E. 182 
Parker, G. 64 
Parzen, E. 65, 76,215,259,544,548, 696 
Paulhaus, J.L.H. 20 
Paulsen, J. 749 
Pearch, M.C. 305 
Pearman, G. 445 
Pearson, E.S. 858 
Pearson, K. 972 
Pegam, G.G.S. 336, 751,753 
Periera, M.V.F. 4 
Pfeifer, P.E. 754 
Phadke, M.S. 191 
Phillips, P.C.B. 287 
Pierce, D.A. 239, 246, 460, 500, 555, 556, 558, 

560, 566, 748 
Pierce, R.S. 878 
Piersol, A.G. 560,569 
Pilon, P.J. 637, 638 
Pinto, L.M.V.G. 4 
Pisano, W.C. 753 
Pitman, E.J.G. 276, 505, 532, 541, 638, 639, 

Platen, E. 23 
Poire, A. 629 
Poreda, G. 372 
Porter, P.S. 889, 943 
Potter, K.W. 177,337, 923, 943 
Powell, M.J.D. 209,224,228,411 
Power, J. 924 
Pralange, M.B. 132 
Preece, D.A. 695 
Prentice, R.L. 888, 889 
Price, J.M. 558 
Priestley, M.B. 49, 585 
Public Utility Commission 415,439,987 
Puri, M.L. 863,875 
Quade, E.S. 30 
Qualls, C.L. 943 
Quandt, R.E. 673 
Quenouillc, M.H. 100 

907 

Quinn, B.G. 215, 749 
Radford, K.J. 28 
Raganathan, T. 754 
Raghavendran, R. 754 
Ftahm, L. 923 
Railsback, S.F. 646, 694, 695, 943, 972 
Ralston, A. 306, 791 
Ramanathim, R. 544 
Ramo~, J.A. 754 
h e y ,  F.L. 813 
Rao, A.R. 50,174, 756 
Rao, C.R. 207,276,332, 507 
Rao, K.N.R. 464,483,485 
RBO, S.G. 756 
Rao, T. 756 
Rapu, s. 8 
Redchow, K.H. 858,878 
Reich, R.B. 53 
Reinsel, G.C. 942 
Rice, R.M. 943 
Richardson, C.W. 754 
Risager, F. 754, 798, 800 
Rissanen, J. 215, 749 
Robinson, E.A. 49, 78, 125 
Rodriquez)Iturbe, I. 49, 174, 345, 555, 753, 

754 
Roll, R. 180 
Rose, D.E. 486, 489 
Rose, K.A. 942,972 
Rosenblatt, M. 279, 395 
Rosenfeld, G. 180 
Rosenhead, J. 30 
Ross, S.M. 65, 69 
Rossi, F. 511 
Rothenburg, T.J. 180 
Rousselle, J. 756 
Roy, B. 28, 150, 168 
Roy, R. 892 
Royston, J.P. 244, 789, 750, 768 
Rubin, D.B. 696, 732, 752 
Russel, B. 16 
Sachs, L. 69, 204, 863, 906 
Sage, A.P. 51, 55 
SaLei, H. 483,495,496 
Saluunato, Y. 211 
Sakthivadivel, R. 754 
Salas, J.D. 24,49,132,133,136,154,195,336, 

337,483,486,489,493, 503, 510, 511, 
512,513,608,618, 742,747,751,752, 



Author Index 997 

753,754,755, 756, 757,759,779,784, 
987 

Salaa, P.R.H. 4, 209, 224, 399, 409, 433, 455, 
458,788 

Salomon, G. 798 
Sanden, R 923 
Sangal, B.P. 305 
Saskatchewan Government 685 
Savarcnskiy, G.G. 757 
Saw4 T. 215 
Schaerf, M.C. 194,218 
Scheidegger, A.E. 340 
Scheinok, P.A. 696 
Schneider, S.H. 191 
Schou, G. 100 
Schulman, E. 282,362 
schur, I. 94 
Schwander, J. 445 
Schwartz, G. 215 
Schweigert, J.K. 618 
See, R.B. 943 
Sen, P.K. 857, 863,871,875 
Sendek, K.H. 943 
Shalash, S. 680 
Shaman, P. 182 
Shapiro, S.S. 244 
Shaw, D.T. 656 
Shea, B.L. 750 
Shen, H.W. 50, 742, 752, 755 
Shibata, R. 210, 215 
Shimpson, H.J. 943 
Shiskin, 3. 811 
Shively, T.S. 951,952 
Sicuuna, T.G. 878 
Siddiqui, M.M. 94, 332, 336, 352, 370, 372, 

373 
Siegel, S. 868 
Silva, L.F.C.A. 4 
Sim, C.H. 328 
Simaika, Y.M. 679,680,987 
Singh, V.P. 122, 141 
Slack, J.R. 693, 853, 856, 857, 864, 866, 867, 

868,869,871,872, 879,884, 887,896, 
929 

Salm-La C ~ U ,  J.D. 333,335 

Smirnov, N.P. 555, 564, 566 
Smit, E.P. 9,942,972 
Smith, H. 209,940 
Smith, J.A. 337 

Smith, R.A. 24, 511, 693, 742, 856, 857, 858, 
864,866,867,868,871,872,879,896, 
923, 929 

Snedecor, G.W. 69, 276, 506 
Snorraaon, A. 574,618,650 
Snyder, W.M. 49,69 
Solari, M.E. 334 
Solomon S.I. and Associate8 Limites 638 
Spearman, C. 857 
Speight, J.G. 64 
Srikanthan, R. 373, 754 
Stanley, D.W. 924 
Staufter, B. 445 
Stedinger, J.R. 30,50,293,305,513,560,694, 

Stevens, J.G. 970 
Stevens, S.S. 861 
Steyn, A.G.W. 813 
Stirling, W.D. 244 
Stocker, M. 574, 618 
Stockton, C.W. 91, 180, 272, 282, 362 
Stoddard, J.L. 942 
Stokes, M.A. 91, 180, 272, 282,362 
Stone, M. 215 
Stone, C.J. 944 
Stuart, A. 362, 892 
Stumpf, R.H. 813 
Summers, R.M. 943 
Svanidze, G.G. 756 
Swed, F.S. 952 
Swenson, E.M. 924 
Tabioa III, G.Q. 483, 742, 747, 752, 756, 759, 

Tanabe, K. 211 
Tan&, H. 943 
Tang, S.M. 673, 680 
Tanur, J.M. 204,854, 863 
Tao, P.C. 175,306,464,483,485,532, 756 
Taqqu, M.S. 338, 353,390, 395 
Tasker, G.D. 943 
Tatar, J.F. 493,496,498,533 
Taylor, C.H. 871, 875, 923, 942 
Taylor, M.R. 513, 753, 754 
Terpenning, I. 811, 944, 972 
Terry, L.A. 4 
Thanoon, B. 83, 742, 757, 758, 759, 769, 897, 

902 
Theil, H. 871 
Thode, Jr.H.C. 569 

753, 754, 756, 757, 889 

779, 784 



998 Author Index 

Thomas, Jr.H.A. 4, 464, 483, 493, 533, 751, 
752 

Thomas, R.B. 943 
Thompron, M.E. 925 
Thompron, M.L. 855 
Thomprtone, R.M. 483, 484, 493, 503, 508, 

514,525,532,541, 544,545,574,604, 
617,629,637,638, 742,751,752 

Thomon, D.J. 123 
Tiao, G.C. 122,195, 197, 476, 483,496, 510, 

547,548,655,657,658,679,729,749, 
750,754,761,762,763,767,786,811, 
942 

Tilanua, C.B. 180 
Tjoatheim, D. 749 
Tlusty, P. 483 
Todini, E. 752,753 
Tong, H. 83,211,742,757,758,759,769,897, 

902 
TOUSSOUII, 0. 362 
Trench, W.F. 398 
lbiggs, C.M. 240 
Troutman, B.M. 483,492,495,496 
Taay, R.S. 195, 197, 373, 381, 749, 750, 761, 

763 
Tseng, L. 753 
Tsirkunov, V.V. 923 
Tukey, J.W. 14, 54, 177, 178, 180, 588, 671, 

674,678,807,809, 813,814, 818,821, 
827,828, 829, 911, 926, 940 

Tukey, P.A. 813, 816, 817, 944 
Ubertini, L. 574,618 
Uejima, S. 943 
Ula, T.A. 496,489,751 
Um&lhanlKu, s. 798 
United Statea Bureau of the Census 154,272, 

833 
Unny, T.E. 50, 399, 406, 411, 655, 684, 759, 

880 
Valenciq D.R. 756 
Vdee, A. 629 
V&, P. 883, 925 
Van Belle, G. 856, 857, 864, 866, 868, 869, 

Vandsele, W. 49,580,658 
Vander Plaats, G.N. 209 
Van Near, J.W. 336, 338, 339 
Vecchia, A.V. 483, 486, 489, 496, 510, 512, 

872,873,874,875,876,077,896 

751, 756 

Velleman, P.F. 672, 813,814, 827,829 
Venugapal, K. 754 
Vicena, G.J. 174, 754 
Viessmap, Jr., R.M. 574, 601 
Vincke, P. 28 
Vitale, C. 511 
Vogel, R.M. 293, 756, 757 
von Neumnnn, J. 29,299 
Waddington, C.H. 27 
Wagner, H.M. 30 
Wagoner, C. 923 
Wahlen, M. 445 
Waite, T.D. 906 
Wald, A. 892 
Waldmeier, M. 79, 121, 191, 218, 250, 248, 

Walker, G. 96 
Walker, W.W. 923 
Walker, H.M. 923,926 

362, 561,987 

wallis, J.R. 333,334,335,336,337,33a, 339, 
341, 345,346, 353, 372, 768 

Wallis, K.F. 752, 753, 754, 951 
Wallis, W.A. 857,875, 927 
Ward, R.C. 13, 943 
Ward, R.D. 858,889 
Warry, N.D. 923 
Warwick, J.J. 196 
Watson, G S ,  279 
Watt, W.E. 574, 618, 641 
Watts, D.G. 49, 70, 72, 430, 556, 574, 618, 

Waymire, E.C. 372 
Wei, W.S. 547,548 
Weiler, R.R. 903 
Welch, D.W. 574, 618 
Weller, D.E. 924 
Westley, G.W. 656 
Wheelwright, S. 49, 163 
White, I.D. 19 
Whitfield, P.H. 13,657 
Whitlatch, E.E. 942 
Whittle, P. 191, 209, 237, 262 
Whorf,T.P. 416,445, 987 
Wichern, D.W. 150,658, 673 
Wickman, B.A. 299,514 
Wiener, N. 262,556 
Wilber, W.G. 924 
Wilcoxon, F. 275, 532, 540, 857, 925 
Wilk, M.B. 244 

641, 758, 891, 834, 941 



Author Index 999 

WilJ(uuon, J.H. 94,100 
W-on, G.N. 695 
Wilkr, S.S. 69 
Wilson, G.T. 695, 696, 732, 750, 754 
W u a ,  B 259,544, 545,548 
Wiseman, Jr. W.J. 924 
Wold, H.O. 82, 262 
Wolfe, D.A. 863, 893 
Wolfowiu, J.  892 
W o k ,  M.G. 923 
Wow, A.K.C. 758 
Wow, S.T. 943, 972 
Wood, E.F. 754,768 
Wood, E.J. 174 
Woods, P.F. 657 
Woodward, R.H. 676 
Woodward, W.A. 191, 195 
Woodworth, D. 215 
Woolhiser, D.A. 756 
World Meteorological Organization 638 
Wright, M. 209 
Wright, K.A. 943 
Wu, S.M. 49, 121,169, 191 
Wulff, F. 923 
Yakowitz, S. 274,276,278,279,280,284,296, 

Yearsley, J.R. 943 
Yeh, W.W.G. 513,517 
Yevjcvich, V.M. 49,50,65,68,69,76,96,132, 

154, 186,217, 247, 250,280,317,336, 
346,362,464,483,493,503,510,555, 
561,679,742,751,752,753,754,755, 
756, 760, 793, 796, 987 

301, 302,639 

Yin, H.-B. 694 
Young, A.H. 811 
Young, G.K. 341,753 
Young, P.C. 49,580,606,608,646 
Yu, G.H. 121 
Yule, G.U. 82,96,191 
Zsckr, S. 673 
Zebiak, S.E. 943 
Zettaqvirt, L. 657, 923 
Zhcng, S. 608,613 
Zhu, D. 923 
Ziana, BR. 943 
zumbmnn, R 445 
Xyqjuk,  L.D. 943 



This Page Intentionally Left Blank



Subject Index 

SUBJECT INDEX 

4253H . twice. smooth ............................................................................................................ 827.829 
5-numba summary ............................................................................................................... 816 
ACF (autocanlation function) 

ACF at lag k ................................................................................................................... 70 
ACF defhtion ................................................................................................................. 70 
ACF for a MA(@ model ................................................................................................. 104 

ACF fa the AR@) model .............................................................................................. 95 
ACFofthe squared model residuals ............................................................................... 2 4 1  
defmition ......................................................................................................................... 70 
estimator . ......................................................................................................................... 72 
exploratory daca analysis .................................................................................................. 834-837 
identification of an ARMA model ................................................................................... 181 
identification of a SARIMA model .................................................................................. 429 

ACF for an ARM@.@ model ........................................................................................ 110 

periodic ACF .................................................................................................................... 486. 494 . 892 
stationarity ........................................................................................................................ 94-95 

adaptive forecasting and estimation using change detection ................................................. 943 
adjusted defrit ....................................................................................................................... 330 

adjusted range ........................................................................................................................ 329 
adjusted sup1 ls ...................................................................................................................... 330 
adjustment factor .................................................................................................................... 329 
aggregated fortcasl ................................................................................................................ 547 
aggregation ............................................................................................................................. 756 
AIC (Akaike information criteria) ......................................................................................... 18. 210 
AIC formulac for deseasonalized models .............................................................................. 469-472 

Akaike infonnation criterion (see AIC) 
aligned rank methods ........................................................................................................... 872-874 
altemative hypothesis ........................................................................................................... 858 

adjusted partial sum ............................................................................................................... 329 

analpis of variance ................................................................................................................ 952-954 
analysis problem ................................................................................................................... 13 . 726 

and applifations) 
AR (aumgressive) modcl (see also ACF) (see Table 1.6.2 for model construction 

AR(2) model ................................................................................................................... 897 
defffli tion ........................................................................................................................ 93 
Marlrov model (AR(1)) .................................................................................................... 92. 488 

A R M  (autoregressive integrated moving average) model (see Table 1.6.2 for model 
conseuction and applications) 

defuri tion .......................................................................................................................... 49 
ARMA (autoregressive-moving average) model (see aim ACF) (see Table 1.62 for 
modcl msbwtion and applications) 

defhtion ............................... ^ ....................................................................................... 108 



1002 Subject Indcx 

ARMAX (aulorrgcsivemoving a n r a g e c x o g e m  variables) model ............................ 605-6013 
asymptotic relative effriency (ARE) ................................. ................................................. m 
autoamhh 'on wdfi i ient  (see also ACF) I ................................................................... 70 
automnlation function (sce ACF) 

autocovariance (see autocovarirure hmction) 
autocovariance function far an ARMA@.q) pnrcss -- ............................................ 110 

aldoawanan: . e function of a MA(@ p c e a  ................................................................... 104 
autocovariance fiulction O f h  AR@) process ...I.............. I .-.I--. " ..... " - ........................... 95 
autocovarianu hurtion ...................................................................................... 70 
autocovariance generating function .. -- ...................................................................... 124 
autocorariance mabix .- ........................................................... ".-- ......,.....,..............-.. 70 
automatic selection critaion (Asc) ........................................................................ 17, 214 
autatgnssive model (see AR modcl) 
automgressive intcptcd moving awage model (sce ARlMA model) 
autoregressive-moving average model (see ARMA model) 
average plog ...- ........................ .. .......................................................................................... 677 
k k  forecasting .................................................................................................................... 644.694 

backward shift opcratu B .................................................................................................... 93 
Barnard's model .- ................................................................................................................. 896-897 
Bayes infamatjon criterion (BlC) ........................................................................................ 215 

bias ........................................................................................................................................ 294 
blurred 3RSR smooth ............................................................................................................. 827 . 828 
b l d  smooth ....................................................................................................................... 825 
blurring ............................................................................................................................... 829 

bootstrapping ........................................................................................................................ 3 9 9 a  
box-and-whislrer graph ......................................................................................................... 816-821, 911.914. 965 
BoxCox bansfcmnation ....................................................................................................... 122. 420. 464 . 556 . 951 
CARMA (contemporaneous autoregressive-moving avenge) modcl (see Table 1.6.2 for 
model consbuction and applidons) 

defltion .... " .. " ............................................................................. " ................................ 780-784. 746-747 
causality .............................................................................................................................. 555 .  556560  
CQIsoccd data ...... - .......................... - ....... I ...- ...................................................................... 853.868.870, 887-891 

chanrteristic equyion ...................................................................................... ".....-.. 94 
changcd#ccfion statistic ................................................................................................... 673, 943 

Choksky decompoSition ........................................... .......................................................... 137 
combining lcsts d hypothem ...- ..... .. ....... .. ........................... - .......................................... 2 7 5  . 367 . 540 . 877-878 
mbining rnultipk timc strics ...... - .................................................................................. 6 0 1 a  
compkce intuvention model., ......................................................................................... .7 
C U K A W I a b  'on defmition ........ ..- ..... .. ............ ........................................................................ 783-784 
cadithd C X p % i t h  ....................... " .............................................................................. 263. 621 
canfidam k v  4.- ............................... - ...... - ....................................................................... 859 
confirmarory data .yseS ................................................................................................. 14, 807 809 837.847, 863. 906 

cOnS*t eStimatar ......- ................ - .... - ................... I .......................................................... 76, 

combining f- across modcls ............................................................................... 544.546 . 641 

. . 
c m t  analysis ............................................................................................................... 27 

cans- modck ....... ................................................................................................. I2 1. 424 



Subject Index 1003 

cmtanparancous autacg-tsiveinoving avaage model (see CARMA modcl) 
c m w  ............................................................................................................ 646 
covariatc saiea .................................................................................................................. 655 
caner mahod .................................................................................................................. 195 

c a ~ ~ l a t e d  Mann-Kadall td .................................................-....................... .. 871 
ccmlated suanmandp ............................................................................................. 3 ~ 3 3 8  

covariance mabix ...................................................... . ..- ...................................... 70.7 1 
cwarianoe slationarity .............................................................................. 69 
covarianct ......-....................................-.................................................................... 70 
critical puiod StatiStiEs ................................................................................................ 4. . 513 
CKXU c ~ m l a t i ~ n  hurtion (CCF) .............................................................................. 8 2 1 - ~  
cnde defrit ................................................................................................................... 329 

cnde deviation _. ........................................................................................................... 329 

cnde pmal sun ................................................................................................................ 329 
cnde range ............................................................................................................................. 329 
cnde surplus ......................................................................................................................... 329 

cum- range ..................................................................................................................... 327 
cumulative distribution function ........................................................................................... 297 

cumulative penodognm ........................................................................................................ 78 
cusum chart ............................................................................................................................ 675 

data analysis .......................................................................................................................... 6 
data clipping ........................................................................................................................... 180 

data collection ..................................................................................................................... 726 
data filling (sec Table 1.6.5) .................................................................................................. 48 . 693-696 

data filling using intcrvention analysis ............................................................................ 698 
data fding using d adjustment ............................................................................. 81 1-813 

decision making ................................................................................................................... 24 
decision support system ........................................................................................................ 51-52 

deduction ................................................................................................................................ 9 
delay time ............................................................................................................................. 576.662 

dcseasonalized model ............................................................................................................. 464-466 
Fourier &es approach to dmxmmhU on ................................................................... 469472 

dcmwmhd multivariate model ...................................................................................... 751 
design p b k m  .-. .............................................................................................................. 13.726 

dccection limit .-. ............................................................................................................ 854.868. 887 
detenninistk model ............................................................................................................. 22.64 
deterministic trend ................................................................................................................ 167 . 855 . 894 
diagnostic checking (ginn for all models in Table 1.62) ..................................................... 17 1. 235-236 
differmcing operator (see also seasod differencing opentar) ........................................... 148 
disaggrcgalbn mcdels .......................................................................................................... 756 

dishibutim free m distribution independent tests (see nonpmmetric ICSIS) 
disturbances .......................................................................................................................... 93 

dual modcl .......................................................................................................................... 430 

dummy sries ......................................................................................................................... 660 
dynamic component ............................................................................................................. 575.578. 653 

dynamic models ................................................................................................................... 573 

. .  



1004 Subject Index 

dynamic rcsponsc ............................ " .............................................................................. 71 1 
Eapln Island - ..,.................................................................... " ............................................... 7 
effects of M intervention upon Ihc mean kvel ................................... , ................................. 667-670 
ef6ciency .......................................................................................................................... 207 
empirical idcntificatiOn app-oach ..................................................................................... 580-581. 591. 716 
e n m y  .,,,.,,, ........................................................................................................... 216 
environmental decision making .-- ................................................................................... 6 
environmental impact assessment ...................................................................................... 4. 653.656807 
environmental systans .................................................................................................. 6. 19 
envinnunttrica ................................................................................................................. 3 
ergodicity ..................................................................................................................... 76 
extendcd sampk cross comlvion (ESCC) matrix ................................................................ 763 
estimation for TFN modclp .................................................................................................. 609-612 
estimation stage (given for all models in Table 1.6.2) .......................................................... 17. 171 
expected tank vectar .............................................................................................................. 889 
experimental design ............................................................................................................... 10 
exploratory data analysis ........................................................................................ ............... 14 . 671 . 807. 809 . 813.837 . 9(x1 

explosive mstationarity ....................................................................................................... 145 

extended sampk autocomlation function ............................................................................. 195 
exponentially weighted moving avenge ( E M )  ............................................................... 164 

external interventions ............................................................................................................. 942 
exbwne values ....................................................................................................................... 818 
fara t  values ......................................................................................................................... 818 
FARMA (fractional autoregressin-moving avenge) model (see Table 1.62 for model 
cmsmt ion  and applications) 

def.tion ........................................ ................................................................................. 391 
multivariate case .............................................................................................................. 758 

feedback control ..................................................................................................................... 646 

feedback system ..................................................................................................................... 9 
feedbxk ................................................................................................................................. 556. 739 

feuiforward control ................................................................................................................ 646 
feedforward-feedback control ............................................................................................... 646 

final prrdrtion emw (FPE) ................................................................................................ ~7 
first order asympotic efficiency ......................................................................................... 207 
first saial camlation coeff~ient ........................................................................................... 891 
fmt-order dynamic responses ................................................................................................ 664 
flow adjusted concentrations . ................................................................................................ 879 
fonxsting (see Table 1.6.3) .................................................................................................. 42 

farccast e m  variance ..................................................................................................... 263 
farccast e m  ................................................................................................................. 260. 263 
forecasting and simulating with dese;lsonalized models .................................................. 478479 
fortcastin g appro;rh to intervention analysis .................................................................. 729 
fortcastin g experiments ................................................................................................... 639 
fortcasting with de.wamdi7.d models ......................................................................... 529-530 
f&g with periodic models ..................................................................................... 530-532 
f w g  with SARIMA &IS .................................................................................. 527-529 



Subject MI I005 

fau%ls in UK original domain ......................................................................... 623 

mean absduk dcv iah  ....................................................................................... 532 
mean absdute percentage urn .................................................................................... 275. 532 
mean 4- am ..................... .. " ................................... " ..I... ..,.-,,........-..... ^ ........ 275 . 541 
median absolute pacentage am ......................................................................... 532  
minimum mtan S q ~ a n  CJ" (MMSE) f. ......................................................... 1.26 3. 617 . 621-622. 526 

generalized nonstasonal AR opuata ............... .. .................- " -, ................................. 265 

ale stcp ahcad fmCa9l emr ..... .. " - ....--....... ̂ ......................................................... m 
one stcp ahead fatasls ....I....... .. .- ....................................................................... 259 . n 4  . 525 
roo( mean square urn W E )  ................................................................................ 282.532 

fawd MI oprator .-- ...-.........-...-,........,..........-.,.......,...... " .................................... 1% 
fmtional diffaencing model (see also FARMA model) ................................................... 392 
fractional G ~ ~ s i a n  nOiS (FcN) .......- ....................................................................... 338-352 
frequery Qmain ............................................................................. ~ ................................ 63 . 758 
Garrison Diversion Unit Dispu k. .......................................................................................... 24 
Gaussian efficiency ........................................................ ...................................................... 208 
Gaussian estimates ................................................................................................................ 208 
Gaussian ..................................................................................................................... 71 

general defri t. ........................................................................................................................ 329 
general (cumulative) range ..................................................................................................... 329 

general surplus ....................................................................................................................... 329 
generalized Hut% coefficient ................................................................................................ 3 3 1  
graph of the given observations ............................................................................................. 178 
graphical tMd studies ........................................................................................................... 958.959-%3 
gfeenhousc effea ................................................................................................................... 7 
grouping seasons for bwwl detection ..................................................................................... 875-877 
H sprtad ............................................................................................................................. 818 
hanning ................................................................................................................................ 83 1 

hc4cmcdastjcity .................................................................................................................. 245 
hinges .................................................................................................................................. 8 16 
homogeneity tcst slatistic ....................................................................................................... 877 

homogeneity 1*il ................................................................................................................... 876 
homogtneora nonstatiowity .............................................................................................. 145 . 146 
-city ........................................... ....................................................................... 245 
Hurst caff i i icnt  K ............................................................................................................. 328 . 331. 354-357 
Hurst phenomenon and comlated summands ...................................................................... 336 
Hurst phenomenon and independent summands .................................................................. 334-335 
Hurst phenomenon ............................................................................................................ 91. 325 . 332 
hydrological cyck ................................................................................................................ 2 0  
hydrology ............................................................................................................................. 20 
hypochesis test ....................... - ........ ...................................................................................... 9. 12. 858 
IACF (invast autocornliltion function) 

idcntSCation of an ARM modcl ., ................................................................................ 182 
identification of a SARIMA model ................................................................................. 430.431 
periodic UCF ......................................................... ...................................................... 495 

identically independently dishibubxi (IID) ............................................................................ 92 



1006 Subjeft W x  

identification (given far all models in Table 1.6.2) , ........................................................ 17. 171 
idenhfyrng the dynamic compmn t. ................................................................................... 6MM01 
impulse rrsponse hurtion ......................... ^ ........................................-........................-..... 575 
imphe ~sponsc weights ................................................ - ................. ....... ............ ... ............ 575.662 
inde.,, .................................................................................... 235 
inbctim ................................................... ......................................... .....I. 9 
infannaion matrix ....... " .. " ....................................... ..--............ "._" -.- ............... ......... 205.22 5.227 
inner f- , ............................................................................................ ~ 1 8  
innovarim ........... " ........ " ........................................................ ......................... . ............ 93 
input scrics .................................................................................................................. 654 

integrattd moving average (MA) poc*rs ....................................... .. - ........................ 163 
interqwtik range , ................................................. ... "" - ................................ ~ 1 8  
interval scale ........................................................... I .................... -.......I...................... 862 
intervenh analysis (see also intavention model) ............................................................... 653.655. 694. 807 
intemntion component .................................................................................................... 720 
intervention modcl (see Table 1.62 for model constnrtion and applications) 

genaal definitim ........................................................................................................... 713 
multiple i n m n t i o n s  ...................................................................................................... 667 
missing obsavationo ....................................................................................................... 698 
multiple intemntions and missing obsavatio ns ............................................................ 703 
multiple interventions. missing observatiionr, and input series ......................................... 713 
multi- case .............................................................................................................. 728 

intervention scries ............................................................................................................... 662 
intemn tions ........................................................................................................................... 653. 655 
intrablock methods ................................................................................................................ 864 

inverse aullxalCk(i0n function (s& IACF) 
inverse @al autocorrelation function (sa IPACF) 
inverted fonn ................................-.................................................-..................................... 1 1  8. I62 . 492 
inverted or infinite AR operator ............................................................................................ 118. 162 
invertible .............................................................................................................................. 104 
IPACF (invuse partial autofomlation function) 

identilidon of an ARhiA model ., .......................................................................... 1~ 
idcnlification of a SARIhiA modcl ................................................................... .............. 431 
paadie lPACF _ .................................................................................................... 495 

i4otTopy ............................................................................................................................. 68 
j i W  one dimensional pbt ................................................................................................ 909 

Kcndall partial mnk camcl;ltion coeffricnt ._ .................................................................. 883-884 

Kendall's tau statistic for thc g th susm ........................................................................... 867 

input, covariatc 01 exogenous Saia ............................................................. I.. ........... 575 

K ~ n d a l l  ranL c ~ m l i U i ~ ~  test ............................................................................................. 866.924 .92S 

Kendall's tau .................................................................................................................... 865.893-894 
Knrskal-Walli~ WS ............................................................................................................. 877,920-922.927-928 
kth g e d  partial sum ..................................................................................................... 328 
W s  coefficient .............................._................................................................................ 2 4 3  
lead time ................................................................................................................... 259 
lcading ..- ......................................................................................................... 618 



Subject lndcx 1M7 

likelihood fimction .............- .. " ....... .......................................... " ................ 204 
likeWood principle ......................................................................................... 206 
likelihood ratio slatistic .................._.......l.......... . ....- ............................. 217.237.m 
linear and nonlinea models ... .......................... .............. ............................................ 758 
Lines mgrua~tial ranQm n u m b  g e m a m  ............................................................ 299 
lineal difFucncc equation ............................................................................ .. 121 
linca mamtial eqlrarion ... ........................ . .......... ................................. 12 1 
Lines film ...................... ....." ....... " , ....... ......-............- " .................................. 120 
linear time saia models ......................................... ...... .... ." .................................... 87 
local regFession ................................ . ....-............-..- . ................................... 94s 

locally weighted regrcsh _ ................................... .- .................................. 944 
log likewlood funcoion .. ." .......... . ... " , ...................... . ..................................... 2.05 
log-& randan vaiabka .-.... ^ .............................. . ......................... . 303 
logistif modtl .-.................. ................................................................................. 8% 
long memory .................................................................................................................. 72 . 278 . 325 
long km pcrsistcnct ....................................................................................................... 389 
long turn trtnds .........._........................................ ........................................................ 826 

MA (moving avaage) model (see also ACF) 

long-lam Sbagc ................................................................................................................... 32s 

def.tion ......................................................................................................................... 103 
MAlcE (minimum AIC estim-) (sa also AIC) ............................................................ 210 
Mann-Kendall or Ihc Kendall t test ...................................................................................... 864 
Mann-Kendall test statistif for thc g th season ...................................................................... 866 
Mann-Kendall test skxtistic ................................................................................................... 864 

Marlrov model (AR(1)) (sce AR model) 
mass balance quation ......_._.._.......................................................................................... 134 
mathematical model ........................................................................................................... 6 
maximum likelihood estimates (MLE's) .............................................................................. 205 
maximum l i k M  estimator ............................................................................................. 206 

mean ....................................................................................................................... 69 
measllremcni scala ........................................................................................ 861 
masy data .......................................................................................................... 654 
messy environmental data ..............................-........................................................ 759.809. 853. 939 
missing data .............................................................................................................. 599. . 653. 870 . 941 
mixed amgruential gaKl;itar ..................................................................................... 299 
mixed-dccuministic-sh&c bend ..................................................................................... 897 
model cowbuction (given for all models in Table 1.6.2) ................................................ 17 . 171 
model discrimination .,.. ......................... ................................................................ 174 . 525 
model psrsimony (.ee also Occam's .) ....................................................................... 16. 175 . 210 
model redundancy .......................................................................................................... 236 
modelling ...........................,............................................................................................ 19 
models (seeTabk 1.6.2) .............................................................. ................................. 12. 40.41 
modified pabnanteau test (sec also diagnostic checks) ..................................................... 789 
modified sum of squatrcs algoriuun., ................................................................................. 221 

Mann-Whitncy ranl-s~m ~Utist ic  ......................................................................................... 884 

McLeod-Hi~l T i  Series ( M H T S )  PaELage .................................................................... 36 



1008 Subject lndex 

mOmarl estimat*r. ..................... " ... " .- ..........-.. ........................................................ 204 

moving average model (see MA mOdCl) 
multiplicative congmmtial g e n e a m  .............................................................. . .................. 299 
multivariate ARMA model 

multivariaic autaepesive-moving average model (sce multivariate ARh4A model) 
nominal scale ..- " ......................................................................................... " ..................... 861 
nondetaministic modcl ....................... " ....................... "" .....-............ " ................................. 64 

nonGaursian modelling ..................... " ......-...- "" .................................... " .......................... 757 
nonlinear models -_.I .................................._.....~..................._............................................ 758.941 
nonperametric ngnssion ...............-... .. ................................ " .............................................. 944 

nonperametrl: testa for bend dcctction ...... " .......................... ... " ........................................... 864-875 

&finition ..........-... _ ............ " ................................. " ................... "." ............................. 743-744 

n~nparametrl: terr( far Srep eends ................................................... " ................................... 884-887 

n ~ n m m i c  otso - .......................................................................................................... 759. 853. 861-891 
nonpar;unetric tnnd tests ........................................................................................................ 14 . 808 
nonparametrl: ......................................................................................................................... 862 
nonseasonal differencing o p t o r  ......................................................................................... 421 
nonseasonal time series .......................................................................................................... 87 
nonseasonal ............................................................................................................................ 91 
nonstationarity ........................................................................................................................ 63, 87 

normahd spech-al density function ..................................................................................... 125 
null hypothesis ....................................................................................................................... 858 
Occam's Raux ....................................................................................................................... 1 6. 175 
one sided tests ........................................................................................................................ 858 

normal probability plot ......................................................................................................... 243 

operational hydrology ............................................................................................................ 4 
operational research .............................................................................................................. 26 

output, response 01 endogenous series ................................................................................... 575 

outer fences .......................................................................................................... .................. 818 

outside values ........................................................................................................................ 818 

ovafiaing .............................................................................................................................. 235. 236 

PACF @amal autocomlation function) 
ovaparameterization ........................ " ................................................................................... 464 

identification o f  an ARMA model ................................................................................... 98 
identification of a SARIMA mopdel ................................................................................ 430 
penod~c PACF ................................................................................................................. 488 

Pagan0 algorithm ................................................................................................................. 100 . 137 
parameter unca(ainty ............................................................................................................ 294. 313 
panmetric model ................................................................................................................... 853 
PARMA @aiodic autoregressive-moving avenge) model (see Table 1.6.2 for model 

~ t t r e S t i m a t i 0 n  ................................................... .. ........................................................ 585.586 . 592 

consrmction and applications) 
&furition ........................................................................................................................ 489 

PAR @eriodic autoregressive) model (see T&k 1.6.2 for model consmtion 
and applications) 

def~t ion  ........................... . .......................................................................................... 485 



Subject Index 

pmimarioce PAR a WAR models ............................................................................. 484 
parsimoniw periodic aumgrcsivc mcdcl (see PPAR model) 

p9clalau- ' hrnction(seePACF) 

paaan recognition .......................... -^^ ......- ........................................................... 759 
pearson-type m variables ...-..-.....-....-..-. ^-.I .........-... .............................................. 303 
pacenlage deficiency . D. far h e  critical period ............................................................ -. 513 
paccn. ..,,,,...,...,...................-.I.................,,,,...,.................,....I....................,.... 817 
paiodic aukxegrtssive model (.we PAR model) 

paiodiE inlav- models ...................................................................................... 723 
paiodk multivaiae modek ............................................................................................ 751 
paiodic PACP ........................................................................................................ 488. 49 1 . 4% 
paiodic RAm ............. I -- ........-....... ̂.^-.--.- ................................................................ 499 

paioQgram function ......................................................................................................... 77 

paiodic Yule-Wdka C+&IIN ....................... " ........................... .. ............................ 487 

persistence parameter ............................................................................................................ 398. 408 
pas. ............................................................................................................................. 178 
physical justification .............................................................................................................. 133 
Pibnan's icst ........................................................................................................................... 276. 506 
plausibility ............................................................................................................................ 213 
point of change and degree in polynomd regrrssion ............................................................ 942 

Portmanteau tesls (see also whiteness tests) ......................................................................... 240 

power ...................................................................................................................................... 859. 898 
PPAR @ammoruous periodic autoregressive) model (see Table 1.6.2 for d e l  

point of change ...................................................................................................................... ~2 

constnrtion and applicalions) 
& f ~ i  tion .......................................................................................................................... 5 0 5 - ~  

pwhitening .- ....................................................................................................................... 556. 561-563 
primal model ......................................................................................................................... 430 
principal component analysis ................................................................................................ 755 
probability density function .................................................................................................. 297 
pse&random numbers ....................................................................................................... 297 

quantila ......................................................................................................................... 816 

quasi-instantaneous measmments ................................................................................... 941 
RACF (rcsidd autocornlation function) 

pulse input ........................................................................................................................... 664 

ARMA modcl ......"...-... " ............................................................................................... 238-240 
SARIMA modcl ......................................................................................................... 43 5-436 
penodic mlilt ion ........................................................................................................ 436437 

R and S mays .................................................................................................................... 195 
R2 coefficient ....................................................................................................................... 951 
random number generation ................................................................................................... 2% 
random shack form of UK SARIMA model .......................................................................... 425 
randomshockform ............................................................................................................... 114.156,491 
random shock OT infinite MA opentor .................................................................................. 114 . 161 
random shoclu ...................................................................................................................... 93 
random variabk .................................................................................................................. 67 



1010 Subject Index 

fa& a adinal smle ................ " ............... " ............... ""." ............................ " .- .... " .... " ........ 861 
ranlw ....................... ................................................................................................ 854 
lati0 scpk ................ " ......... "." ....... "." ..... "." ............ " ... ............ " ..... "." ....... " ..... " ... " ........... 862 
n x a d e x l c x l s h s  ............. " ..... " .......... " .......... " ...................... .......................... .................. 644 
regression annlysis ....,.,..,........ ...................................................... ............................. 4. 46 . 755. 939 . W 9 5 6  
rehtive emciury ......--.. .. " ............................................................................................. m 
repeated splitting ............................................................................................. . ........... 829 
requirement of stability .................................................................................................. 576 
rtscaled adjusted range .............................................................................................. 327. 330 
rcscaled & range ....................... "." ............... " ..... " ............. " .......... """ .................... " ..... 329 
rcscalcd genaal range ......... 1 .. ........................................ ....... I."" .I ....... " ........ " .......... 329 
rcsavoirdtsign .. ""_- .......................... ..................................................................... 314. 330 
residual autocornlation function (see RACF) -.."".I.""" ...................... ............................. 435 
d u a l  CCF matrix ............................. " ................................................................................ 786 
residual CCF ...................................................................................................................... 356-560 
residual crosscarrelation function (see residual CCF) 
residuals ................................................................................................................................. 93 . 235 
response variable .................................................................................................................... 653 
robust locally weight .............................................................................................................. 44 
robust bcally weighted repssion smooth (RLWRS) .......................................................... 943-949 
rwgh ..................................................................................................................................... 825 
sample CCF matrix ................................................................................................................ 761 
sample PACF matrix .............................................................................................................. 762 
SARIMA (seasonal autorrgrcssive intcgriUed moving avenge) model (see Table 1.6.2 for 
modcl construction and applications) 

def~tion ...................................................... " ................................................................... 422 
M a  Series appmach to descasondization ................................................................... 469-472 
g e n a a b d  form .............................................................................................................. 424 
generalized n0n-d AR ope- ............................................................................. 2 6 5  
generaliLed oc unfaclorrd AR opcrvor ............................................................................ 424 
generalized OT unfactored MA o p c m  ........................................................................... 424 
nonmultiplicative modcl ................................................................................................ 424 
SARh4A (seasod autorrgrwive moving avenge) model ............................................ 422 
d differencing 0Pa;ua ....................................................................................... 420 
unfectorrd fonn .................... " ..... .................................................................................. 423 

scans pbt ..- " ..................................... " .. " ............ "1"" ......................................................... 947 
sckntiFif investigation .......................................................................................................... 726 
scientifr method .............................................................. ................................................. 6 
searanal adjustment ................... ................................ ".............."........................................69 5. 808 . 810. 811 
seaponal autorcgrcssive intcgntcd moving avenge model (see SARlMA model) 
seamd exlrachn ............................................................................................................... 5 13 
seaponal invated a infmite AR opcntor .............................................................................. 427 
seaponal invatibility ............................................................................................................. 423 
searanal K~ndall  sbpc estimator ........................................................................................... 871-812 
d MaM-Ktndall test sbtistic ...................................................................................... 867. 875 
d MaM-Ktndall tests ................................... ............................................................... 915-918 



Subject Indcx 101 1 

staponal p h  . ............................. .. ............................ ......................................... 675 
seaparpl ranQm shock 01 inflnitc MA operator ................................... " ........................ 426 
Jerwnal stationarity ..................... ....... " ... "1.. ................... ....................... ..." ........ 423 
stcond orda efficiency ._._ .............................. .................................................... 207 
stcond.Order s t a t i d t y .  ......". .. ........ ... .....".. .... ...................... "." .......................... 69 
seed ............ ... . .............. . .................. . ....... .." ..... .......... ... " .......... .. ........................... 300 
serialaxrelation coeffiiient at lag one ...................................................................... 891 
serial cornlation coef?kiCnt (a also autncorre~tion coefficient) ..................................... 70 
sha+wik mt .. ... . ... ".. ...- ..."..... ........ ..... " ........ .. ....... .................................. "244 
shifting level pKKxsC3 ."........... ............. ............................... . ....................................... 337 
short mem~cy ............................... . ....................................................................... 72, 278 
short 01 long manory... "I ........ .. ..."...........".. . ............... . ... .. ...... " ..................... ...... ..331 
short (cnn trcnd~ _. ........................... "... ...........". .............................................. 826 
significance kvel ....................................................................................................... 858 

simulation (sec Tabk 1.63) .................................................................................................. 39.89 
WASIMl (Watabo Simulation F"C 1) ............................................................... 304 
WASIMZ (watabo simulation F"C 2) ................................................................ 306 
WASIM3 (Wataloo Simulation F"C 3) ................................................................ 313 

singk expwntial smoothing ................................................................................................ 163 
skewness coeffcicnt ............................................................................................................ 242 
smooth using running medians of 4 ....................................................................................... 829 
smooched graph .................................................................................................................. 825 
smoocha ......... ..................................................................................................................... 826 
smoothing by repealed medians of 3 ..................................................................................... 828 
smoothing ad points ........................................................................................................... 829 
SPWHIUM partial ranL c~mlvion test ................................................................................... 808.882-883.940 
Spearman's mlal ia l  coeffrient ....................................................................................... 869-870 
Spearman's mo stst.' ............................. ............................................................................ 880-882 
spcanm ............ ".......... .................................................................................................... 77, 124 
split m p k  experiments ..................................................................................................... 274 

s i g n i f i m  ................................................................................................................. 859-861 

stability ......_ ................... ............................................................................................ 576 
standard cams (SE's) ............................... ................................................................. 73 . 205.226 
stale SpeEC .. ... . ................. ............................................................................................ 3 3  
Sahwi ty  and invdbility ................................... ". ..................................................... 489 
Stationarity ...................... ... ........................................................... ............................ 67-69 
statistical methoQ ................................................................................................................ .8 
statistical scicntifif investigation ...................................... ............................................. 6 

steady state- p i n  .- ............................... ......................... .......................................... 578.664 
step finction model ............................................... ..................................... ..................... 8% 
stcp hnction ...... " " ...................... .." .............................................................................. 662 

step .................,,,............................................................................................................. 818 
whaqtic and opaabonal hydrobgy .................................................................................. 4 . 293 
whaqtic modtlS..'.'.. ..................... ................................................................................ 5 3  
stoChpptiC pocesp .................................................................................................... 65 

statistical watcrquality modcuing ................ " .................................... ............................. 3 



1012 Subject Indcx 

stochastic trends ............................................................................................................... 167 . 855 . 894 . 897 
s&oIage ........-..... " ...................................................................................................... 330 
strong (cr strict) stationarity ................................................................................................... 69 
Student I distribution ................ . ........................................................................................ 659 
subset aumgrtssion ..................... " .................................................................................... 497 
subset definition ." ............................................... .................................. ........................ 780-783 
summoble .................................................................................................................. 71 . 331 
survival analysis and life tesring ................ " .... " .......... " .. ....... " .................. .. " ....................... 888 
synthetic hydrology ...................................................................................................... 4 . 293 

sy- . scientifr investigation ................................................................................... 13 
systans mgineaing ,_ ......................................... ......................... ........................ 30 
systansdmeasuranent ................ " .............................................................................. 861 
tau-like pest for eend in h e  pescnce of multiple censoring points ..................................... 889 
(cst Statistic ....,..... ................................................... ............-....... ................................... 858 
TFN (bansfex function-noise) model (see Table 1.6.2 for model construstion and 
applications) 

multiple inputs ............................................................................................................... 597 
stasonal case .................................................................................................................... 623 
single input ....................................................................................................................... 579 
SUW &€inition of multivariate ARMA model ............................................................... 745-746 
TFN model having a demninistic trend ......................................................................... 626 
TFN model having ARIMA noise ................................................................................... 624 
transfa furtion ................... ̂ ......................................................................................... 575.662 

thmmtid CtF matrix ........................................................................................................... 761 
lheoretical PACF mabix ........................................................................................................ 762 
threshold autoregressive (TAR) model .................................................................................. 897 

time danain ........................................................................................................................... 77. 758 
time Jerits d y s i s  ............................................................................................................... 23.65 
time &a p b t  ... " .................................................................................................................. 947 
time Saiep .............................................................................................................................. 63 
eansfer hurtion-noise m0dcl (see TFN model) 
trud analysis .............................................. " .................... ................................................. 4.939. 958 
bmd asstssmcnt methoQlogies (see Table 1.6.4) ................................_I............................ 43 . 808 . 897 

trend d#stion ......... .. .......................................................................................................... 671 
trend I*rts ........ ............. .. ........................ ....... ........................................................ I ............. 958.96 3.968 
tnrncation .............................................................................................................................. 888 
Tukey 5-number summay (stt also box-&whisker p p h )  ......................................."...... 908 
two sided hypoUlesis test ..................................................................................................... 859 
type 1 ~ l o c  ..,... ................................................................................................................... 859 
type 2 UNU .. ........................ - .. .............................................................................................. 859 
type I Cauraing on the k ft. .................................................................................................... 888 

type I Censoring on the right ................................................................................................. 888 
Iyp n Censoring on thc left .... " ............................................................................................. 889 
type n ccnsoring on thc right ............................................................................................... 889 

unbiased ................................................................................................................. ............ 2.63 



Subject Indcx 1013 

univariatt model .................................................................................................................. 728 
universal Imdoln VariaMe genaation ........................................................... " ....................... 302 
unknowll inlnvcntions ........................................................................................................ 660 
varianc~cwariana matrix ................................................................................................. 226 
vaiancc .................................... .. ................................................................................... 70 
watnshad ........................................................................................................................ 133 
we& stationnrity .............................. ^ .......................................................................... 69 
white noise t a m s  ........ " ..................... . ................................................... ^" .......................... 93 
whitt noisc ........................................................................................................................ 78 
whiteness ocsts (see also diagnostic checls) ..................................................................... 951-952 
W ~ ~ C O X O ~  si@ A (csts ................................................................................................. .S . 540 . 918.920 . 925-926 
ainsaizing ....... ........................................................................................................... 818 

Wdd d&ompOsition theaem ......................................................................................... 63 
Yuk- W a k a  equations 

n o n d  cast ............................................................................................................... %97 
pcriodic awe .................................................................................................................... 4 8 7 4 8  



This Page Intentionally Left Blank


	Time Series Modelling of Water Resources and Environmental Systems
	Copyright Page
	TABLE OF CONTENTS
	PART I: SCOPE AND BACKGROUND MATERIAL
	CHAPTER 1. ENVIRONMETRICS, SCIENCE AND DECISION MAKING
	1.1. THE NEW FIELD OF ENVIRONMETRICS
	1.2. THE SCIENTIFIC METHOD
	1.3. PHILOSOPHY OF MODEL BUILDING
	1.4. THE HYDROLOGICAL CYCLE
	1.5. DECISION MAKING
	1.6. ORGANIZATION OF THE BOOK
	1.7. DECISION SUPPORT SYSTEM FOR TIME SERIES MODELLING
	1.8. CONCLUDING REMARKS
	PROBLEMS
	REFERENCES

	CHAPTER 2. BASIC STATISTICAL CONCEPTS
	2.1. INTRODUCTION
	2.2. TIME SERIES
	2.3. STOCHASTIC PROCESS
	2.4. STATIONARITY
	2.5. STATISTICAL DEFINITIONS
	2.6. SPECTRAL ANALYSIS
	2.7. LINEAR STOCHASTIC MODELS
	2.8. CONCLUSIONS
	PROBLEMS
	REFERENCES


	PART II: LINEAR NONSEASONAL MODELS
	CHAPTER 3. STATIONARY NONSEASONAL MODELS
	3.1. INTRODUCI'ION
	3.2. AUTOREGRESSIVE PROCESSES
	3.3. MOVING AVERAGE PROCESSES
	3.4. AUTOREGRESSIVE - MOVING AVERAGE PROCESSES
	3.5. THEORETlCAL SPECTRUM
	3.6. PHYSICAL JUSTIFICATION OF ARMA MODELS
	3.7. CONCLUSIONS
	APPENDIX A3.1. - ALGORITHM FOR ESTIMATING THE PARTIAL AUTOCORRELATION FUNCTION
	APPENDIX A3.2. - THEORETlCAL ACF FOR AN ARMA PROCESS
	PROBLEMS
	REFERENCES

	CHAPTER 4. NONSTATIONARY NONSEASONAL MODELS
	4.1. INTRODUCTION
	4.2. EXPLOSIVE NONSTATIONARITY
	4.3. HOMOGENEOUS NONSTATIONARITY
	4.4. INTEGRATED MOVING AVERAGE PROCESSES
	4.5. DIFFERENCING ANALOGIES
	4.6. DETERMINISTIC AND STOCHASTlC TRENDS
	4.7. CONCLUSIONS
	PROBLEMS
	REFERENES


	PART III: MODEL CONSTRUCTION 
	CHAPTER 5. MODEL IDENTIFICATION
	5.1. INTRODUCTION
	5.2. MODELLING PHILOSOPHIES
	5.3. IDENTIFICATION METHODS
	5.4. APPLICATIONS
	5.5. OTHER IDENTIFICATION METHODS
	5.6. CONCLUSIONS
	PROBLEMS
	REFERENCES

	CHAPTER 6. PARAMETER ESTIMATION
	6.1. INTRODUCTION
	6.2. MAXIMUM LIKELIHOOD ESTIMATION
	6.3. MODEL DISCRIMINATION USING THE AKAIKE INFORMATION CRITERION
	6.4. APPLICATIONS
	6.5. CONCLUSIONS
	APPENDIX A6.1. - ESTIMATOR FOR ARMA MODELS
	APPENDIX A6.2. - INFORMATION MATRIX
	APPENDIX A6.3. - FINAL PREDICTION ERROR
	PROBLEMS
	REFERENCES

	CHAPTER 7. DIAGNOSTIC CHECKING
	7.1. INTRODUCTION
	7.2. OVERFITTING
	7.3. WHITENESS TESTS
	7.4. NORMALITY TESTS
	7.5. CONSTANT VARIANCE TESTS
	7.6. APPLICATIONS
	7.7. CONCLUSIONS
	PROBLEMS
	REFERENCES


	PART IV: FORECASTING AND SIMULATION
	CHAPTER 8. FORECASTING WITH NONSEASONAL MODELS
	8.1. INTRODUCTION
	8.2. MINIMUM MEAN SQUARE ERROR FORECASTS
	8.3. FORECASTING EXPERlMENTS
	8.4. CONCLUSIONS
	PROBLEMS
	REFERENCES

	CHAPTER 9. SIMULATING WITH NONSEASONAL MODELS
	9.1. INTRODUCTION
	9.2. GENERATING WHITE NOISE
	9.3. WATERLOO SIMULATION PROCEDURE 1
	9.4. WATERLOO SIMULATION PROCEDURE 2
	9.5. SIMULATION OF INTEGRATED MODELS
	9.6. INVERSE BOX-COX TRANSFORMATION
	9.7. WATERLOO SIMULATION PROCEDURE 3
	9.8. APPLICATIONS
	9.9. CONCLUSIONS
	PROBLEMS
	REFERENCES


	PART V: LONG MEMORY MODELLING
	CHAPTER 10. THE HURST PHENOMENON AND FRACTIONAL GAUSSIAN NOISE
	10.1. INTRODUCTION
	10.2. DEFINITIONS
	10.3. HISTORICAL RESEARCH
	10.4. FRACTIONAL GAUSSIAN NOISE
	10.5. SIMULATION STUDIES
	10.6. PRESERVATION OF THE RESCALED ADJUSTED RANGE
	10.7. ESTIMATES OF THE HURST COEFFICIENT
	10.8. CONCLUSIONS
	APPENDIX A10.1. - REPRESENTATIVE EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS (ECDF‘S) FOR HURST STATISTICS
	PROBLEMS
	REFERENCES

	CHAPTER 11. FRACTIONAL AUTOREGRESSIVE-MOVING AVERAGE MODELS
	11.1. INTRODUCTION
	11.2. DEFINITIONS AND STATISTICAL PROPERTIES
	11.3. CONSTRUCTING FARMA MODELS
	11.4. SIMULATION AND FORECASTING
	11.5. FITTING FARMA MODELS TO ANNUAL HYDROLOGICAL TIME SERIES
	11.6. CONCLUSIONS
	APPENDIX A 11.1. - ESTIMATION ALGORITHM FOR FARMA MODELS
	PROBLEMS
	REFERENCES


	PART VI: SEASONAL MODELS
	CHAPTER 12. SEASONAL AUTOREGRESSIVE INTEGRATED MOVING
	12.1. INTRODUCTION
	12.2. MODEL DESIGN
	12.3. MODEL CONSTRUCTION
	12.4. APPLICATIONS
	12.5. FORECASTING AND SIMULATION WTH SARIMA MODELS
	12.6. CONCLUSIONS
	APPENDIX A12.1. - DESIGNING MULTIPLICATIVE SARIMA MODELS USING THE ACF
	APPENDIX A12.2. - MAXIMUM LIKELIHOOD ESTIMATION FOR SARMA MODELS
	PROBLEMS
	REFERENCES

	CHAPTER 13. DESEASONALIZED MODELS
	13.1. INTRODUCTION
	13.2. DEFINITIONS OF DESEASONALIZED MODELS
	13.3. CONSTRUCTING DESEASONALIED MODELS
	13.4. APPLICATIONS OF DESEASONALIZED MODELS
	13.5. FORECASTING AND SIMULATING WITH DESEASONALJZED MODELS
	13.6. CONCLUSIONS
	PROBLEMS
	REFERENCES

	CHAPTER 14. PERIODIC MODELS
	14.1. INTRODUCTION
	14.2. DEFINITIONS OF PERIODIC MODELS
	14.3. CONSTRUCTING PAR MODELS
	14.4. PAR MODELLING APPLICATION
	14.5. PARSIMONIOUS PERIODIC AUTOREGRESSIVE (PPAR) MODELS
	14.6. APPLICATIONS OF SEASONAL MODELS
	14.7. CONSTRUCTING PARMA MODELS
	14.8. SIMULATING AND FORECASTING WITH PERIODIC MODELS
	14.9. CONCLUSIONS
	PROBLEMS
	REFERENCES

	CHAPTER 15. FORECASTING WITH SEASONAL MODELS
	15.1. INTRODUCTION
	15.2. CALCULATING FORECASTS FOR SEASONAL MODELS
	15.3. FORECASTING MONTHLY RIVERFLOW TIME SERIES
	15.4. FORECASTING QUARTER MONTHLY AND MONTHLY RIVERFLOWS
	15.5. COMBINING FORECASTS ACROSS MODELS
	15.6. AGGREGATION OF FORECASTS
	15.7. CONCLUSIONS
	PROBLEMS
	REFERENCES


	PART VII: MULTIPLE INPUT - SINGLE OUTPUT MODELS
	CHAPTER 16. CAUSALITY
	16.1. INTRODUCTION
	16.2. CAUSALITY
	16.3. APPLICATIONS
	16.4. CONCLUSIONS
	PROBLEMS
	REFERENCES

	CHAPTER 17. CONSTRUCTING TRANSFER FUNCTION-NOISE MODELS
	17.1. INTRODUCTION
	17.2. TRANSFER FUNCTION-NOISE MODELS WITH A SINGLE INPUT
	17.3. MODEL CONSTRUCTION FOR TRANSFER FUNCTION-NOISE MODELS
	17.4. HYDROLOGICAL APPLICATIONS OF TRANSFER FUNCTION-NOISE MODELS WITH A SINGLE INPUT
	17.5. TRANSFER FUNCTION-NOISE MODELS WITH MULTIPLE INPUTS
	17.6. ARMAX MODELS
	17.7. CONCLUSIONS
	APPENDIX A 17.1. - ESTIMATOR FOR TFN MODELS
	PROBLEMS
	REFERENCES

	CHAPTER 18. FORECASTING WITH TRANSFER FUNCTION-NOISE MODELS
	18.1. INTRODUCTION
	18.2. FORECASTING PROCEDURES FOR TFN MODELS
	18.3. FORECASTING QUARTER-MONTHLY RIVERFLOWS
	18.4. COMBINING HYDROLOGICAL FORECASTS
	18.5. RECORD EXTENSIONS, CONTROL AND SIMULATION
	18.6. CONCLUSIONS
	PROBLEMS
	REFERENCES


	PART VIII: INTERVENTION ANALYSIS
	CHAPTER 19. BUILDING INTERVENTION MODELS
	19.1. INTRODUCTION
	19.2. INTERVENTION MODELS WITH MULTIPLE INTERVENTIONS
	19.3. DATA FILLING USING INTERVENTION ANALYSIS
	19.4. INTERVENTION MODELS WITH MULTIPLE INTERVENTIONS ANDMISSING OBSERVATIONS
	19.5. INTERVENTION MODELS WITH MULTIPLE INTERVENTIONS, MISSING OBSERVATIONS AND INPUT SERIES
	19.6. PERIODIC INTERVENTION MODELS
	19.7. DATA COLLECTION
	19.8. CONCLUSIONS
	PROBLEMS
	REFERENCES


	PART IX: MULTIPLE INPUT-MULTIPLE OUTPUT MODELS
	CHAPTER 20. GENERAL MULTIVARIATE AUTOREGRESSIVE MOVING AVERAGE MODELS
	20.1. INTRODUCTION
	20.2. DEFINITIONS OF MULTIVARIATE ARMA MODELS
	20.3. CONSTRUCTING GENERAL MULTIVARIATE ARMA MODELS
	20.4. HISTORICAL DEVELOPMENT
	20.5. OTHER FAMILIES OF MULTIVARIATE MODELS
	20.6. CONCLUSIONS
	APPENDIX A20.1. - IDENTIFICATION METHODS FOR GENERAL MULTIVARIATE ARMA MODELS
	PROBLEMS
	REFERENCES

	CHAPTER 21. CONTEMPORANEOUS AUTOREGRESSIVE-MOVING AVERAGE MODELS
	21.1. INTRODUCTION
	21.2. DERIVING CARMA MODELS
	21.3. CONSTRUCTING CARMA MODELS
	21.4. SIMULATING USING CARMA MODELS
	21.5. PRAClTCAL APPLICATIONS
	21.6. CONCLUSIONS
	APPENDIX A21.1. - ESTIMATOR FOR CARMA MODELS HAVING UNEQUAL SAMPLE SIZES
	PROBLEMS
	REFERENCES


	PART X: HANDLING MESSY ENVIRONMENTAL DATA
	CHAPTER 22. EXPLORATORY DATA ANALYSIS AND INTERVENTION MODELLING IN CONFIRMATORY DATA ANALYSIS
	22.1. INTRODUCTION
	22.2. DATA FILLING USING SEASONAL ADJUSTMENT
	22.3. EXPLORATORY DATA ANALYSIS
	22.4. CONFIRMATORY DATA ANALYSIS USING INTERVENTION ANALYSIS
	22.5. CONCLUSIONS
	PROBLEMS
	REFERENCES

	CHAPTER 23. NONPARAMETRIC TESTS FOR TREND DETECTION
	23.1. INTRODUCTION
	23.2. STATISTICAL TESTS
	23.3. NONPARAMETRIC TESTS
	23.4. POWER COMPARISONS OF PARAMETIC AND NONPARAMETRIC TREND TESTS
	23.5. WATER QUALITY APPLICATIONS
	23.6. CONCLUSIONS
	APPENDIX A23.1. - KENDALL RANK CORRELATION TEST
	APPENDIX A23.2. - WILCOXON SIGNED RANK TEST
	APPENDIX A23.3. - KRUSKAL-WALLIS TEST
	PROBLEMS
	REFERENCES

	CHAPTER 24. REGRESSION ANALYSIS AND TREND ASSESSMENT
	24.1. INTRODUCTION
	24.2. REGRESSION ANALYSIS
	24.3. TREND ANALYSIS METHODOLOGY FOR WATER QUALITY TIME SERIES
	24.4. CONCLUSIONS
	PROBLEMS
	REFERENCES


	DATA APPENDIX
	DATA ACQUISITION
	DATA LISTING
	REFERENCES

	AUTHOR INDEX
	SUBJECT INDEX



